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Abstract

High dynamic range(HDR) imaging is the task of re-
covering HDR image from one or multiple input Low Dy-
namic Range (LDR) images. In this paper, we present
Gamma-enhanced Spatial Attention Network(GSANet), a
novel framework for reconstructing HDR images. This
problem comprises two intractable challenges of how to
tackle overexposed and underexposed regions and how
to overcome the paradox of performance and complexity
trade-off. To address the former, after applying gamma cor-
rection on the LDR images, we adopt a spatial attention
module to adaptively select the most appropriate regions
of various exposure low dynamic range images for fusion.
For the latter one, we propose an efficient channel atten-
tion module, which only involves a handful of parameters
while bringing clear performance gain. Experimental re-
sults show that the proposed method achieves better visual
quality on the HDR dataset. The code will be available at:
https://github.com/fancyicookie/GSANet

1. Introduction

Dynamic range is the contrast between the brightest and
darkest parts of an image. Most digital photography sen-
sors can only measure a limited fraction of this range. The
resulting low dynamic range (LDR) images thus often have
over or underexposed regions and don’t reflect the human
ability to see details in both bright and dark areas of a scene.
The high dynamic range imaging technique aims at recover-
ing an HDR image from one or several LDR images. Com-
pared with single-frame HDR imaging, multi-frame HDR
imaging is more practical and promising due to its infor-
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Figure 1. The first three rows show are the LDR inputs with vari-
ous exposures. The final row are our reconstructed HDR.We show
differences in the zoomed-in patches.

mative bracket LDR inputs. Therefore, during HDR recon-
struction, we need to fill in the missing details of various
exposure LDR images first.

Some specialized hardware devices [11, 18] have been
proposed to produce HDR images directly, but they are usu-
ally too expensive to be widely adopted. An alternative is to
create HDR content from several LDR images in virtual en-
vironments using existing software. However, this approach
is mostly explored in the entertainment industry [19].

Recently, several learning-based methods have been ex-
plored. Most multi-exposure HDR image reconstruction
methods adopt two steps: learning to align the LDR images
and merging them to get an HDR image [19]. Kalantari
et al. proposed the first deep convolutional neural network
(CNN) for HDR imaging of dynamic scenes. They first
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aligned the LDR images with optical flow and then fused
the aligned images with a CNN [10]. However, some re-
searchers argue that classic optical flow algorithms could
lead to considerable misalignment errors [13, 15]. ADNet
[9] is the first application of deformable alignment module
for multi-frame HDR imaging. Their results achieve the
best but the method has a high computational cost. Gener-
ally, aligning LDR images is one of the steps of the tra-
ditional approach. However, this alignment method can
lead to artifacts or some other error-prone. By contrast,
the correlation-guide feature is more flexible and effective
[19], such as using the attention mechanism to exclude mis-
aligned features.

In this paper, we propose Gamma-enhanced Spatial At-
tention Network(GSANet), a new pipeline to tackle such
problems. This network hierarchically utilizes exposure in-
formation and can make full use of complementary infor-
mation from gamma-corrected images to recover missing
details for LDR images. Instead of processing LDR images
and gamma-corrected images separately, we divide LDRs
and gamma-corrected images into three groups and hierar-
chically conduct information integration. In other words,
the method is a two-stage framework. We first integrate in-
formation in each group and then fuse information across
groups. Specifically, before grouping, we process the first
gamma-corrected by a small UNet [16] to remove noise and
ghost artifacts. A spatial attention module [22] is used for
extracting the first and third groups’ attention features for
better fusion. Such design is motivated by the intuition that
the brightness of the gamma-corrected image is biased to-
wards the medium image. Layers of progressive contrast
information can further complement the poor exposure ar-
eas of the image.

Our main contribution can be summarized as follows:

• We propose a two-stage pipeline for multi-frame HDR
imaging of dynamic scenes. Unlike previous methods,
we treat LDR and gamma-corrected images uniformly
and divide them into three groups to obtain more de-
tails about over and underexposed regions. Then we
process each group with spatial attention to extract fea-
ture.

• We introduce an efficient channel attention to fuse
the concatenated features of LDR images and gamma-
corrected images and overcome high complexity cost.

• Experimental results show that the proposed method
achieves good performance under the constraint of op-
erations and also has a significant improvement in vi-
sual quality.

2. Related Work
We classify HDR reconstruction from multi-frame LDR

images into two categories according to whether there are
alignment steps or not.

Methods with alignment. These methods argue that
the quality of the alignment is crucial in the reconstructed
HDR images. A common method of alignment for LDR im-
ages applies optical flow algorithms or networks. Kalantari
et al. [6] proposed the first deep multi-frame HDR imag-
ing method for dynamic scenes. The LDR images are first
aligned with optical flow and then blended by a fusion sub-
net [7]. Chen et al. [1] first perform image alignment and
HDR fusion in the image space and then in the feature
space. Prabhakar et al. [15] and Q. Yan et al. [23] use
PWC-Net [17], a lightweight pyramidal optical flow estima-
tion network for alignment. Another approach is applying
deformable convolution for alignment. Liu et al. [9] first
proposed the alignment of gamma-corrected images with a
PCD alignment module instead of optical flow. However,
these methods often lead to artifacts due to inaccurate align-
ment information and also have high complexity.

Methods without alignment. These methods involve
direct feature concatenation and attention mechanisms in
deep learning methods primarily. Omrani et al. [12] pro-
posed to merge LDR images directly and the image wavelet
coefficients are used to reconstruct more details and make
data reduction. Wu et al. [21] formulate simple translation
network that can automatically hallucinate plausible HDR
details in the presence of total occlusion. Unlike previous
methods stacking the LDR images or features for merging
directly, Chen et al. [2] use only two LDR images to warp
the underexposed images to the overexposed images and an
attention module is applied to reduce artifacts before being
fed to merging network. AHDRNet [22] applies attention
modules to guide the merging according to the reference
image.

These methods perform gamma correction based on
whether the data set has a file about the exposure infor-
mation. Most of the previous methods do not take advan-
tage of the information available from the exposed image.
Liu et al. [9] only used gamma-corrected images for align-
ment. Inspired by the above review methods and gamma-
corrected images, we adopt spatial attention mechanisms
to process gamma-corrected images with more information.
Especially, the work most related to ours is [5], which also
reorganized the input frames into several groups. However,
in [5], the method is mainly used for super-resolution and
the groups are composed of the reference frame. In addi-
tion, they pay attention to the temporal information of dif-
ferent video frames. While in LDR to HDR task, we pay
more attention to the information supplement of images
with different brightness for the same frame. Our method
divides input LDR images into three groups and effectively
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Inputs Gamma-corrected

Figure 2. The comparison of LDRs and their gamma-corrected
images. The left images are LDR images: short, medium and long.
The right images are the corresponding images that mapped from
the left images into the HDR domain.

hierarchically integrates gamma-corrected information.

3. Proposed Method
3.1. Overview

In this paper, like other existing learning-based methods,
we first map the input LDR images to the HDR domain with
gamma correction and then concatenate them directly as the
network input. Given 3 LDR images, i.e.,Ii, i = s,m, l,
that is, Is, Im, Il as input, the gamma transformed outputs
are Iγs and Iγl of the short and long exposure images. Due
to the use of exposure information of the LDRs, there are
noise and artifacts in the gamma images obtained from the
underexposure images. Their image comparison is shown
in Fig. 2. The mapping formula is defined as:

Iγi = f(Ii, ei) (1)

where ei is the exposure information of Ii, γ is the gamma
correction parameter, and f (·) denotes the mapping relation
of LDR images and their corresponding gamma-corrected
images. And note that Im = Iγm.

As shown in Fig. 3, before grouping, we use one ’con-
volution+relu’ module to extract features of the inputs, de-
noted as fs, fm, fl, f

γ
l . Each feature has 64 channels. To

remove noise and ghost effects, Iγs is processed by a small
UNet and then the ’convolution+relu’ module, and get the
cleaned feature fγ∗

s . Then, these features are grouped into
three subsets: G1 = {fs, fγ∗

s , fm}, G2 = {fγ∗
s , fm, fγ

l },
G3 = {fm, fγ

l , fl}. Then the three groups are further pro-
cessed by an attention network and a fusion network.

IH = F(A(G1),G2,A(G3)) (2)

where IH denotes the reconstructed HDR image. A denotes
a spatial attention module and G1 and G1 are processed to
get Aatten

1 and Aatten
3 . F denotes the final fusion net. We

concatenate G2 with Aatten
1 and Aatten

3 and get the final fea-
ture Fea = [Aatten

1 ,G2,Aatten
3 ]. The following fusion and

HDR reconstruction steps are made up of efficient channel
attention and dilated residual dense block, which takes Fea
as input. Finally, the fusion net would output an image with
high dynamic range.

3.2. Network Structure

Gamma-corrected images
Like [21], we argue that HDR imaging is an image trans-

lation problem where optical flow is not the main prob-
lem. Therefore, the crucial problem with HDR reconstruc-
tion lies on information fusion on overexposed and under-
exposed areas for the same frame. Gamma correction is a
nonlinear operation on the gray value of the input image,
which makes the gray value of the output image and the
gray value of the input image show an exponential relation-
ship. So before feeding the LDR images to the network, we
first map the input LDR images to the HDR domain rely-
ing on gamma correction. As we describe in Sec. 3.1, af-
ter using exposures given by official for gamma correction,
the details of the overexposed area is shown on Iγl . How-
ever, the Iγs , which comes from underexposed image, be-
comes significantly more similar to medium images. There-
fore it shows some artifacts and noise. (shown in Fig. 2)
To address this issue, we propose a small UNet (shown in
Fig. 4) for removing noise and ghost effects. The effective-
ness of this module is proved by the ablation experiment in
Sec. 4.2.2. Later, the LDR images and gamma-corrected
images are processed by the ’convolution+relu’ module and
get all the cleaned feature.

Attention Network
Grouping. In contrast to the previous work, all features

fs, fm, fl, fγ
l and fγ∗

s are split to three groups: G1 =
{fs, fγ∗

s , fm}, G2 = {fγ∗
s , fm, fγ

l }, G3 = {fm, fγ
l , fl}.

Note that the gamma-corrected feature appears in each
group. The grouping allows explicit and efficient integra-
tion of information about the same frame with different ex-
posure regions for some reasons: 1) Comparing with short
and medium images, gamma-corrected image Iγs increases
the contrast of the dark part of an image. Similarly, Iγl
reduces the overexposure area and adds the details of the
bright part. That is, information of different groups com-
plements each other. 2)The gamma-corrected features in
each group guide the model to extract beneficial informa-
tion from LDR images, allowing efficient information ex-
traction and fusion.

Spatial Attention Module for groups. To better integrate
features from different groups, spatial attention module is
introduced. In the first group G1 and the third group G3, we
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Figure 3. The pipeline of GSANet

Figure 4. A Small UNet for Denoising. The details can be seen on
our code.

concatenate the LDR features with the feature of gamma-
corrected image as the input of the spatial attention mod-
ule, generating the attention map with the range of 0-1. We
then compute the element-wise multiplication of the LDR
feature and its corresponding attention map to generate the
spatial attention feature of each LDR image. From the two
groups, we obtain four feature maps i.e.Mj , j = 1,2,3,4.
Take example for the group G1 about specific process of
spatial attention module. The process can be formulated as

Mj = A(fi, f
γ∗
i ) (3)

where i = s,m, l and Mj , j = 1, 2 denotes the attention
map. In this paper, we adopt the attention module as used
in [22]. The structure of the spatial attention module are
shown in Fig. 6. The attention module are two small CNNs.
The attention module concatenates the input feature maps
fi and fγ∗

i and obtains the attention map after two separa-
ble conv layers. The two conv layers are followed by ReLU
activation and a sigmoid activation. As a result, the 32-
channel attention map Mj can be obtained with values in
range[0,1]. As shown in Fig. 5, there are the attention fea-
ture maps. From the visualization of the features, we argue

that the model can get the details of overexposed areas from
the first group. The dark information in the background is
obtained by the third group. Then the concatenated features
are benefit for fusion.

As for Mj , j = 1, 2, attention weighted feature for the
two groups is calculated as:

Fi = Mj ⊙ fi (4)

where Mj represents the weight of the spatial attention map.
Fi represents the group-wise features produced by attention
maps and features. ’⊙’ denotes element-wise multiplica-
tion. The details of the concatenate is shown in Fig. 7. In
order to make full use of attention weighted feature over
the groups of gamma-corrected images, we first aggregate
those features by concatenating them and feed it into the
fusion module.

Fusion Network. The feature maps are concatenated to-
gether as input of the fusion subnet. The goal of the fusion
module is to aggregate information across different groups
and produce the HDR image. Different from the channel
attention, the spatial attention focuses on ‘where’ is an in-
formative part, which is complementary to the channel at-
tention. So the fusion network mainly consists of channel
attention module and dilated residual dense block. And in
order to reduce the number of operations, separable con-
volution is used to decrease some channels. We produce
a channel attention map by exploiting the inter-channel re-
lationship of features. To compute channels attention ef-
ficiently, we compress the spatial dimensions of the input
features. To aggregate spatial information, average pooling
has been commonly adopted so far. That is, we first ag-
gregate spatial information of a feature map by using both
average pooling. We then apply two convolution layer to
obtain the raw attention map. The final attention map is
normalized by the sigmoid function. We use efficient chan-
nel attention [24] to supplement to information that may be
lost in the channel. And the usage of dilated convolution in-
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Figure 5. The feature map of the spatial attention. The first three images denotes G1 and the last three images denotes the G2. Their feature
map comes from the combination of the features of two images above.

Figure 6. The Spatial Attention Module first concatenates the two
inputs and then obtains attention maps.

Figure 7. The attention maps is multiplied by its associated feature
image and combined with the gamma corrected image.

creases the receptive field. The effectiveness of the module
is proved on Sec. 4.2.2.

3.3. Training Loss

Loss functions, such as L1 and L2 loss, are commonly
used in previous image restoration work. In HDR recon-
struction, HDRUNet [3] argues that it is necessary to con-
sider not only the restoration of the dynamic range, but also
the reduction of noise and artifacts. So they propose a spe-
cially designed TanhL1 loss for the task. While in AD-

Net [9], they consider that since HDR images are usually
displayed after tone mapped, it is more efficient to train the
network on a tonemapping image than directly in the HDR
domain. Given an HDR image IH , they compress the nor-
mal range using µ-law:

Γ(IH) =
log(1 + µH)

log(1 + µ)
(5)

where µ ia a parameter that represents the amount of com-
pression and Γ(IH) denotes the tone mapped image. And
the loss is defined as:

L =
∥∥Γ(IH)− Γ(IGT )

∥∥ (6)

where IGT denotes the tone mapped results of ground truth.
Therefore, to obtain better visual quality of the HDR output,
we compare a variety of loss and choose the same loss in
ADNet, which is called MuLoss. The formula is Eq. (6).
The experimental results can be found in Sec. 4.2.

4. Experiment
4.1. Experimental Setup

Dataset. Previous studies [6, 22] train the model on the
Kalantari’s dataset [7]. In this paper, we use the dataset [4]
proposed by NTIRE 2022 HDR Challenge [14]. In the
dataset, there are 1494 LDRs/HDR for training, 60 images
for validation and 201 images for testing. The 1494 frames
consist of 26 long shots. Each scene contains three LDR
images, their corresponding exposure and alignment infor-
mation and HDR ground truth. The size of an image is 1060
× 1900. Since the ground truth of the validation and test sets
are not available, we only do experiments on the training
set. We select all images as the training set and select 30
images as the validation set. Final scores are based on re-
sults from codalab. Although there is a difference between
our verified scores and real scores, the trend is the same.

Implementation Details. Before training, we pre-
process the data by cropping images into 480×480 with a
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(a) 0020

(b) 0039

(c) 0046

Figure 8. Qualitative results of a comparison between our method and ADNet. Our model achieves a good effect visually.

step of 240. During training, the patch size is set to 256×256
and the batch size is set to 8. The number of training iter-
ations is set to 1.5 × 106. Adam optimizer and Kaiming-
initialization are adopted for training. The initial learning
rate is set to 0.0002 and decayed by a factor of 2 after ev-
ery 2 × 105 iteration. All models are built on the PyTorch
framework and trained with NVIDIA RTX3090 GPU. The
total training is about 2 days.

4.2. Ablation Study

In this section, we separately conduct ablation studies
on training loss, gamma-corrected images and grouping,
spatial attention, channel attention and the model size of
GSANet. In the following, we demonstrate the effective-
ness of the proposed method in detail.

4.2.1 Training loss.

In Sec. 3.3, we find some different loss. In order to ver-
ify which loss function is more efficient, we conduct ex-
periments on various loss functions and make quantitative
and qualitative comparisons. The quantitative results are
shown in Tab. 1. From the table, we can draw the follow-
ing observations: 1) In our model, compared with L1, L2

and TanhL1, TanhL1 get worse quantitative performance
with lower PSNR-L and PSNR-µ. 2) The MuLoss in AD-
Net can be further improved in PSNR. So we adopt MuLoss
as the loss function.

4.2.2 Effectiveness of Key Modules

Gamma-corrected images and Grouping. First, we ex-
periment with different ways of organizing the input im-

Loss PSNR-L PSNR-µ

L1 36.38 35.48
L2 36.35 35.39

TanhL1 35.91 35.15
MuLoss 36.88 35.56

Table 1. Quantitative comparison of different loss functions

ages. Supposing input images are
{
1, 2, 3, 4, 5

}
, our group-

ing method is
{
123, 234, 345

}
. And

{
123, 345

}
groups are

processed by spatial attention. Another method is to con-
duct spatial attention on only the original three LDRs, sim-
ilar to ADNet. That is, the group is

{
135

}
. To make sure

that the number of operations in different models is as simi-
lar as possible, we also select the medium LDR image as the
reference image. So the grouping method is

{
135, 234

}
.

Model
{
12345

} {
135

} {
123, 345

} {
135, 234

}
SA ×

√ √ √

PSNR-L 36.71 36.72 36.80 36.61
PSNR-µ 34.91 35.50 35.82 35.58

Table 2. SA denotes Spatial Attention module. The ablation exper-
iments are on different grouping strategies. The ’×’ is the module
has no spatial attention. We just concatenate all images.

Spatial Attention. In addition, we also evaluate a model
which removes the attention module from our whole model.
As shown in Tab. 2,

{
12345

}
denotes we do not use spatial

attention. We concatenate all features directly. The model
performs worst among these methods. That proves that spa-
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tial attention is useful to integrate information across im-
ages.

{
135

}
means that the spatial attention module is used

in the features of LDR images as in ADNet. We do not use
gamma-corrected images. We only do this from LDR in-
puts. The result illustrates that integrating gamma-corrected
information is a more effective way in HDR imaging. The{
123, 345

}
is better than

{
135, 234

}
, which implies the ad-

vantage of add the gamma-corrected images in each groups.
Adding the gamma-corrected image in the group encour-
ages the model to extract more complementary information
which is missing in the LDR images.

Channel Attention. We investigate the architecture
of GSANet and validate the importance of channel atten-
tion and small UNet components in the whole GASNet.
We achieve this ablation study by comparing the proposed
GSANet and the following variants of GSANet.

Denoising. We introduce a small UNet for denoising. It
is found in the experiment that this module can improve the
score to a certain extent.

In order to investigate the architecture of GSANet and
validate the importance of different individual components
in the whole model. We achieve this ablation study by com-
paring the proposed GSANet and the following variants of
GSANet:

GSANet. The full model of the GSANet.
GSA-NoUNet. We remove the small UNet for denoising

in this variant, in which the feature fγ
s is directly stacked

with other features and fed to the attention network.
GSA-DRDBNet. This variant of GSANet does not con-

tain the channel attention and only uses dilated residual
dense block in the fusion network.

GSA-CANet. We do not use DRBD module and only
use the channel attention module.

Model PSNR-L PSNR-µ

GSANet 36.88 35.57
GSA-NoUNet 36.71 35.51

GSA-DRDBNet 36.35 35.40
GSA-CANet 36.39 35.48

Table 3. Quantitative comparisons of different models. All scores
are the average across all testing images.

The experiment results are shown in Tab. 3. Note that
we set iteration of 1×106 for fast training. If we adopt
GSA without UNet for denoising, the PSNR-L and PSNR-
µ are 36.71dB and 35.51dB, respectively. By adopting the
small UNet, the performance is slightly improved. If we
only adopt DRDB module or channel attention module, the
scores are shown in the table. With the module of the dilated
residual dense block and Channel attention, our full model
can further achieve higher quantitative results with PSNR-
L of 36.88dB and PSNR-µ of 35.57dB. The results validate

the effectiveness of the proposed modules. The visualiza-
tion of the experiments is in Fig. 9. From this figure, we
argue that if the model without denoising, the overall color
detail is dark and is accompanied by artifacts in the sunset
section. A misty shadow might appear in overexposed areas
in the GSA-DRDBNet and GSA-CANet. Our result of the
full model is better than these variants.

Figure 9. The visual results of variants of GSANet. The first row
is LDR inputs and the rests are the results after tonemapping.

Model Size. Due to competition constraints, the num-
ber of operations of our model is below 200GMAccs. We
found that in our model, generally speaking, the smaller the
computation, the smaller the number of parameters in the
model. But the number of parameters is not the same trend
as the number of operations. That’s part of the flaw in our
model. In other models with more parameters but less com-
putation, they tend to get better results. The problem we’ll
look into further.

Settings GMAcs Param.(M) PSNR-L PSNR-µ

ADNet 6249.43 280 38.71 37.22

+ G(w/G) – – 39.01 37.27

- PCD 475.83 0.21 36.97 36.04

- DRDB 243.71 0.16 35.77 35.51

+ SepConv 195.45 0.07 36.35 35.40

+ CA 199.39 0.08 37.57 35.82

Table 4. The details of the changes of model size and the scores
based on ADNet.

As listed in Tab. 4, the w/G model denotes that we feed
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the gamma-corrected images and grouping in ADNet in-
stead of only LDR images originally. Note that there we
have not tested the parameters and GMAccs. But both the
parameters and the number of operations are more than
ADNet. The results show that ADNet with our gamma-
corrected images and grouping produces higher scores, out-
performing 0.05dB in terms of PSNR-µ. That proves that
the part is useful and can be applied to other models to
achieve better results. To reduce the number of operations,
our measurement of the original PCD module [9] in AD-
Net takes a lot of calculation, but the score is decreased by
1.7dB in terms of PSNR-L and 1.2dB in terms of PSNR-µ.
And we also test the dilated residual dense block(DRDB).
The block takes a few operations but gets higher scores.
Then we decide keep dilated residual dense block with Sep-
Conv(Separable convolution) to achieve 200 GMAcs. Fi-
nally, we found channel attention can get better result. The
reason may be that after attention network, the concatenated
features get a lot of channels. Although the separable con-
volution is used to reduce channels and operations, plenty
of feature information is missing here. This also is where
we’re going to improve. Therefore, the proposed method
has the potential to get better.

4.3. Comparison with Other Methods

We perform quantitative comparisons of our method
with ADNet [9] on the same HDR datasets. To fur-
ther demonstrate the advantages of the proposed gamma-
corrected and grouping in GSANet, we put the part into
the ADNet for training and testing. There has never been
a limit to complexity in the previous competition. The re-
sults shown in Tab. 5.

Model PSNR-µ Param(M) GMAccs

ADNet 37.22 280 6249.43
AD-G(w/G) 37.27 – –

Ours 35.82 0.08 199.38

Table 5. Quantitative comparisons of application of our the
gamma-corrected images and grouping to ADNet.

To demonstrate the superiority and weakness of our
proposed GSANet, we compare it with the existing state-
of-the-art method ADNet, both quantitatively and qualita-
tively. As shown in Fig. 8, qualitative results of our method
and ADNet are shown in this figure. The (a)–(c) mean the
label of the validation images. The first three images are the
LDR images: short, medim and long. The fourth and fifth
images are results after tone mapping. The last two images
are the results from our method and ADNet. Since there is
no ground truth of validation set, we compare the final valid
result of our model with the visualization result of ADNet
model. After tone mapping (the unit16 HDR image is tone

mapped to LDR image for visualization), the results look
similar to ADNet. So our model achieves a good effect vi-
sually. While in unit16 HDR images, the better results look
more dark and the overexposed areas appear more blurred.
This is also why the difference of PSNR-L value is larger
quantitatively.

As listed in Tab. 5, although the score is not best, our
model has fewer parameters. The analysis on trading off ac-
curacy for efficiency is shown on Tab. 4. According to the
results of the NTIRE2022 [14], we can scale up the param-
eters to get better scores. First, the separable convolution
in fusion network squeezes the channel dimension to 32,
leading to information loss. Therefore, we can use channel
split [8] to reduce the channel dimension in the bottleneck
and add parameters, avoiding too much information loss. In
our experiment, the scheme results in a score improvement
of 0.07dB with fewer training. Second, our efficient channel
attention module also use separable convolution. We find
another method that can develop our channel attention mod-
ule without channel dimensionality reduction [20]. These
will be our work in the future.

5. Conclusion

In this paper, we point out that the gamma-corrected im-
ages and grouping are crucial to add more details for the
overexposed area and underexposed area. And the spa-
tial attention is a representative approach to suppress ghost-
ing effects in HDR imaging. We have presented GSANet,
Gamma-enhanced Spatial Attention Network for efficient
high dynamic range imaging. A two-stage pipeline is pro-
posed where we handle the LDR images with gamma-
corrected and a spatial attention module, and then tackle
features with fusion model, wich consists of an efficient
channel attention and dilated residual dense block. Experi-
mental results show that although the number of parameters
in the proposed model is small, it can achieve well perfor-
mance and reconstruct HDR images are of good quality vi-
sually. Code used in this work will be publicly available
upon publication.
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