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Abstract

Image-level corruptions and perturbations degrade the
performance of CNNs on different downstream vision tasks.
Social media filters are one of the most common resources
of various corruptions and perturbations for real-world vi-
sual analysis applications. The negative effects of these dis-
tractive factors can be alleviated by recovering the original
images with their pure style for the inference of the down-
stream vision tasks. Assuming these filters substantially in-
ject a piece of additional style information to the social me-
dia images, we can formulate the problem of recovering the
original versions as a reverse style transfer problem. We
introduce Contrastive Instagram Filter Removal Network
(CIFR), which enhances this idea for Instagram filter re-
moval by employing a novel multi-layer patch-wise con-
trastive style learning mechanism. Experiments show our
proposed strategy produces better qualitative and quantita-
tive results than the previous studies. Moreover, we present
the results of our additional experiments for proposed archi-
tecture within different settings. Finally, we present the in-
ference outputs and quantitative comparison of filtered and
recovered images on localization and segmentation tasks to
encourage the main motivation for this problem.

1. Introduction
Social media filters (e.g. Instagram filters) transform an

image into a different version by applying several trans-
formations, and this modified version may have color-level
or pixel-level corruptions and perturbations. These filters
modify the original image by adjusting the contrast and
brightness, or changing hue and saturation, or introducing
different levels of blur and noise, or applying color curves
or vignetting. Though these filters convert images to a more
aesthetically pleasing appearance, they also make the con-
tent in those images more complicated to understand by
learning-based algorithms. Therefore, removing the filters
from social media images is a crucial preprocessing step
completed for the visual analysis of social media contents.

Convolutional Neural Networks (CNNs) are one of the
most common choices for solving different vision tasks, and
there are several prominent studies that propose the fun-
damental solutions based on CNNs for these tasks such as
classification [17,20,45,46], localization [33,40,41,50,56],
segmentation [6, 16, 50, 56], tracking [2, 3, 51] and retrieval
[19, 28]. However, the recent studies [30, 37, 53] argue that
CNNs are not robust to the image-level corruptions and per-
turbations for the downstream tasks, and this leads to a sig-
nificant decrease on the performance regardless of the task.
At this point, the filters applied to the social media images
can be considered as the natural example of the image-level
corruptions and perturbations, which can be frequently en-
countered in several real-world vision applications. As ex-
emplified in [27], CNNs do not give the exact segmentation
outputs for the original image and its filtered versions, but
also give intolerably inaccurate outputs for the filtered ver-
sions, due to the different levels of corruptions and different
types of perturbations caused by filtering.

In the previous studies, there are two main approaches
proposing a solution for better analyzing the filtered social
media images: (1) the filter classification [5, 8, 9, 52], (2)
learning the transformations applied by the filter [4,42]. The
main drawback for both approaches is that they do not di-
rectly try to recover the original images, but only to learn
the class, or to approximate the transformation matrix of
the filters applied. Recently, a novel approach for recover-
ing the original images from the filtered versions has been
proposed by [27]. This approach mainly assumes that the
filters applied inject the additional style information to the
images, and thus considering the filter removal problem as
a reverse style transfer problem. We combine adaptive fea-
ture normalization idea for filter removal as in [27] and the
patch-wise contrastive learning mechanism [38], and im-
prove them. In this study, we propose Contrastive Insta-
gram Filter Removal Network (CIFR), which employs novel
patch sampling modules for contrastive semantic and style
NCE losses leading to preserve the semantic information
while removing the additional style information injected by
the filters. This work has the following contributions:
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Figure 1. Isolated patch sampling modules for distilling the content and style information. This figure shows the pipeline for only a single
level features. The extracted feature maps by IFRNet Encoder (E) are first fed into the random sampling modules for the content (RCS)
and style (RSS), separately. After encoding them by corresponding 2-layer MLP modules, (Hc) and (Hs), the content patches for the input
and the output are sent to Content NCE module, and content NCE loss is calculated as proposed in [38]. Moreover, the style patches are
extracted by G for calculating the Gram matrix of the encoded features, and style NCE loss learns to select the patch with pure style over
the filtered patch.

• We introduce Contrastive Instagram Filter Removal Net-
work (CIFR), which enhances the idea of reverse style
transfer for recovering the original images proposed
in [27] by adding patch-wise contrastive style learning
mechanism to the objective functions.

• We compare the qualitative and quantitative results of
CIFR with the benchmark presented in [27]. This bench-
mark contains the previous filter removal approaches
[4, 27] and the fundamental [22, 55] and the related
[11, 32, 38, 44] image-to-image translation studies.

• We present the additional results of our proposed archi-
tecture within the following settings: (1) using pre-trained
weights of IFRNet [27]. (2) including only PatchNCE
loss [38] to the objective functions in [27]. (3) exclud-
ing Identity Regularization [38] or (4) well-known con-
sistency losses used in [27].

• We demonstrate the impact of removing the visual effects
brought by Instagram filters on the performance of the
downstream vision models like localization and segmen-
tation.

2. Related works

Instagram Filter Removal. Removing Instagram filters is
an emerging task in vision, and investigated by only limited

number of studies in the literature. [4] is one of the promi-
nent studies trying to remove the visual effects brought by
Instagram filters, and it follows a strategy for adaptively
learning the parametric local transformations for each fil-
ter by using CNNs. By using a similar idea, [42] proposes a
CNN architecture for transferring the photographic effects
of a filter among the images with different contents by pre-
dicting the coefficients of the transformations applied. [27]
introduces an adversarial methodology that directly learns
to remove Instagram filters by adaptively normalizing the
style information injected by filters in the feature represen-
tation of the filtered images. Moreover, there are other stud-
ies that try to recognize the filters applied to the images,
instead of directly removing their effects, by using the an-
cestor CNNs (e.g. AlexNet [29], LeNet [31]) [5], or more
commonly-used CNNs (e.g. VGGs [45], ResNets [17]) [9]
or Siamese CNNs [8].

Reverse Style Transfer. Recent studies in Style Trans-
fer [12, 13, 21] demonstrate that the style information of
a reference image can be transferred into a target image
without losing the main context. This can be considered
as many-to-many translation [22,25,38,55] where any style
information is captured from the feature representation of
a reference image, and then fused into the feature repre-
sentation of another image. Similarly, Reverse Style Trans-
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fer is described in [27] as many-to-one translation where
the multiple styles injected into an image can be eliminated
by adaptively normalizing its feature representations in dif-
ferent levels, so that we can reverse it into its pure style
(i.e. without any additional style injected). In this study, we
mainly follow the same idea for removing Instagram filters
from the images. Assuming that the filters applied to the
images interpolate a particular style information to the fea-
ture maps of these images, they can be swept away from the
images during the extraction of feature representations.

Contrastive Learning. Contrastive learning is one of the
most popular strategies in representation learning. Recent
studies [7, 15, 18, 48, 49] show that a methodology of max-
imizing mutual information is capable of learning more ef-
fective representations without requiring any supervision or
hand-crafted objective functions. Noise contrastive estima-
tion (NCE) [14] has become the popular choice for this pur-
pose, and [36] demonstrates that NCE can learn the feature
representations in a better and efficient manner. NCE basi-
cally builds on the notion of semantic similarity among the
associated signals where more similar ones are represented
in more similar ways. These associated signals can be an
image with itself [10, 15, 35, 43], an image with its feature
representation [18], an image with its patches [23, 49], or
multiple views [48] or its different transformed versions [7].
Moreover, [38] employs this mechanism for conditional im-
age synthesis task in multi-layer and patch-wise manner.
In this study, we adapt the patch-wise contrastive learn-
ing methodology proposed in [38] to reverse style transfer
task, and introduce the idea of using isolated patch sampling
modules for the content and style information for distilling
the semantic and style similarities among the signals.

3. Methodology
3.1. Patch-wise Contrastive Style Learning

Following the same assumption for the definition of re-
verse style transferring idea in [27], Instagram filter removal
task can be explained in such a way that a given image
X̃ ∈ RH×W×3 including a style information of an arbi-
trary filter injected by some transformation functions T(·)
is turned into its original version X ∈ RH×W×3 (i.e. with-
out any additional style information injected) by a style re-
moval module F(·). The main purpose in this task is to dis-
cover the best style removal module for given images with
different non-linear transformations applied.

X = F(X̃) (1)

where X̃ = T(X) and T(·) is a general transformation
function representing one or more transformations applied
to X. Since finding T−1(·) for each single image is an ill-
posed problem, we need to discover the best possible F(·),

which can be substituted with T−1(·) with the minimum
amount of reconstruction error.

Contrastive learning can be described as building the rep-
resentations of the instances on the notion of semantic sim-
ilarity among their associated signals. These signals can be
represented as a query with its corresponding example in-
stance (i.e. positive) and some non-corresponding example
instances (i.e. negatives). The query v ∈ RK , the positive
v+ ∈ RK and N negatives v− ∈ RN×K are mapped into
K-dimensional vectors by an encoding structure. Note that
these vectors are required to be unit vectors to avoid collaps-
ing and exploding in their space, and thus should be normal-
ized. The problem is formulated as an (N + 1)-way clas-
sification problem to maximize mutual information, where
the query and the positive instances are closer to each other,
while the query is located to far away from the negatives in
the vector space. The objective function for this problem
stands for learning to select the positive instance over the
negatives for a particular query instance, and it is defined in
Equation 2.

`(v,v+,v−) = −log
[

exp(v·v+/τ)

exp(v·v+/τ)+
∑N

n=1 exp(v·v−/τ)

]
(2)

where N is the number of negative instances and τ is the
temperature parameter for scaling.

In this study, we employ the multi-layer and patch-based
contrastive learning objective [38] to eliminate the visual
effects brought by Instagram filters. A particular patch of
an image filtered by any arbitrary Instagram filter should
associate with the patch of its original version at the exact
location. The other patches typically do not associate with
this patch. The patch at each spatial location can be rep-
resented by the feature maps computed by an encoder in a
different scale in each layer. Note that the feature maps in
deeper layers correspond to larger patches. We can demon-
strate this patch sampling module as follows:

{zl}L = {H l(El(X̃))}L
{ẑl}L = {H l(El(X̂))}L (3)

where zl is the feature map of filtered image in l-th layer,
ẑl is the feature map of unfiltered image, H l is the mapper
network for patch sampling (i.e. a two-layer MLP network
as in [7]), El is the encoder network, L is the number of
layers in E, X̃ and X̂ represent the filtered and unfiltered
images, respectively.

We extend this idea in [38] by using isolated patch sam-
pling modules for the content and style information, where
the single level pipeline can be seen in Figure 1. The main
motivation behind this practice is to distill the learning pro-
cess of the semantic and style similarities among the asso-
ciated patches. At this point, we can leverage the original
version of the images to capture the pure style (i.e. without
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Figure 2. Overall architecture of Contrastive Instagram Removal Network (CIFR). The stacked features extracted by IFRNet encoder [27]
are fed into our proposed isolated patch sampling modules. For each patch level, content NCE loss and style NCE loss are disjointly
calculated for distilling the content and style information.

any additional style injected). To achieve this, we extract
the Gram matrices of the feature maps to express the style
information via the feature correlations, and employ them
to our contrastive learning pipeline. We can formulate the
isolated patch sampling modules as follows:

{z̃l
c, z̃

l
s}L = {H l

c(E
l(X̃)),Gl(H l

s(E
l(X̃)))}L

{ẑl
c, ẑ

l
s}L = {H l

c(E
l(X̂)),Gl(H l

s(E
l(X̂)))}L

{zl
c, z

l
s}L = {H l

c(E
l(X)),Gl(H l

s(E
l(X)))}L (4)

where Gl ∈ RK×K is the Gram matrix, the inner product
between the features mapped by H l

s in l-th layer, z̃c, ẑc, zc
stand for the content feature maps and z̃s, ẑs, zs for the
style feature maps of the filtered, unfiltered and original im-
ages, respectively. Hc represents the content patch sam-
pling module, while Hs is the style patch sampling module.

For the content matching, we try to match the corre-
sponding filtered and unfiltered patches at the same loca-
tion, while exploiting the other patches within the filtered
image as negatives. We also try to emulate the pure style in
the patches of the original image for the unfiltered patches.
Note that, within the computational constraint, the most
affordable way of capturing the pure style in such a con-
trastive setup is to build the strategy as 2-way classification
where the negative instance has the exact same semantic in-
formation, but with different style injected. At this point, we

combine two contrastive learning objectives, namely con-
tent NCE LC , and style NCE LS , for extracting the content
and style information separately. Our extended version of
PatchNCE loss is shown in Equation 5.

LC(E,H,X, X̃) = Ex∼X,x̃∼X̃

L∑
l=1

T l∑
t=1

`(ẑl,t
c , z̃

l,t
c , z̃

l,T\t
c )

LS(E,H,X, X̃) = Ex∼X,x̃∼X̃

L∑
l=1

T l∑
t=1

`(ẑl,t
s , z

l,t
s , z̃

l,t’
s )

LPatchNCE = γcLC + γsLS (5)

where T l is the list of different spatial locations for patches
at l-th layer, t′ represents a single arbitrary spatial location
different than t, γc and γs are the coefficients of the content
and style NCE losses. In our experiments, both coefficients
are set to 0.5.

3.2. Architecture

In our architecture design, we mostly follow the de-
sign of IFRNet proposed in [27]. IFRNet has an encoder-
decoder structure with a style extractor module for applying
adaptive feature normalization to all layers in the encoder.
Style extractor module learns to adapt the affine parame-
ters for the feature representations encoded by a pre-trained
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VGG network by using different fully-connected heads for
each layer. The affine parameters are sent into adaptive in-
stance normalization (AdaIN) [21] layers in each encoder
level to eliminate the external style information. Note that
any related information about the original style is retained
by including skip connections to the normalized feature
maps [27]. At the end, we stack the features in all levels
in the encoder, and feed this multi-layer feature list to our
proposed isolated patch sampling modules for the content
and style information. We introduce the technical details
about isolated patch sampling modules in Section 3.1.

As distinguished from IFRNet, we do not have an aux-
iliary classifier for classifying the filter type in our design.
In [27], the auxiliary classifier has been used for satisfy-
ing a naive way of maximizing mutual information between
corresponding input and output instances. However, we do
not prefer to include this kind of a classifier since we can
achieve this practice in a more elegant way via Noise Con-
trastive Estimation [14].

We feed the latent representations with no external style
information to the decoder of IFRNet. The decoder con-
tains six consecutive upsampling and residual convolutional
blocks, and learns to generate the recovered image with ad-
versarial training. Discriminators are designed as in [22,27]
to penalize the global image and local patches at different
scales. Our proposed architecture, namely Contrastive In-
stagram Filter Removal Network (CIFR) is shown in Figure
2.

3.3. Objective Function

In our study, we combine three different objective func-
tions for our pipeline: (1) multi-layer patch-wise contrastive
style loss, (2) consistency loss, (3) adversarial loss. The
first one is introduced in Equation 5, and it is responsible
for distilling the learning process of the patch-level seman-
tic and style similarities. Next, we include the consistency
loss used in [27] to our final objective function in order to
ensure the semantic and texture consistency of the output.
We also employ a common adversarial training strategy (i.e.
WGAN-GP) [1] in order to enhance the realism of the re-
covered images, and it is demonstrated in Equation 6. Our
final objective function for the generator LG can be seen in
Equation 7.

LDWGAN−GP = −Ex∼X[D(x )] + Ex̂∼X̂[D(x̂ )] + λgpLGP
LGWGAN−GP = −Ex̂∼X̂[D(x̂ )] (6)

where D stands for the discriminator network, LGP is the
gradient penalty term.

LG = λpLPatchNCE + λcLCons + λaLGWGAN−GP (7)

where λp, λc and λa are the coefficients for the patch-wise
NCE loss, consistency loss and adversarial loss, and set to
5× 10−1, 10−3 and 10−3, respectively.

4. Results
In this study, we investigate the performance of multi-

layer patch-wise contrastive learning approach on Insta-
gram filter removal task, which can be described as a reverse
style transfer problem. We compare the performance of our
proposed architecture, namely CIFR, against the previous
filter removal approaches [4, 27], the fundamental [22, 55]
and the related [11, 32, 38, 44] image-to-image translation
studies, and its own variants with different training settings.
Note that we have obtained the available results in [27], and
re-trained the rest of compared methods on IFFI dataset
with their default hyper-parameters settings. Lastly, we
show the qualitative and quantitative impact of removing
Instagram filters from the images on the performance of
downstream vision tasks (i.e. localization, segmentation).

4.1. Experimental Setup

We tested our methodology on IFFI dataset, which is in-
troduced by [27], and contains 9,600 high-resolution and
aesthetically pleasing images along with their filtered ver-
sions by 16 different Instagram filters. There are 8,000
training and 1,600 test images in this dataset. In our ex-
periments, we resized the images to the resolution of 256,
and only applied random horizontal flipping before feed-
ing them to our proposed model. We used the pre-trained
weights of IFRNet [27] in our default settings. We have
picked Adam optimizer [26] with β1 = 0.5 and β2 = 0.999
for all modules, and the learning rates for the generator, dis-
criminator and patch sampling modules are set to 2× 10−4,
10−4 and 10−5, respectively. We did not use any schedul-
ing for the learning rates during training. The tempera-
ture parameter τ is set to 0.07. We have conducted our
experiments on 2x NVIDIA RTX 2080Ti GPU with batch
size of 8. We have trained proposed architecture for 40K
steps for pre-trained settings, and 120K for training from
scratch. We have implemented the code in PyTorch [39].
The source code can be found at https://github.
com/birdortyedi/cifr-pytorch.

4.2. Qualitative Comparison

We present the qualitative results of our proposed archi-
tecture and the other compared methods on Instagram filter
removal in Figure 3. When compared to the previous stud-
ies, the results show that CIFR improves the quality of re-
covered images by composing adaptive feature normaliza-
tion idea and multi-layer patch-wise contrastive style learn-
ing for filter removal. CIFR minimizes the inconsistency
on the background and foreground color tones, and it leads
to have less artifacts (i.e. checkerboard, false color, filter
residuals) on different parts of the outputs. At this point, we
present the comparison of the residual images of the most
successful four methodologies in our benchmark in Figure
4. This figure verifies that the residuals are typically formed
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Filtered Original CIFR (ours) CUT GcGAN DRIT++ IFRNet AngularGAN CycleGAN pix2pix

Figure 3. Comparison of the qualitative results of Instagram filter removal on IFFI dataset. Filters applied (top to bottom): Sutro, Willow,
Nashville, Amaro, Lo-Fi, Toaster.

by the visual effects brought by the corresponding filter, and
CIFR performs best on effectively removing these effects.
The residuals are calculated by the scaled absolute error be-
tween the output and the original version.

4.3. Quantitative Analysis

We have followed the same procedure in [27] for evaluat-
ing the quantitative performance of CIFR where four com-
mon image similarity metrics are employed in the experi-
ments. These metrics are SSIM, PSNR, Learned Perceptual
Image Patch Similarity (LPIPS) [54] and CIE 2000 Color
Difference (CIE-∆E) [34]. We show the results in Table 1
for our proposed architecture and the other compared meth-
ods obtained by training on IFFI dataset [27]. Our method
has generally better quantitative performance than the other
methods in the benchmark. Particularly, CIFR surpasses the
previous studies in SSIM and CIE-∆E metrics. For PSNR
measurements, although CIFR outperforms the fundamen-
tal [22, 55] and the related [11, 32, 38, 44] image-to-image
translation studies and the prominent method [4], it falls be-
hind IFRNet [27] by 0.02%.

Ablations. In this study, we build our proposed architec-
ture in different settings to observe its performance in detail.

Figure 4. The residuals extracted by the absolute difference be-
tween the recovered images and their original version.

The changes in our settings can be listed as follows: (1) we
start our training from scratch, not using pre-trained weights
of IFRNet. (2) we only include content PatchNCE loss to
the objective functions as in [38]. (3) we exclude Iden-
tity Regularization [38] from the extended version of our
PatchNCE loss. (4) we leave out the semantic and texture
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Hudson Brannan Sutro Amaro Toaster 1977

Figure 5. Demonstrating the impact of Instagram filter removal on downstream vision tasks like detection and segmentation. Examples are
obtained from IFFI dataset [27], and predicted by Attr-Mask-RCNN trained on Fashionpedia dataset, which is introduced in [24]. Rows:
(1) the results of the images filtered by different Instagram filters, (2) the results of the images unfiltered by CIFR. Zoom in for better view.

consistency losses used in [27]. Note that the exact same
architecture, as shown in Figure 2, and hyper-parameters
are used for all these settings. Table 1 also presents the
results of additional experiments for proposed architecture.
Our first observation is that we can achieve on-par perfor-
mance by training our architecture from scratch, and it still
performs better quantitative performance than the previous
studies. Secondly, distilling the learning process of seman-
tic and style similarities for the patch-wise contrastive learn-
ing strategy significantly improves the results of Instagram
filter removal on all experiments. This demonstrates that
capturing the pure style of the original images is one of the
key aspects of removing the filters. Next, Identity Regular-
ization has limited impact on the overall performance, and it
can be omitted for reducing the training workload. Finally,
excluding the consistency losses used in [27] from the final
objective function leads to a decrease on the performance.
However, these losses are quiet expensive functions for the
training workload. Therefore, we believe that there is a still
room for leaving out these expensive loss terms while im-
proving the performance.

Impact on Vision Tasks. As pointed out in [27], due to
different distractive factors, CNNs may not perform well
for the real-world applications as much as in the standard
benchmark studies. Noise or blurring in real-world scenar-
ios or different transformations applied to the images can
be the examples of these distractive factors. Likewise, In-
stagram filters transform the images into a different version
whose feature maps change substantially. These changes ar-
guably lead to the performance degradation on visual under-
standing tasks. At this point, we demonstrate the impact of
removing Instagram filters from the images before feeding
them to the downstream vision models. To achieve this, we

Method SSIM ↑ PSNR ↑ LPIPS ↓ CIE-∆E ↓
PE [4] 0.748 23.41 0.069 39.55

pix2pix [22] 0.825 26.35 0.048 30.32
CycleGAN [55] 0.819 22.94 0.065 36.59

AngularGAN [44] 0.846 26.30 0.048 31.11
IFRNet [27] 0.864 30.46 0.025 20.72
DRIT++ [32] 0.626 16.23 0.162 47.95
GcGAN [11] 0.838 21.75 0.060 38.54
FastCUT [38] 0.763 20.08 0.083 39.86

CUT [38] 0.744 20.96 0.081 38.64
CIFR-no-pre-training 0.888 29.24 0.02441 20.65

CIFR-no-style-nce 0.859 28.13 0.03426 23.01
CIFR-no-id-reg 0.879 29.40 0.02528 19.82

CIFR-no-consistency 0.874 29.42 0.02708 21.23
CIFR 0.880 30.02 0.02321 19.05

Table 1. Quantitative comparison of proposed architecture, its own
variants and the compared methods on IFFI dataset. Obtained the
available results from [27], and re-trained the rest from scratch.

make inferences of filtered and recovered images for local-
ization and segmentation tasks. Filtered test images of IFFI
dataset and their unfiltered versions by our proposed archi-
tecture are predicted by Attr-Mask-RCNN model, which is
proposed in [24], and trained on Fashionpedia dataset [24].
Note that we made annotated the localization and segmen-
tation ground truth of IFFI dataset by human annotators.
Figure 5 shows that Instagram filters may degrade the per-
formance of the downstream vision tasks (e.g. misclassifi-
cation, missing detections, wrong detection location, prob-
lematic segmentation maps, etc.). This can be mitigated by
wiping off the visual effects brought by these filters, and
recover the images back to their original versions. In ad-
dition to this, we extend the evaluation of using filter re-
moval strategy as a pre-processing step for the downstream
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Filters Localization (mAP) Segmentation (mAP)
Top Shirt Pants Dress Shoe Glasses Top Shirt Pants Dress Shoe Glasses

1977 Filtered 7.976 0.000 11.348 5.406 16.084 9.505 9.773 0.000 10.228 6.713 13.424 7.657
R-IFRNet 12.653 6.931 13.871 11.042 24.318 13.175 11.521 7.178 12.815 11.978 19.716 9.769
R-CIFR 13.115 10.891 15.175 11.314 24.332 10.297 14.088 10.561 13.307 12.866 19.004 9.901

Amaro Filtered 11.269 2.970 14.132 7.525 21.051 7.525 10.414 3.960 13.508 10.179 15.323 7.525
R-IFRNet 13.035 6.188 13.890 10.144 26.027 10.594 11.658 7.426 14.001 11.560 20.232 9.208
R-CIFR 12.673 8.168 16.006 11.083 28.626 10.693 11.057 8.911 14.598 11.644 22.275 9.901

Brannan Filtered 10.790 2.475 13.228 6.943 19.572 10.990 11.607 3.960 11.484 7.017 15.271 7.168
R-IFRNet 13.673 6.931 12.895 10.562 26.027 8.911 13.359 6.436 12.665 11.453 21.615 8.020
R-CIFR 14.999 9.901 13.516 9.537 25.709 11.221 15.200 11.634 13.264 10.911 20.977 8.581

Hudson Filtered 13.294 5.941 13.512 9.285 24.554 13.861 13.818 5.941 12.437 11.243 18.329 10.693
R-IFRNet 15.093 6.188 13.964 10.664 27.041 13.812 15.558 7.426 14.420 11.863 21.283 11.023
R-CIFR 14.322 10.297 14.844 10.673 29.872 11.287 15.815 11.337 14.308 11.241 21.654 10.297

Nashville Filtered 12.322 6.931 12.110 10.326 21.806 11.089 11.432 6.436 11.305 10.927 16.387 8.079
R-IFRNet 13.707 6.931 14.645 10.686 24.811 7.525 14.546 7.426 12.643 10.485 19.994 6.733
R-CIFR 15.077 9.571 15.705 9.884 28.064 10.108 14.712 9.901 13.452 11.193 22.437 8.515

Perpetua Filtered 14.494 5.941 14.238 7.475 21.133 14.072 14.628 5.941 12.202 8.376 17.263 12.208
R-IFRNet 15.407 6.188 13.768 11.634 26.154 12.541 15.879 6.931 12.932 11.997 19.264 10.693
R-CIFR 16.903 8.168 15.880 11.541 28.047 13.333 16.939 9.406 13.186 11.861 22.065 10.033

Valencia Filtered 12.481 6.188 12.105 9.010 23.083 9.901 12.558 7.426 10.671 9.036 18.131 7.683
R-IFRNet 14.490 6.436 15.904 10.771 27.347 10.337 14.315 7.178 14.138 12.291 20.624 9.743
R-CIFR 14.467 9.901 14.809 11.735 30.238 10.693 14.932 9.653 14.464 12.263 23.358 10.198

X-Pro II Filtered 13.604 6.188 12.555 8.465 21.637 12.752 12.389 6.188 11.111 8.540 16.369 9.795
R-IFRNet 15.252 8.168 13.746 10.815 25.722 11.116 15.751 8.911 12.605 12.546 19.757 9.003
R-CIFR 15.189 9.818 14.538 12.397 27.538 12.488 16.253 9.571 13.360 13.385 21.394 10.078

Original - 17.639 9.941 17.425 13.223 30.868 17.471 18.758 10.178 16.432 15.509 24.937 15.278

Table 2. Quantitative comparison for employing filter removal strategy to the data before feeding it to the downstream vision tasks. We
present per-category mean average precision (mAP) scores of both filtered and recovered images on localization and segmentation tasks.
We use our proposed architecture, namely CIFR and the prior work [27], for Instagram filter removal, and Attr-Mask-RCNN architecture
proposed in [24] for clothing localization and segmentation, which is trained on Fashionpedia dataset [24] and tested on IFFI dataset [27].

vision tasks. In this experiment, we measure the perfor-
mance of Attr-Mask-RCNN on IFFI dataset by using per-
category mean average precision (mAP) of bounding boxes
and segmentation masks. Table 2 presents the quantitative
results of both filtered and recovered images on localization
and segmentation tasks. Note that we pick 6 most frequently
appeared clothing categories of IFFI dataset for evaluating
per-category mAP. The results support the main motivation
behind the idea of directly removing any externally applied
filters from the images to improve the overall performance
of the downstream vision tasks. Moreover, it also verifies
that different levels of perturbations have a negative impact
on understanding the image contents, and thus hindering the
further analysis of them in particular applications.

5. Conclusions

In this study, we propose a novel strategy for removing
Instagram filters, which is a patch-wise contrastive learning
mechanism for distilling the learning process of the seman-
tic and style similarities. In addition to matching filtered
and unfiltered patches at the same location, we also try to
imitate the pure style of an original image by enabling a sin-
gle negative instance for contrastive style learning, which

has the same semantic information with the query instance,
but with different style. Experiments show that our pro-
posed architecture for this strategy mostly outperforms the
performance of the previous studies on IFFI dataset and
better to prevent to reduce the overall performance of the
downstream vision models.

Discussion of Limitations. We believe that there is still
some room for improvements on the limitations of our strat-
egy and the task itself. First, the volume and the diversity of
the dataset used for this task (i.e. the number of instances,
filters and annotations) are limited when compared to the
datasets of the other vision tasks, and it can be increased to
be able to conduct more extensive experiments on this task.
Next, the consistency loss shown as the part of Equation 7
is an expensive and restrictive objective function for train-
ing workload. The hyper-parameters mainly defining the
computational burden of training (i.e. batch size and input
size) mostly depend on this function. Therefore, a more el-
egant objective function can be designed for replacing with
it. This architecture is implemented as a pre-processor for
the downstream vision tasks, however it can be also de-
signed as a single model where the filter removal is done
just before the feature extraction, as in [47] for resizing.
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