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Abstract

Spectral super resolution (SSR) aims to reconstruct
the 3D hyperspectral signal from a 2D RGB image,
which is prosperous with the proliferation of Convolu-
tional Neural Networks (CNNs) and increased access to
RGB/hyperspectral datasets. Nevertheless, most CNN-
based spectral reconstruction (SR) algorithms can only per-
form high reconstruction accuracy when the input RGB im-
age is relatively ‘clean’ with foregone spectral response
functions. Unfortunately, in the real world, images are
contaminated by mixed noise, bad illumination conditions,
compression, artifacts etc. and the existing state-of-the-art
(SOTA) methods are no longer working well. To conquer
these drawbacks, we propose a novel dense residual chan-
nel re-calibration network (DRCR Net) with non-local pu-
rification for achieving robust SSR results, which first per-
forms the interference removal through a non-local purifi-
cation module (NPM) to refine the RGB inputs. To be spe-
cific, as the main component of backbone, the dense resid-
ual channel re-calibration (DRCR) block is cascaded with
an encoder-decoder paradigm through several cross-layer
dense residual connections, to capture the deep spatial-
spectral interactions, which further improve the general-
ization ability of the network effectively. Furthermore,
we customize dual channel re-calibration modules (CRMs)
which are embedded in each DRCR block to adaptively re-
calibrate channel-wise feature response for pursuing high-
fidelity spectral recovery. In the NTIRE 2022 Spectral Re-
construction Challenge, our entry obtained the 3rd rank-
ing. Code will be made available online at https://
github.com/jojolee6513/DRCR-net.

1. Introduction
The hyperspectral imaging equipment can acquire hun-

dreds of thousands of fine, continuous and narrow-band
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Figure 1. Visual comparison. (a) clean RGB images with more
crisp edges and less artifacts which facilitate high-precision spec-
tral reconstruction, (b) degraded RGB images that conform to the
real world more but interfere with spectral super resolution. It is
best to view the examples in color on a high-resolution display by
zooming in close.

spectra of an actual scene in a wide electromagnetic spectral
range, and simultaneously collect the geometry, radiation or
reflection information of the target, form a data cube. These
spectral information with high spectral resolution have been
proven to have promoting effect in various domains, includ-
ing remote sensing, agriculture, as well as computer vision
applications such as image classification [29,30] , target de-
tection [21], face recognition [33], etc.

However, recent developments in HS imaging have been
hampered by a bottleneck associated with its dependence
on hardware conditions. There exists a heavy trade off be-
tween the spectral resolution and the spatial or temporal res-
olution, therefore, to obtain high spectral resolution, spatial
or temporal resolution has to be reduced, which severely re-
stricts the applications of hyperspectral images (HSIs) [24].
Additionally, the expensive equipment also remains an in-
surmountable barrier for large-scale acquisition of HSIs, de-
spite researchers continuing to optimize and improve on the
above issues. To achieve real-time and low-cost HSI data
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acquisition, several scholars tend to acquire HSIs data only
from a corresponding RGB image and such a process is de-
fined as spectral super resolution (SSR) or spectral recon-
struction [13, 15, 18, 22].

Generally speaking, one of the main inherent challenges
in such methods is their severe ill-posedness since an in-
finite amount of HSI data can be projected to the same
input RGB image under the similar constraints. Attempt-
ing to alleviate this issue, a variety of methods have been
presented in the literature. Early approaches mainly work
by exploiting the inherent statistical priors of HSI such as
sparsity, low rankness [4, 11, 32],etc. However, limited by
the fewer datasets and the robustness and generalization
of the methods themselves, the results of reconstruction in
real scene were not satisfactory. Later, as the neural net-
works based methods gradually became prevalent and in
view of impressive success in many computer vision tasks
[9,20,27], CNN-based models are also exploited in the SSR
task [17, 19, 36]. Despite the very accurate reconstruction
performance has been implemented in SSR when dealing
with the clean RGB data as shown in Fig. 1 (a), such as the
NTIRE2020 and NTIRE2018 datasets [6,7] where the RGB
images almost directly available through given HSIs and the
corresponding spectral response curve (SRC), these meth-
ods are not robust enough to inferior RGB images as de-
picted in Fig. 1 (b) contaminating under some realistic con-
ditions e.g. bad illumination (overexposure or underexpo-
sure), loss created by compression and information, mixed
noise, and some inevitable artifacts. In addition, some ex-
isting models blindly pursue the algorithm complexity and
ignore exploiting the information interaction between inter-
mediate features to further improve the expressiveness of
CNNs.

To solve these drawbacks, in this paper, we present a
novel dense residual channel re-calibration network (DRCR
Net) with non-local purification for SSR which takes noisy,
overexposed and compressed RGB images as inputs. Since
the aforementioned degradations all bring challenges to the
SSR task, therefore, a simple but effective Non-local Purifi-
cation module (NPM) which can adaptively adjust its own
values by exploiting the adjacent pixels is first employed to
refine the RGB input. Besides, due to that the artifacts have
a negative impact on image quality at various scales, such
as where noise affects at a local point level, compression
at a local region level and poor illumination at a large area
level, thus, a pyramid-like hierarchical structure is designed
to solve this multi-scale problem. In addition, our back-
bone is designed through cascading numerous dense resid-
ual channel re-calibration (DRCR) blocks, which is com-
posed of encoder and decoder with several robust cross-
layer connections for deep spatial-spectral feature extrac-
tion and interactions between intermediate features. More-
over, enhancing the network’s discriminative learning capa-

bilities by integrating channel-wise feature interdependen-
cies is particularly important. As such, the dual symmetrical
channel re-calibration modules (CRMs) which are embed-
ded in each DRCR block are developed to accurately re-
calibrate channel-wise feature responses by explicitly pre-
dicting interdependencies between channels and to improve
CNN learning capabilities.

The main contributions of our work can be summarized
as the following.

• Generally, we proposed the DRCR Net with non-
local purification for SSR, which takes an RGB im-
age with severe artifacts as input. Experimental results
on NTIRE 2022 Hyperspectral dataset demonstrate the
effectiveness of DRCR Net, and our entry obtained the
3rd place on Spectral Reconstruction from RGB.

• As the main component of DRCR Net, DRCR block
which is cascaded with an encoder-decoder paradigm
through several cross-layer dense residual connections
is employed to capture the deep spatial-spectral inter-
actions and improve the generalization ability of the
network.

• To eliminate the degeneration of various artifacts, such
as noise, compression and poor illumination polluting
the input RGB images at different scales, we design
a simple but effective NPM to intrinsically reduce the
impact of different scale artifacts on the subsequent re-
construction process via a hierarchical structure.

• Dual CRMs embedded in each DRCR block are de-
veloped to adaptively re-calibrate channel-wise feature
responses through explicitly modeling interdependen-
cies between channels for pursuing high-fidelity spec-
tral recovery.

2. Related Work
Hyperspectral SSR from RGB images offers an excel-

lent alternative to acquire hyperspectral data without al-
teration of the hyperspectral imaging devices, which was
put into practice earlier when Agahian et.al [2] formu-
lated such problem as combination of a few basis func-
tions generated from spectral reflectance data sets. Nguyen
et.al [23] put forward a radial basis function shallow net-
work to normalize the scene illumination and recovered the
scene reflectance by using RGB white-balancing. Later,
Arad et.al [5] leveraged the sparsity prior of HSI to tackle
this issue which first created a sparse over-complete spec-
tral dictionary by K-SVD algorithm [3] from their collected
dataset and used the orthogonal matching pursuit (OMP) al-
gorithm [10] to recover the HSI from RGB images on the
basis of the spectral response curve (SRC) prior. Based
on the large improvements over the above sparse coding
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Figure 2. Architecture of dense residual channel re-calibration network for Spectral Super Resolution from RGB Images. ↓ and ↑
indicate downsampling and upsampling, respectively.

method, Aeschbacher et.al [1] presented a shallow learned
SSR method which called A+ and pushed the performance.

These methods, however, are restricted to domain-
specific images due to their poor expressiveness and limited
generalizability. In recent years, as CNN has demonstrated
superior performance for solving nonlinear problems and
a number of studies have attempted to perform this three-
to-many mapping by conducting an end-to-end CNN net-
work. Xiong et.al [31] presented a unified deep learning
based framework for SSR which input the spectrally up-
sampled image and output the enhanced hyperspetral one.
With the holding of the two spectral reconstruction compe-
titions, NTIRE2018 [6] and NTIRE2020 [7], a large number
of SSR algorithms with high restoration accuracy have been
proposed. Shi et.al [25] proposed two advanced networks
named as HSCNN-D and HSCNN-R, which both equipped
with several dense blocks, respectively, and won the 1st and
2nd place on both the ‘Clean’ and ‘Real World’ tracks in the
NTIRE2018 spectral reconstruction challenge. Li et.al [16]
proposed an adaptive weighted attention network (AWAN)
consisting of multiple dual residual attention blocks and
won the championship in NTIRE2020 spectral reconstruc-
tion challenge on the ‘Clean’ track. Moreover, Zhao et.al
[35] presented a four-level hierarchical regression network
(HRNet) which replaced the downsampling and upsampling
operation with PixelUnShuffle as well as PixelShuffle and
was the winning method of ‘real world’ track. Fu et.al [12]
took SRC in to account and explored implementing a SRC
optimization layer based on an unsupervised CNN-based
algorithm either for selecting a SRC from a dataset or de-
signing a SRC that meets all the restrictions imposed by
physical space. Very recently, Wu et.al [28] investigated
multi-source and priors that include spatial contexts, seman-
tic information from RGB images, deep feature-prior and
band-wise correlations of HSIs for enhancing the accuracy
of SSR. Zhang et.al [34] proposed a single Meta-Learning-
Based model for recovering high spectral resolution HSI,
which could be trained for a wide variety of input-output

band settings. However, none of them take the degradation
of the input RGB images in the real conditions into consid-
eration and fail to achieve the similar superior reconstruc-
tion accuracy as in the clean dataset.

3. Our Proposed Method
3.1. Network Architecture

In this section, we describe our proposed dense residual
channel re-calibration network (DRCR Net) in detail. Given
IRGB as the input of DRCR Net. As illustrated in Fig. 2, we
first employ two convolutional layers to extract the shallow
feature F0 as well as boost the number of bands from input
RGB images.

FSF = HSFE convs(IRGB), (1)

where HSFE convs(·) stands for front convolution opera-
tions. Then we use the extracted shallow feature FSF as
the input of the non-local purification module (NPM). Thus
we can further have

F0 = HDF (FSF ), (2)

where HDF (·) represents our designed very simple but ef-
ficient NPM whose output F0 is then taken as the input of
our multiple dense residual channel re-calibration (DRCR)
blocks.

Fm = Hm
DRCR(F

m−1)

= Hm
DRCR(H

m−1
DRCR(· · ·H

1
DRCR(F

0) · · · )),
(3)

where Fm and Fm−1 denote the output and the input of
the mth DRCR block, separately. Hm

DRCR(·) represents the
mth DRCR block. To be specific, the DRCR blocks have
a U-shaped structure in which the encoding part and de-
coding part consist of three 3×3 plain convolution layers,
separately. Additionally, three concatenation operations be-
tween the encoding part and decoding part are utilized to
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Figure 3. Architecture of channel re-calibration module. In the figure, YGAP (·) represents the global average pooling operation.

explore the information interaction among the intermedi-
ate layers and such skip cross-layer connections help to al-
leviate the vanishing gradient problem. Besides, we em-
ploy the dual channel re-calibration module (CRM) to re-
calibrate the features associated with the DRCR block along
the channel dimension, where the first CRM H

(m,1)
DCRM (·)

draws the calibration feature Fm,1
RF from the input of the mth

DRCR block. The above process can be expressed as

F
(m,1)
RF = H

(m,1)
DCRM (Fm−1) (4)

We then fuse the F
(m,1)
RF with the aggregated features in the

middle layer of mth DRCR block, additionally, we also in-
put the F

(m,1)
RF into the second DCRM H

(m,2)
DCRM (·) for fur-

ther calibration of the channel-dimensional features and the
above process can be formulated as

F
(m,2)
RF = H

(m,2)
DCRM (F

(m,1)
RF ), (5)

Therefor, the output of the ith convolution layer in mth
DRCR block can be expressed as:

F(m,i) =


H

(m,i)
DRCR conv(F

m−1) i = 1

H
(m,i)
DRCR conv(F

(m,i−1)) i = 2, 3

H
(m,i)
DRCR conv([F

(m,1)
RF ,F(m,i−1)]) i = 4

H
(m,i)
DRCR conv([F

m,i−1,F(m,7−i)]) i = 5, 6,

(6)
where H

(m,i)
DRCR conv(·) denotes the ith convolution opera-

tion of mth DRCR block, and [·, ·] represents the concate-
nation operation of two features. Moreover, we add F

(m,2)
RF

to the output of the last convolution layer F(m, 6), thus we
can further have

Fm = Fm,i−1 + F
(m,2)
RF . (7)

Finally, similar to the front structure of the network, we use
two plain convolutions to aggregate features and map the
number of bands to 31 to obtain the spectral reconstructed
HSI ISR.

ISR = HAF convs(F
m), (8)

where HAF convs(·) stands for tail convolution operations.

3.2. Non-local Purification Module (NPM)

In the process of image generation and transmission, the
image quality is often degraded due to the interference of

various external conditions or human factors, which bring
a very negative impact on the subsequent image processing
such as SSR. Therefore, prior to processing the input im-
age, artifact removal must be performed. And ideally, such
practical algorithms should be flexible, efficient, and capa-
ble of handling various kinds of artifacts. Unfortunately, the
current algorithms fall far short of all of these goals. In this
paper, as shown in Fig. 3, we present a simple but efficient
plug-and-play NPM to refine the degraded RGB images.

In general, a hierarchical pyramid structure is designed
to exploit multi-scale information and remove the artifacts
with different scales. For each level, the process can be de-
composed into the acquisition of information from different
receptive fields, non-local information guided adaptive pu-
rification and refinement.

Specifically, considering the computational cost and re-
construction accuracy, we choose a three-layer structure and
first perform two downsampling operations on FSF ,

FSF 2 = FSF ↓2, (9)

FSF 4 = FSF ↓4 . (10)

Then, for each level, the parallel 3 × 3 convolutional and
1×1 convolutional operation involve gathering information
from both non-local as well as local sources. After that,
concatenation operations followed by a 3 × 3 convolution
are used to integrate the information captured by the differ-
ent receptive fields. Thus, the local pixel value can be ad-
justed and refined based on the perception of non-local area
information for artifact removal and self-purification. After
that, we perform 2× and 4× bilinear upsampling operations
on the output results of the two bottom layers, respectively,
to achieve uniform spatial sizes. Finally, a concatenation
operation and a 3 × 3 convolution are adopted again to in-
tegrate artifacts removal features from different scales. Due
to the potential loss of boundary information during self-
purification, a residual connection with the original feature
FSF is adopted.

3.3. Dual Channel Re-calibration Module (CRM)

Enhancing the discriminative learning capabilities of the
network by integrating channel-wise feature interdependen-
cies is especially important. As such, the dual CRMs
based on [14] that are embedded in each DRCR block are
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Figure 4. Visual quality comparison of the 18-th band on five verification set images of NTIRE2022. The ground truth,MRAE heat
maps for HSCNN-R/Stibel/HRNet/AWAN/Ours methods. Note that the MRAE heat maps have been scaled for optimal display.

designed to adaptively calibrate channel-wise feature re-
sponses by explicitly modeling interdependencies between
channels as well as strengthen the discriminant learning ca-
pability of CNNs.

Specifically, we first perform a global average pooling
on the input of a DRCR block, for example Fm−1 and turn
it into a channel descriptor Fc ∈ RC×1×1. Then, to obtain
the feature interdependencies in terms of channels, a three-
layer fully connected structure which can perform nonlinear
transformations is adopted. Thus, the output FCFI can be
formulated as

FCFI = δ(WV (WU (WD(YGAP (Fn−1))))), (11)

where YGAP (·) denotes the global average pooling op-
eration, and WD(·) ∈ RC×C/r, WU (·) ∈ RC/r×C/r,
WV (·) ∈ RC/r×C are the weight sets of three-layer fully

connected structure, r denotes the reduction ratio and δ(·)
represents the sigmoid function. Then we broadcast the
FCFI along the spatial dimension to channel re-calibration
map FCRM ∈ RC×H×W and rescale the input through a
dot product

F
(m,1)
RF = FCRM ⊙ Fm−1. (12)

4. Experiments
4.1. Settings

Hyperspectral datasets. In this paper we use all three
datasets published in the Spectral Reconstruction Chal-
lenge: NTIRE2018 [6], NTIRE2020 [7] and NTIRE2022
[8]. Considering that the non-local purification module
(NPM) is specially designed in our module, therefore, in
the NTIRE2018 and NTIRE2020 datasets we adopt ‘Real
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Figure 5. Visual quality comparison of the 18-th band on five verification set images of NTIRE2020. The ground truth,MRAE heat
maps for HSCNN-R/Stibel/HRNet/AWAN/Ours methods. Note that the MRAE heat maps have been scaled for optimal display.

World’ track in which the input RGB images quality suffer
from noise and compression and the spectral response curve
(SRC) prior is not allowed. With respect to NTIRE2022, we
evaluate our DRCR Net on ‘Spectral Recovery’ track where
the RGB image is first multiplied by the corresponding hy-
perspectral image (HSI) and the SRC, then normalized by
every single image’s maximum value, unified mean value
to 0.18 × 255, added noise and compressed. Accordingly,
the corresponding relationship between the pixels of differ-
ent images is seriously damaged, which causes the problem
of one object may have several different spectrums and dif-
ferent objects may also correspond to the same spectrum in
the reconstruction results. Besides, the NTIRE2018 dataset
consists of 256 RGB-HSI pairs for training, 5 and 10 pairs
for validation and testing, separately. The spatial resolu-
tion of all images is 1392× 1300. The NTIRE2020 dataset

contains 450, 10 and 20 nature images for training, valida-
tion as well as testing which are 482 × 512 in spatial size.
In the NTIRE2022 dataset, 900 pairs of training data, 50
pairs of validation data and testing data are provided respec-
tively in which the spatial size of the HSI is consistent with
the NTIRE2020 dataset. Due to the fact that the validation
set of NTIRE2022 includes a HSI with some 0 value pix-
els which are not available for calculating the MRAE met-
ric, another 49 HSIs are adopted. Additionally, in all three
datasets, the HSI has 31 successive spectral bands ranging
from 400 to 700 nanometer with a 10 nanometer spacing.

Evaluation metrics. Based on the evaluation metrics
provided by the challenge, we evaluate the performance
of our proposed method on the above three datasets using
mean relative absolute error (MRAE) as well as root mean
square error (RMSE) that squares the residuals, takes and
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Figure 6. Visual quality comparison of the 18-th band on five verification set images of NTIRE2018. The ground truth,MRAE heat
maps for HSCNN-R/Stibel/HRNet/AWAN/Ours methods. Note that the MRAE heat maps have been scaled for optimal display.

Table 1. Ablation study on the validation set of NTIRE 2022. We
record the best MRAE and RMSE values.

Baseline w/o NPM w/o CRM ours

MRAE(↓) 0.3524 0.2157 0.3286 0.1662
RMSE(↓) 0.0564 0.0414 0.0519 0.0332

averages and finally a root of the result. These two metrics
are defined as follows

MRAE =
1

N

N∑
n=1

(∣∣∣I(n)GT − I
(n)
SR

∣∣∣ /I(n)GT

)
, (13)

RMSE =

√√√√ 1

N

N∑
n=1

(
I
(n)
GT − I

(n)
SR)

)2

, (14)

where I
(n)
GT and I

(n)
SR represent the value of the nth pixel in

Table 2. The final testing results of NTIRE 2022 Spectral Re-
construction from RGB Images Challenge. Our results are high-
lighted.

Team MRAE(↓) RMSE(↓)

THU-SIGS-MEAI 0.1131211099 0.02308144229
mialgo ls 0.1247392967 0.02569337961
deeppf 0.1766834871 0.03217000226
Ptdoge 0.2106939205 0.03654118167
anjing guo 0.2802988331 0.04161410992

the ground truth and the reconstructed HSI, respectively.

Implementation details. For training details, we set the
number of DRCR blocks to 10, and the channels of interme-
diate layer features to 100. The image pairs are cropped to
128×128 region before normalized to [0, 1]. The reduction
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Table 3. The final testing results of NTIRE 2022 Spectral Reconstruction from RGB Images Challenge. The best and second best results
are highlighted and underlined.

Method
NTIRE2018 NTIRE2020 NTIRE2022

MRAE(↓) RMSE(↓) MRAE(↓) RMSE(↓) MRAE(↓) RMSE(↓)

DRCR Net 0.0284 22.11 0.0664 0.0171 0.1662 0.0332
AWAN [16] 0.0289 22.18 0.0668 0.0175 0.3135 0.0652
HR-net [35] 0.0292 22.45 0.0682 0.0179 0.3335 0.0656
HSCNN-R [25] 0.0297 22.88 0.0684 0.0182 0.3856 0.0661
Stiebel [26] 0.0312 23.88 0.0698 0.0187 0.4074 0.0691

ratio r value of the channel re-calibration module (CRM)
is 8. For optimization, we choose Adam with β1 = 0.9,
β2 = 0.99 and ϵ = 10−8. The learning rate is set as
0.0001 initially and a decay policy with a power of 1.5. Our
DRCR Net has been implemented on the Pytorch frame-
work and approximately 24 hours are required for training
the NTIRE2022 dataset on 1 NVIDIA 3090Ti GPU.

4.2. Ablation Analysis

To verify the effects of NPM and CRM in our designed
network, we carry out ablation studies on the NTIRE2022
dataset. The detailed experimental results are listed in the
Table 1. Apparently, compared with all ablation settings,
DRCR Net has the best performance on both MRAE and
RMSE evaluation metrics. When we delete the NPM, both
metrics drop significantly which verifies the necessity of
our data purification process. Then, we carry out another
ablation experiment that replaces the dual CRMs with di-
rect connections. Compared with our DRCR Net, the accu-
racy decreases which proves the usefulness of performing
re-calibration of spectral dimension features. Afterwards,
we experimented with removing both modules to demon-
strate their effectiveness. Obviously, the MRAE and RMSE
decrease the most, which reveal the combination of them is
significant for further improving the accuracy of SSR.

4.3. Results

Testing result on NTIRE 2022 challenge. In the official
list of the competition, our proposed DRCR Net achieved
3rd place on the track of NTIRE 2022 Spectral Reconstruc-
tion from RGB challenge. The results on the testing dataset
compared with other teams’ are listed in Table 2.

Comparison with other architectures. To demonstrate
the superior performance of our network, we utilize four
existing SSR algorithms that have achieved SOAT results in
previous NTIRE challenges, including AWAN [16], HR-net
[35], HSCNN-R [25] and Stiebel [26]. Each of the above
methods is based on the official dataset setup and are eval-
uated by the official unified evaluation indicators MRAE as

well as RMSE, the numerical results of the validation set on
NTIRE2018, NTIRE2020 and NTIRE2022 are summarized
in Table 3. We can obviously observe that our DRDC net
has a significantly leading reconstruction accuracy, espe-
cially on the 2022 validation dataset in both measurements.
More precisely, our DRCR Net arquires a 46.99% decline
in MRAE and a 49.08% decrease in RMSE compared with
the second best AWAN method on the NTIRE2022 dataset.
The reason may be the fact that our NPM can perform arti-
fact removal and refinement of the input RGB images.

Visual results. To evaluate the perceptual quality of
the reconstructed HSI, we depict the corresponding error
maps of the 18th band of selected four official validation
dataset images from NTIRE2022, NTIRE2020 and four im-
ages from NTIRE2018 in Fig. 4, Fig. 5 and Fig. 6, respec-
tively. The error images are the heat maps of MRAE be-
tween the HSI recovered and the ground truth on each pixel
which are shown to measure reconstruction quality. And
apparently, our method achieves more accurate and robust
reconstructed HSIs, and has less overall errors as can be
seen from all above heat maps.

5. Conclusion
In this paper, we present a novel dense residual channel

re-calibration network (DRCR Net) with non-local purifi-
cation for SSR. Specifically, a non-local purification mod-
ule (NPM) is proposed to perform artifact removal and self-
purification through a hierarchical pyramid structure prior
which can generate robust reconstruction results. Besides,
a trainable dense residual channel re-calibration (DRCR)
block which is cascaded with encoder-decoder paradigm
through several cross-layer dense residual connections is
designed for the deep feature extraction and to improve the
generalization ability of the network. To further improve the
recovery accuracy of DRCR Net, we develop a dual chan-
nel re-calibration Module (CRM) which can adaptively re-
calibrate channel-wise feature response. Experimental re-
sults on three datasets demonstrate the superiority and ef-
fectiveness of our DRCR Net.
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