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Abstract

Deep learning based approaches has achieved great per-
formance in single image super-resolution (SISR). However,
recent advances in efficient super-resolution focus on reduc-
ing the number of parameters and FLOPs, and they aggre-
gate more powerful features by improving feature utiliza-
tion through complex layer connection strategies. These
structures may not be necessary to achieve higher run-
ning speed, which makes them difficult to be deployed to
resource-constrained devices. In this work, we propose a
novel Residual Local Feature Network (RLFN). The main
idea is using three convolutional layers for residual lo-
cal feature learning to simplify feature aggregation, which
achieves a good trade-off between model performance and
inference time. Moreover, we revisit the popular contrastive
loss and observe that the selection of intermediate features
of its feature extractor has great influence on the perfor-
mance. Besides, we propose a novel multi-stage warm-start
training strategy. In each stage, the pre-trained weights
from previous stages are utilized to improve the model per-
formance. Combined with the improved contrastive loss
and training strategy, the proposed RLFN outperforms all
the state-of-the-art efficient image SR models in terms of
runtime while maintaining both PSNR and SSIM for SR. In
addition, we won the first place in the runtime track of the
NTIRE 2022 efficient super-resolution challenge. Code will
be available at https://github.com/fyan111/RLFN.

1. Introduction
SISR aims to reconstructed a high-resolution image from

a low-resolution image. It is a fundamental low-level vision
task and has a wide range of applications [9, 13, 40]. Cur-
rently, deep learning based approaches [2, 5, 11, 12, 18, 28,
29, 31, 32, 34, 36, 38, 39, 48, 49] have achieved great success
and continuously improved the quality of reconstructed im-

*Equal contribution

Figure 1. Illustration of PSNR, inference time and parameter num-
bers of different SISR models on the Urban100 dataset for 4x SR.

ages. However, most of these advanced works require con-
siderable computation costs, which makes them difficult to
be deployed on resource-constrained devices for real-world
applications. Therefore, it is essential to improve the effi-
ciency of SISR models and design lightweight models that
can achieve good trade-offs between image quality and in-
ference time.

Many prior arts [2,11,12,18,20,23,29,31,39,42,45,48,
49] have been proposed to develop efficient image super-
resolution models. Most of these efficient models try to
reduce model parameters or FLOPs. To reduce model pa-
rameters, recursive networks with weight sharing strategy
are usually adopted [23, 42]. However, such models do not
essentially decrease the number of operations and inference
time because the complex graph topology is not reduced. To
reduce FLOPs of SR models, it is common to employ op-
erations like depth-wise convolutions, feature splitting and
shuffling [2, 18, 19, 31], which are without the guarantee
of improving computational efficiency. Some recent stud-
ies [45,48] have shown that fewer parameters and FLOPs do
not always lead to better model efficiency, especially run-
time, which is generally the most important factor for prac-
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tical applications. Parameters and FLOPs are widely used
for theoretical analysis but are only proxies for the actual in-
ference time on physical devices. Therefore, there is a high
demand to develop efficient SR models that have higher in-
ference speed instead of fewer parameters or FLOPs, in or-
der to better meet practical and commercial needs.

To this end, we revisit current state-of-the-art efficient
SR model RFDN [31] and attempt to achieve better trade-
offs between reconstructed image quality and inference
time. First, we rethink the efficiency of several compo-
nents of the residual feature distillation block proposed by
RFDN. We observe that though feature distillation signif-
icantly reduce the number of parameters and contribute to
the overall performance, it is not hardware friendly enough
and limits the inference speed of RFDN. To improve its effi-
ciency, we propose a novel Residual Local Feature Network
(RLFN) that can reduce the network fragments and main-
tain the model capacity. To further boost its performance,
we propose to employ the contrastive loss [44, 46]. We
notice that the selection of intermediate features of its fea-
ture extractor has great influence on the performance. We
conduct comprehensive studies on the properties of inter-
mediate features and draw a conclusion that features from
shallow layers preserve more accurate details and textures,
which are critical for PSNR-oriented models. Based on this,
we build an improved feature extractor that effectively ex-
tracts edges and details. To accelerates the model conver-
gence and enhance the final SR restoration accuracy, we
propose a novel multi-stage warm-start training strategy.
Specifically, in each stage, the SR model can enjoy the ben-
efit of pre-trained weight of models from all previous stages.
Combined with the improved contrastive loss and the pro-
posed warm-start training strategy, RLFN achieves state-
of-the-art performance and maintain good inference speed.
Figure 1 shows that RLFN has a better trade-off between
image quality and inference time than other recent competi-
tors of efficient SR models.

Our contributions can be summarized as follows:

1. We rethink the efficiency of RFDN and investigate its
speed bottleneck. We propose a novel network termed
Residual Local Feature Network, which successfully
enhances the model compactness and accelerates the
inference without sacrificing SR restoration accuracy.

2. We analyze intermediate features extracted by the fea-
ture extractor of the contrastive loss. We observe that
features from shallow layers are critical for PSNR-
oriented models, which inspires us to propose a novel
feature extractor to extract more information of edges
and textures.

3. We propose a multi-stage warm-start training strategy.
It can utilize the trained weights from previous stages
to boost the SR performance.

2. Related Work

2.1. Efficient Image Super-Resolution

Achieving real-time SISR on resource-constrained mo-
bile devices has huge business benefits, therefore, we
mainly discuss lightweight image SR methods. SCRNN
[11] applied the deep learning algorithm to the SISR field
for the first time. It has three layers and uses bicubic in-
terpolation to upscale the image before the net, causing un-
necessary computational cost. To address this issue, FSR-
CNN [12] employed the deconvolution layer as the upsam-
pling layer and upscaled the image at the end of net. DRCN
[23] introduced a deep recursive convolutional network to
reduce the number of parameters. LapSRN [25] proposed
the laplacian pyramid super-resolution block to reconstruct
the sub-band residuals of HR images. CARN [2] proposed
an efficient cascading residual network with group con-
volution, which obtains comparable results against com-
putationally expensive models. IMDN [18] proposed a
lightweight information multi-distillation network by con-
structing the cascaded information multi-distillation blocks,
which extracts hierarchical features step-by-step with the
information distillation mechanism (IDM). RFDN [31] re-
fined the architecture of IMDN and proposed the resid-
ual feature distillation network, which replaced IDM with
feature distillation connections. ECBSR [48] proposed an
edge-oriented convolutional block based on the reparam-
eterization technique [10], which can improve the learn-
ing ability of the model without increasing the inference
time. In order to obtain better results with limited com-
putational effort, the above studies tend to utilize various
complex inter-layer connections which affect the inference
speed. In this paper we propose a simple network structure
with enhanced training strategies to obtain better a trade-off
between SR quality and model inference speed.

2.2. Train Strategy for PSNR-oriented SISR

According to machine learning theory, good prediction
results come from the combined optimization of architec-
ture, training data, and optimization strategies. Previous
works on SISR mainly focused on network architecture op-
timization [2, 18, 23, 29, 48], while the importance of train-
ing strategies that contribute collaboratively to the perfor-
mances is rarely explored. These SR networks are usually
trained by the ADAM optimizer with standard l1 loss for
hundreds of epoches. To improve the robustness of training,
they usually adopt a smaller learning rate and patch size.
Recent works on image recognition [3] and optical flow
estimation [41] have demonstrated that advanced training
strategies can enable older network architectures to match
or surpass the performance of novel architectures. Such
evidence motivates us to interrogate the training strategies
for SR models and unlocking their potential. RFDN [31]
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Figure 2. The architecture of residual local feature network.

(a) RFDB (b) RLFB (c) ESA

Figure 3. Conv-1 denotes 1 × 1 convolution and Conv-3 denotes 3 × 3 convolution. (a) RFDB: residual feature distillation block. (b)
RLFB: residual local feature block. (c) ESA: Enhanced Spatial Attention. In (a) and (b) channel numbers of output feature maps are shown
next to each layer.

demonstrated that both fine-tuning the network with l2 loss
and initializing a 4x SR model with pretrained 2x model can
effectively improve PSNR. RRCAN [30] revisited the popu-
lar RCAN model and demonstrated that increasing training
iterations clearly improves the model performance.

3. Method
In this section, we first introduce our proposed RLFN

in Section 3.1. In Section 3.2, we revisit the contrastive
loss and analyze several limitations of its feature extractor.
Then we propose an improved feature extractor which can
provide more stronger guidance during the training process.
In Section 3.3, we describe a novel multi-stage warm-start
training strategy, which can effectively improve the perfor-
mance of lightweight SR models.

3.1. Network Architecture

The overall network architecture of our proposed Resid-
ual Local Feature Network (RLFN) is decipted in Figure 2.
Our RLFN mainly consists of three parts: the first feature
extraction convolution, multiple stacked residual local fea-
ture blocks (RLFBs), and the reconstruction module. We

denote ILR and ISR as the input and output of RLFN. In
the first stage, we use a single 3 × 3 convolution layer to
extract the coarse features:

F0 = hext(ILR), (1)

where hext(·) denotes the convolution operation for feature
extraction and F0 is the extracted feature maps. Then we
use multiple RLFBs in a cascade manner for deep feature
extraction. This process can be expressed by

Fn = hn
RLFB(h

n−1
RLFB(. . . h

0
RLFB(F0) . . . )), (2)

where hn
RLFB(·) denotes the n-th RLFB function, and Fn

is the n-th output feature maps.
In addition, we use one 3×3 convolution layer to smooth

the gradually refined deep feature maps. Next, the recon-
struction module is applied to generate the final output ISR.

ISR = frec((fsmooth(Fn) + F0)), (3)

where frec(·) represents the reconstruction module which
consists of one single 3× 3 convolution layer and one non-
parametric sub-pixel operation. Besides, fsmooth denotes a
3× 3 convolution operation.
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Input 1st 3rd 5th 9th 13th

Figure 4. Visualization of extracted features from the 1st, 3rd, 5th, 9th and 13th layer of the pre-trained VGG-19.

Rethinking the RFDB In this subsection, we rethink the
efficiency of the residual feature distillation block (RFDB)
proposed by RFDN. As shown in Figure 3a, RFDB adopts
a progressive feature refinement and distillation strategy in
the beginning, and then use a 1× 1 convolution for channel
reduction. In the end, it applies an enhanced spatial atten-
tion (ESA) [32] layer and a residual connection.

Specifically, the feature refinement and distillation
pipeline contains several steps. For each stage, RFDB
adopts one refinement module that consists of one shallow
residual block [32] (SRB) to refine the extracted features,
and use a distillation module (a single 1 × 1 convolution
layer) to distill features. Here we denote the refinement and
distillation modules as RM and DM , respectively. Given
the input features Fin, the whole structure can be described
by as

Fd1
, Fr1 = DM1(Fin), RM1(Fin)

Fd2
, Fr2 = DM2(Fr1), RM2(Fr1)

Fd3
, Fr3 = DM3(Fr2), RM2(Fr2)

Fd4
= DM4(Fr3),

(4)

where DMj , RMj denote the j-th distillation and refine-
ment modules, respectively. Fdj

represents the j-th distilled
features, and Frj is the j-th refined features that will be fur-
ther processed by succeeding layers. Lastly, all the distilled
features produced by previous distillation steps are concate-
nated together:

Fd = Concat(Fd1 , Fd2 , Fd3 , Fd4), (5)

where Concat represents the concatenation operation along
the channel dimension.

Overall, RFDB utilizes progressive feature refinement
together with multiple feature distillation connections for
discriminative feature representations. Practically, the fea-
ture distillation connections implemented by several 1 × 1
convolution operations as well as a concatenation operation
could significantly reduce the number of parameters as well
as boost the restoration performance. However, this design
severely deteriorates the inference speed.

We carefully analyze the efficiency of RFDB in Ta-
ble 2. In particular, we remove the hierarchical distilla-

tion connections and create two variants of RFDB, namely,
RFDB R 48 (Refinement with convolution channel 48) and
RFDB R 52 as shown in Figure 7. From Table 2, it is ob-
served that RFDB R 48 could reduce 25% inference time
compared to the original RFDB. Fortunately, the induced
performance drop could be compensated by increasing the
channel number of convolution layers. RFDB R 52 sur-
passes RFDB R 48 by a large margin in PSNR with just
a slight increase regarding the inference time. More impor-
tantly, RFDB R 52 yields comparable results with RFDB
but shows great superiority in terms of inference speed.
Therefore, in this work, we directly get rid of the feature
distillation branch and make better use of the remaining pro-
gressive refinement on local features.

Residual Local Feature Block In this subsection, we in-
troduce the residual local feature block (RLFB) that could
significantly reduce the inference time while the model ca-
pacity is maintained. As shown in Figure 3b, our proposed
RLFB discards the multiple feature distillation connections,
and only uses a few stacked CONV+RELU layers for lo-
cal feature extraction. In particular, each feature refinement
module in RLFB contains one 3 × 3 convolution layer fol-
lowed by a ReLU activation function layer. Given the input
features Fin, the whole structure is described by as

Frefined1 = RM1(Fin),

Frefined2 = RM2(Frefined1)

Frefined3 = RM3(Frefined2),

(6)

where RMj denotes the j-th refinement module, and
Frefinedj

is the j-th refined features. After multiple local
feature refinement steps, we add the lastly refined features
Frefined3

with the skipped features Fin. Then we have

Frefined = Fin + Frefined3
, (7)

where Frefined is the final refined output features.
Next, we follow RFDB to feed Frefined to a 1 × 1 con-

volution layer and a subsequent ESA block to obtain the
final output of RLFB. To further reduce the inference time,
we developed a pruning sensitivity analysis tool based on
one-shot structured pruning algorithm [26] to analyze the
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Figure 5. Parameter redundancy analysis of ESA modules on the
Urban100 dataset. The red lines represent convolutional layers
located in ConvGroups.

redundancy of ESA blocks in RFDB. As shown in Figure
5, the three convolution layers in ConvGroups rank top-1,
top-3 and top-4 in redundancy, respectively. Thus, for each
ESA block, we reduce the number of convolution layers in
ConvGroups to one. From Table 3, we can find that this
modification does not incur performance degradation. In-
stead, it brings a slight improvement regarding the inference
time and model parameters.

3.2. Revisiting the Contrastive Loss

Contrastive learning has shown impressive performance
in self-supervised learning [6–8, 15, 21]. The basic idea be-
hind is to push positives closer to anchors, and push nega-
tives away from anchors in the latent space. Recent works
[44, 46] propose a novel contrastive loss, and demonstrate
its effectiveness by improving the quality of reconstructed
images. The contrastive loss is defined as:

CL =

n∑
i=1

λi
d(ϕi(Yanchor), ϕi(Ypos))

d(ϕi(Yanchor), ϕi(Yneg))
, (8)

where ϕj denotes the intermediate features from the j-th
layer. d(x, y) is the L1-distance between x and y, and λj

is the balancing weight for each layer. AECR-Net [46] and
CSD [44] extract the features from the 1st, 3rd, 5th, 9th
and 13th layers of the pre-trained VGG-19. However, we
experimentally find that the PSNR is decreased when we
employ the contrastive loss.

We next try to investigate its reason to explain the dis-
crepancy. The contrastive loss defined in Eq. (8) mainly
depends on the difference of feature maps between two im-
ages Y1 and Y2. Therefore, we try to visualize the difference
map of their feature maps extracted by a pre-trained model
ϕ:

DMAPi,j =

√√√√ K∑
k=1

(ϕ(Y1)i,j,k − ϕ(Y2)i,j,k)2, (9)

where i, j are the spatial coordinates of Y1 and Y2, while
k is the channel index of Y1 and Y2. We use the 100 vali-
dation high-resolution images in DIV2K dataset as Y1, the
corresponding images degraded blur kernels as Y2. Figure
4 presents visualization examples. A surprising observation
is that the difference map of features extracted from deeper
layers are more semantic, but lacking accurate details. For
example, the edges and textures are mostly preserved by the
1st layer, while features from the 13th layer only preserve
the overall spatial structure and details are generally miss-
ing. In summary, features from deep layers can improve the
performance in terms of real perceptual quality because it
provides more semantic guidance. Features from shallow
layers preserve more accurate details and textures, which
are critical for PSNR-oriented models. It suggests that we
should utilize features from shallow layers to improve the
PSNR of the trained model.

(a) DMAPp (b) DMAPr

Figure 6. The difference maps of the pre-trained VGG-19
DMAPp and our proposed feature extractor DMAPr . DMAPr

has stronger response and can capture more details and textures
compared with DMAPp.

To further improve the contrastive loss, we revisit the ar-
chitectures of the feature extractor. The original contrastive
loss tries to minimize the distance between two activated
features after the ReLU activation function. However, the
ReLU function is unbounded above and the activated fea-
ture map is sparse, which results in loss of information and
provides weaker supervision. Therefore, we replace the
ReLU activation function of the feature extractor with the
Tanh function.

Moreover, since the VGG-19 is trained with the ReLU
activation function, the performance is not guaranteed if the
ReLU activation is replaced with the Tanh function with-
out any training. Some recent works [33, 43] shows that a
randomly initialized network with good architecture is suffi-
cient to capture perceptual details. Inspired by these works,
we build a randomly initialized two-layer feature extractor,
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Scale Model Params Runtime Set5 Set14 BSD100 Urban100
(K) (ms) PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

× 2

SRCNN [11] 24 6.92 36.66 / 0.9542 32.42 / 0.9063 31.36 / 0.8879 29.50 / 0.8946
FSRCNN [12] 12 9.02 36.98 / 0.9556 32.62 / 0.9087 31.50 / 0.8904 29.85 / 0.9009

VDSR [22] 666 35.37 37.53 / 0.9587 33.05 / 0.9127 31.90 / 0.8960 30.77 / 0.9141
DRCN [23] 1774 716.45 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133

LapSRN [25] 251 53.98 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103
CARN [2] 1592 159.10 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256
IMDN [18] 694 77.34 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283
RFDN [31] 534 74.51 38.05 / 0.9606 33.68 / 0.9184 32.16 / 0.8994 32.12 / 0.9278

MAFFSRN [37] 402 152.91 37.97 / 0.9603 33.49 / 0.9170 32.14 / 0.8994 31.96 / 0.9268
ECBSR [48] 596 39.96 37.90 / 0.9615 33.34 / 0.9178 32.10 / 0.9018 31.71 / 0.9250

FDIWN-M [14] - - - / - - / - - / - - / -
RLFN-S (ours) 454 56.09 38.05 / 0.9607 33.68 / 0.9172 32.19 / 0.8997 32.17 / 0.9286
RLFN (ours) 527 60.39 38.07 / 0.9607 33.72 / 0.9187 32.22 / 0.9000 32.33 / 0.9299

× 4

SRCNN [11] 57 1.90 30.48 / 0.8628 27.49 / 0.7503 26.90 / 0.7101 24.52 / 0.7221
FSRCNN [12] 13 2.22 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280

VDSR [22] 666 8.95 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524
DRCN [23] 1774 176.59 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510

LapSRN [25] 502 66.81 31.54 / 0.8852 28.09 / 0.7700 27.32 / 0.7275 25.21 / 0.7562
CARN [2] 1592 39.96 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837
IMDN [18] 715 20.56 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838
RFDN [31] 550 20.40 32.24 / 0.8952 28.61 / 0.7819 27.57 / 0.7360 26.11 / 0.7858

MAFFSRN [37] 441 39.69 32.18 / 0.8948 28.58 / 0.7812 27.57 / 0.7361 26.04 / 0.7848
ECBSR [48] 603 10.21 31.92 / 0.8946 28.34 / 0.7817 27.48 / 0.7393 25.81 /0.7773

FDIWN-M [14] 454 - 32.17 / 0.8941 28.55 / 0.7806 27.58 / 0.7364 26.02 / 0.7844
RLFN-S (ours) 470 15.16 32.23 / 0.8961 28.61 / 0.7818 27.58 / 0.7359 26.15 / 0.7866
RLFN (ours) 543 16.41 32.24 / 0.8952 28.62 / 0.7813 27.60 / 0.7364 26.17 / 0.7877

Table 1. Quantitative results of the state-of-the-art models on four benchmark datasets. The best and second-best results are marked in red
and blue colors, respectively.

which has an architecture of Conv k3s1-Tanh-Conv k3s1.
The difference maps of the pre-trained VGG-19 and our
proposed feature extractor are presented in Figure 6. We
can observe that the difference map of our proposed feature
extractor has stronger response and can capture more de-
tails and textures, compared with the difference map of the
pre-trained VGG-19. This also provides evidence that a ran-
domly initialized feature extractor can already capture some
structural information and pre-training is not necessary.

3.3. Warm-Start Strategy

For large scale factors like 3 or 4 in the SR task, some
previous works [31] use the 2x model as a pre-trained net-
work instead of training them from scratch. The 2x model
provides good initialized weights which accelerates the con-
vergence and improves the final performance. However, we
can only enjoy the benefit once because the scale factors of
pre-trained models and target models are different.

To address this issue, we propose a novel multi-stage
warm-start training strategy, which can empirically improve
the performance of SISR models. In the first stage, we train
RLFN from scratch. Then in the next stage, instead of train-
ing from scratch, we load the weights of RLFN of the previ-
ous stage, which is referred to as the warm-start policy. The
training settings, such as batch size and the learning rate,

follow exactly the same training scheme in the first stage.
In the following of this paper, we use RFLN ws i to denote
the trained model which employs warm-start i times (after
i + 1 stages). For example, RFLN ws 1 denotes a two-
stage training process. In the first stage, we train RLFN
from scratch. Then in the second stage, RLFN loads the
pre-trained weights and is trained following the same train-
ing scheme as the first stage.

4. Experiments
4.1. Setup

Datasets and Metrics We use the 800 training images in
DIV2K dataset [1] for training. We test the performance of
our models on four benchmark dataset: Set5 [4], Set14 [47],
BSD100 [35] and Urban100 [17]. We evaluate the PSNR
and SSIM on the Y channel of YCbCr space.
Training Details Our models are trained on RGB channels
and we augment the training data with random flipping and
90 degree rotations. LR images are generated by down-
sampling HR images with bicubic interpolation in MAT-
LAB. We randomly crop HR patches of size 256×256 from
ground truth, and the mini-batch size is set to 64. The train-
ing process has three stages. In the first stage, we train the
model from scratch. Then we employ the warm-start strat-

771



(a) RFDB (b) RFDB R 48 (c) RFDB R 52 (d) RLFB

Figure 7. The blocks used in ablation study. RFDB R represent the refinement part of RFDB.

egy twice. In each stage, we adopt Adam optimizer [24] by
setting β1 = 0.9, β2 = 0.999 and ϵ = 10−8 and minimize
the L1 loss following the training process of RFDN [31].
The initial learning rate is 5e-4, and is halved every 2× 105

iterations. Moreover, we additionally employ the widely
used contrastive loss [44] in the third stage. This train-
ing strategy is adopted in the following of this paper unless
otherwise stated. We implement two models, RLFN-S and
RLFN. The number of RLFB is set to 6 in both models. We
set the number of channels of RLFN to 52. To achieve better
runtime, RLFN-S has a smaller channel number of 48.

4.2. Quantitative Results

We compare our models with several advanced efficient
super-resolution models [12, 14, 18, 22, 25, 31, 37, 48] with
scale factor of 2 and 4. The quantitative performance com-
parison on several benchmark datasets is shown in Table 1.
Compared with other state-of-the-art models, the proposed
RLFN-S and RLFN achieve superior performance in terms
of both PSNR and SSIM. RLFN-S can achieve comparable
or even better performance than RFDN [31], with 80K less
parameters. With similar model size, RLFN outperforms
other methods by a large margin on all benchmark datasets.
We also visualize the trade-off between performance and
inference time, and the trade-off between performance and
parameters in Figure 1, respectively. The inference time
in Figure 1 is the average of 10 runs with CUDA Toolkit
9.0.176 on the NVIDIA 1080Ti GPU. From Figure 1 we
can see that our RLFN obtains a better trade-off between
quality and inference time than other existing methods.

4.3. Ablation Study

Effectiveness of Architecture Optimization To evalu-
ate the effectiveness of our model architecture optimiza-
tion, we design two variants of RFDB. As shown in Fig-
ure 7, we remove the feature distillation layers in RFDB to
get RFDB R 48, then RFDB R 52 increases the number of
channel to 52 and the middle channel in ESA to 16 for re-

ducing the performance drop, and RLFB removes the inten-
sive addition operations inside SRB based on RFDB R 52.
RFDB, RFDB R 48, RFDB R 52, and RLFB are stacked
as the body part of the SR network (Figure 2) and trained
with the settings of the first stage described in Section 4.1.
As shown in Table 2, RLFB maintains the same level of
restoration performance with RFDB but has obvious speed
advantages.

We also investigate the effect of reducing convolu-
tion layers in ESA ConvGroups in the same setting.
RLFB esa g3 and RLFB maintains the similar restoration
performance in Table 3, which means reducing two layers
in ESA ConvGroups does not sacrifice performance, but ac-
celerates the network inference.

Model Params Runtime Set5 Set14 BSD100 Urban100
(K) (ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

RFDB 568 82.3 32.22 / 0.8949 28.64 / 0.7824 27.58 / 0.7361 26.09 / 0.7859
RFDB R 48 470 61.7 32.12 / 0.8942 28.59 / 0.7806 27.54 / 0.7351 26.00 / 0.7832
RFDB R 52 572 67.0 32.20 / 0.8948 28.62 / 0.7817 27.57 / 0.7358 26.11 / 0.7861
RLFB(ours) 543 63.2 32.22 / 0.8952 28.61 / 0.7817 27.58 / 0.7359 26.11 / 0.7865

Table 2. Comparison of RFDB, its two variants: RFDB R 48,
RFDB R 52, and our RLFN for 4x SR. Runtime is the average of
10 runs on DIV2K validation set.

Model Params Runtime Set5 Set14 BSD100 Urban100
(K) (ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

RLFB esa g3 572 63.6 32.20 / 0.8952 28.61 / 0.7818 27.57 / 0.7363 26.12 / 0.7869
RLFB (ours) 543 63.2 32.22 / 0.8952 28.61 / 0.7817 27.58 / 0.7359 26.11 / 0.7865

Table 3. Comparison of RLFB esa g3 and our RLFB for 4× SR.
RLFB esa g3 uses three convolution layers in ConvGroups, while
our RLFB uses just one. Runtime is the average of 10 runs on
DIV2K validation set for 4x SR.

Effectiveness of Contrastive Loss To investigate the effec-
tiveness of contrastive loss, we remove the contrastive loss
in the second warm-start stage and only employs L1 loss.
As shown in Table 4, the contrastive loss consistently im-
proves the performance in terms of both PSNR and SSIM
on four benchmark datasets.
Effectiveness of Warm-Start Strategy To demonstrate the
effectiveness of our proposed warm-start strategy, we com-
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Model Set5 Set14 BSD100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

RLFN-S ws 2 32.22 / 0.8960 28.60 / 0.7818 27.57 / 0.7359 26.13 / 0.7865
RLFN-S ws 2 + CL 32.23 / 0.8961 28.61 / 0.7818 27.58 / 0.7359 26.15 / 0.7866

Table 4. Effect of contrastive loss for 4x SR. RLFN-S ws 2 ap-
plies warm-start twice and RLFN-S ws 2 + CL employs con-
trastive loss in the second warm-start stage. Contrastive loss im-
proves the performance in terms of both PSNR and SSIM.

pare RLFN-S ws 1 as the baseline and two variants of dif-
ferent learning rate strategies, RLFN-S e2000 and RLFN-
S clr. Contrastive loss is not used in this comparison while
other training settings remain the same. They set the total
epochs to 2000 to be compared with RLFN-S ws 1. RLFN-
S e2000 halves the learning rate every 4 × 105 iterations.
RLFN-S clr applies a cyclical learning rate policy, which
is the same as RLFN-S ws 1. However, it loads the state
of the optimizer while RLFN-S ws 1 applies the default
initialization. As shown in Table 5, RLFN-S e2000 and
RLFN-S clr decrease PSNR and SSIM compared with our
proposed warm-start strategy. It indicates that the warm-
start strategy helps to jump out of the local minimum dur-
ing the optimization process and improve the overall perfor-
mance.

Model Set5 Set14 BSD100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

RLFN-S e2000 32.17 / 0.8953 28.58 / 0.7815 27.57 / 0.7354 26.08 / 0.7849
RFLN-S clr 32.20 / 0.8959 28.59 / 0.7818 27.56 / 0.7359 26.12 / 0.7865

RLFN-S ws 1 32.21 / 0.8959 28.60 / 0.7818 27.57 / 0.7360 26.12 / 0.7864

Table 5. Effect of learning rate strategy for 4x SR. RLFN-S e2000
and RLFN-S clr set the total epochs to 2000 to be compared with
our proposed strategy RLFN-S ws 1. RLFN-S e2000 halves the
learning rate every 4×105 iterations. RLFN-S clr applies a cycli-
cal learning rate policy. The best and second-best results are
marked in red and blue colors, respectively.

Generalization We also investigate the generalization of
our proposed contrastive loss and warm-start strategy. We
apply contrastive loss and warm-start strategy individually
to EDSR [29]. The quantitative comparison is shown in
Table 6, which demonstrates that our proposed methods are
generic and can be applied to other existing SISR models.

Model Set5 Set14 BSD100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

EDSR 32.06 / 0.8945 28.57 / 0.7816 27.56 / 0.7359 26.08 / 0.7859

EDSR + CL 32.07 / 0.8946 28.58 / 0.7818 27.57 / 0.7360 26.08 / 0.7861
EDSR ws 1 32.07 / 0.8947 28.59 / 0.7821 27.59 / 0.7363 26.09 / 0.7865

Table 6. Generalization of our proposed contrastive loss and
warm-start strategy. We compare EDSR [29] and its two variants
which employ the contrastive loss and warm-start strategy, respec-
tively. It can be seen that our proposed methods are generic to
existing SISR models.

Team name PSNR PSNR Ave Time Parameters FLOPs Activations Memery Conv[val] [test] [ms] [M] [G] [M] [M]

ByteESR(ours) 29.00 28.72 27.11 0.317 19.7 80.05 377.91 39
NJU Jet 29.00 28.69 28.07 0.341 22.28 72.09 204.6 34
NEESR 29.01 28.71 29.97 0.272 16.86 79.59 575.99 59
Super 29.00 28.71 32.09 0.326 20.06 93.82 663.07 59

MegSR 29.00 28.68 32.59 0.29 17.7 91.72 640.63 64

RFDN(Winner AIM20) 29.04 28.75 41.97 0.433 27.1 112.03 788.13 64
IMDN(Baseline) 29.13 28.78 50.86 0.894 58.53 154.14 471.76 43

Table 7. Runtime track results of NTIRE 2022 efficient SR chal-
lenge. Only the top five methods are included.

4.4. RLFN for NTIRE 2022 challenge

Our team won the 1st place in the main track (Runtime
Track) and the 2nd place in the sub-track2 (Overall Per-
formance Track) of NTIRE 2022 efficient super-resolution
challenge [27]. The model structure and training strategy
are slightly different from the above. The proposed RLFN-
cut has 4 RLFBs, in which the number of feature channels
is set to 48 while the channel number of ESA is set to 16.
During training, DIV2K and Flickr2K datasets are used for
the whole process. First, the model is trained from scratch.
HR patches of size 256 × 256 are randomly cropped from
HR images, and the mini-batch size is set to 64. The model
is trained by minimizing L1 loss function with Adam opti-
mizer. The initial learning rate is set to 5e-4 and halved at
every 200 epochs.The total number of epochs is 1000. Then
we employ warm-start policy and train the model with the
same settings twice. After that, we change the loss to L1
loss + 255×Contrastive loss, and train with warm-start pol-
icy again. At last, we reduce the channels of conv-1 and
its dependent conv-3 layers from 48 to 46 using Soft Filter
Pruning [16]. Training settings remain the same except that
the size of HR patches changes to 512 × 512. After prun-
ing stage, L2 loss is used for fine-tuning with 640 × 640
HR patches and a learning rate of 1e-5 for 200 epochs. We
include the top five methods in Table 7, Compared to base-
line IMDN and the first place method RFDN in AIM 2020
Efficient Super-Resolution Challenge, our method achieves
significant improvements in all metrics, and we achieve the
shortest running time.

5. Conclusion
In this paper, we propose a Residual Local Feature Net-

work for efficient SISR. By reducing the number of layers
and simplifying the connections between layers, our net-
work is much lighter and faster. Then we revisit the use of
contrastive loss, change the structure of the feature extractor
and re-select the intermediate features used by contrastive
loss. We also propose a warm-start strategy, which is ben-
eficial on the training of lightweight SR models. Extensive
experiments have shown that our overall scheme, including
the model structure and training method, achieves a com-
mendable balance of quality and inference speed.
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