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Abstract

Single image denoising (SID) has achieved significant
breakthroughs with the development of deep learning. How-
ever, the proposed methods are often accompanied by plenty
of parameters, which greatly limits their application sce-
narios. Different from previous works that blindly increase
the depth of the network, we explore the degradation mecha-
nism of the noisy image and propose a lightweight Multiple
Degradation and Reconstruction Network (MDRN) to pro-
gressively remove noise. Meanwhile, we propose two novel
Heterogeneous Knowledge Distillation Strategies (HMDS)
to enable MDRN to learn richer and more accurate fea-
tures from heterogeneous models, which make it possible to
reconstruct higher-quality denoised images under extreme
conditions. Extensive experiments show that our MDRN
achieves favorable performance against other SID models
with fewer parameters. Meanwhile, plenty of ablation stud-
ies demonstrate that the introduced HMDS can improve the
performance of tiny models or the model under high noise
levels, which is extremely useful for related applications.

1. Introduction
Single image denoising (SID) aims to reconstruct a clean

image from the noisy one, which has been widely used as
an initial step for many high-level computer vision tasks.
This is because the quality of the denoised images will sig-
nificantly influence the accuracy of these downstream tasks.
However, it still is a challenging task since many important
features in the original image has be seriously occluded or
corrupted by noise.

During the past decades, the Convolutional Neural Net-
work (CNN) has achieved remarkable achievements in im-
age processing [5, 21, 32], which also greatly promotes the
development of SID. Recently, many CNN-based models
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Figure 1. Model size investigation. Red stars denote our models.

have been proposed for SID, especially for the Additive
White Gaussian Noise (AWGN). Different from traditional
methods, these methods [7, 13, 18, 22, 25, 31, 34, 38] usu-
ally learn the mapping between noisy and clear images
by building a well-designed CNN. For example, Zhang et
al. [38] proposed the first end-to-end trainable CNN model
(DnCNN) for Gaussian denoising, which took the advan-
tage of batch normalization and residual learning to recover
clean images. Meanwhile, Zhang et al. [40] also proposed a
flexible FFDNet, which took the noisy image and estimated
noise level map as inputs, thus a single model could deal
with noise on different levels. Liu et al. [18] presented a
multi-level wavelet CNN (WCNN) for better trade-off be-
tween the receptive field size and the computational effi-
ciency. Fang et al. [7] introduced image edge prior into
CNN and proposed a Multilevel Edge Features Guided Net-
work (MLEFGN) for SID. On the other hand, some large
models have also been proposed and constantly refreshed
the best results. For instance, Zhang et al. [43] proposed a
Residual Dense Network (RDN) for image restoration with
residual dense block. Park et al. [22] studied a Densely
Connected Hierarchical Network (DHDN) by using a modi-
fied U-net architecture; Although the above models achieve
promising results, they still do not handle high-noise images
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Figure 2. An example of image denoising (σ = 50) by using multiple degradation and reconstruction operations (via Bicubic).

well. Meanwhile, these models are often accompanied by a
large number of parameters (Figure 1), which greatly limits
their application in real scenarios.

Considering the popularity of smart mobile devices, it is
extremely important to build a lightweight and efficient SID
model. As shown in Figure 2, we find that some noise in the
noisy image can be eliminated by using the simple down-
and up-sampling operations. However, we also notice that
the downsampling operation also results in the loss of use-
ful information when removing noise. Meanwhile, the big-
ger the downsampling rate, the more noise will be removed,
but the reconstructed image will become more blurred. To
solve the aforementioned problem, we propose a Multiple
Degradation and Reconstruction Network (MDRN) to pro-
gressively remove image noise inspired by Unet++ ( [45]).
Meanwhile, Multi-scale Aggregation Block (MSAB) and
Multi-scale Aggregation Group (MSAG) are specially de-
signed for multi-scale feature extraction. Meanwhile, we
propose two novel Heterogeneous Knowledge Distillation
Strategies (HKDS) to enable MDRN to learn richer and
more accurate features from the teacher model, thereby fur-
ther improving the model performance. In other words, the
model uses the knowledge provided by external heteroge-
neous models to realize the automatic learning of deep fea-
ture priors. In summary, the contributions of this paper are
as follows:

(1). We propose a lightweight and efficient Multiple
Degradation and Reconstruction Network (MDRN) for im-
age denoising, which can progressively remove image noise
via multiple down- and up-sampling operations.

(2). We propose a Multi-Scale Aggregation Group
(MSAG) for feature extraction. MSAB is the basic compo-
nents of MDRN, which can extract rich multi-scale features
with few parameters.

(3). We propose two Heterogeneous Knowledge Distil-
lation Strategies (HKDS) for SID. With the help of HKDS,
MDRN can learn richer and more accurate features from
the teacher model, thereby improving the denoising ability
of the lightweight model under extreme conditions.

2. Related Work
2.1. Image Denoising

The degradation mode of the noisy image is usually for-
mulated as y = x + v, where x is the clean image, v is the
additive white Gaussian noise (AWGN), and y is noisy im-
age polluted by AWGN. Recently, many excellent methods
have been proposed for clear images estimation, including
spatial filtering methods [2,9], model-based methods [6,27],
and deep learning-based methods [7,13,18,25,31,37,38,40,
43]. Among them, deep learning-based methods have be-
come the mainstream of SID, which aim to solve the prob-
lem via learning the mapping between the noisy and clean
images. For example, Zhang et al. [38] proposed a DnCNN
for the Gaussian noise removal, which achieved competitive
results by took advantage of batch normalization and resid-
ual learning. Yu et al. [34] proposed a Deep Iterative Down-
up Network (DIDN) for image denoising, which achieved
promising results. However, directly minimizing the loss
function is difficult to learn accurate mapping. To solve this
problem, Fang et al. [7] introduced the edge priors to guide
image denoising and proposed a Multi-level Edge Features
Guided Network (MLEFGN). However, the edge prior still
is an artificially designed image prior and it is only one of
many image priors. This certain extent limits its flexibility
and versatility so that it can only improve the local effects
in the image. Different from it, we aim to explore a method
that allows the model to automatically learn the deep pri-
ors according to the need of the image, and to build a more
efficient and lightweight SID model.

2.2. Knowledge Distillation

Knowledge distillation (KD) was first proposed by Hin-
ton et al. [10], also known as the teacher-student framework.
The goal of the KD mechanism is to transfer the knowledge
from a complex model (Teacher) to a simple one (Student),
which is often used to compress model size. Recently, many
different KD strategies have been proposed, including out-
put transfer [10, 44], feature transfer [23, 35], and relation
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Figure 3. The architecture of Multiple Degradation and Reconstruction Network (MDRN). It is worth noting that convolutional and
deconvolutional layers are introduced to replace the original down and up-sampling operations performed by Bicubic.

transfer [33]. All these mechanisms have been widely used
in the image classification task and achieved remarkable re-
sults. Meanwhile, some researchers are also trying to intro-
duce the KD mechanism into the image restoration tasks.
For example, Hong et al. [11] proposed a KD-based method
for image dehazing with the heterogeneous task. Specifi-
cally, the teacher model is an off-the-shelf autoencoder net-
work, used to learn the reconstruction process from clear to
clear images and transfer the learned knowledge to the de-
hazing model during the training process. Learning knowl-
edge from clear images is an interesting idea. However,
our investigation shows that the reconstruction of clear to
clear images using a flat network such as U-net [24], is a
relatively simple task that is difficult to ensure all layers
or modules in the teacher model are fully trained since a
flat network with skip connection could directly transmit all
original information to the last layer. Therefore, it will make
the teacher model fail to guide the student model efficiently.
In this paper, we aim to explore more interpretable knowl-
edge distillation strategies for SID to further improve the
denoising ability of the tiny model, especially under high
noise levels.

3. Proposed Method
In this paper, we propose a lightweight and efficient Mul-

tiple Degradation and Reconstruction Network (MDRN) for
SID. Meanwhile, we present a Heterogeneous Architecture
Distillation Strategy (HADS) and a Heterogeneous Mode
Distillation Strategy (HMDS) to automatically learn the re-
quired deep prior knowledge from heterogeneous models,
thereby further improving the model performance.

3.1. MDRN

As shown in Figure 3, the core part of the Multiple
Degradation and Reconstruction Network (MDRN) is an in-

verted pyramid, which consists of a series of Multi-scale
Aggregation Groups (MSAGs). Meanwhile, we can clearly
observe that the model contains multiple degradation and
reconstruction operations, which are used to remove noise
and restore high-frequency detail, respectively. It is worth
noting that convolutional and deconvolutional layers are in-
troduced to replace the original down and up-sampling op-
erations performed by Bicubic. This method can automat-
ically learn how to remove useless noises while preserving
useful information. In addition, after each downsampling
operation, we will restore it immediately, thus we can obtain
rich features reconstructed after different scales of down-
sampling operations. Furthermore, we introduce the dense
connection strategy at each level of the model to improve
the utilization of hierarchical features, thus further improv-
ing the model performance.

3.1.1 Multi-scale Aggregation Group

The Multi-scale Aggregation Group (MSAG) is the most
basic and important module of MDRN. According to Fig-
ure 4, we can observe that MSAG is composed of a 1 × 1
fusion layer and N MSABs, which is a simple but efficient
feature extraction module. Meanwhile, we also apply a long
skip connection for global residual learning like [41]. This
strategy can increase the information flow and solve the gra-
dient disappearance problem.

Multi-scale Aggregation Block. In order to extract
rich features, we propose a Multi-scale Aggregation Block
(MSAB). MSAB is an efficient feature extraction module
that can extract rich multi-scale features with few parame-
ters, which is inspired by MSRB [17] and MDCB [16], and
the number of parameters of the module is reduced by using
the channel splitting mechanism and dilated convolutional
layers. As shown in Figure 4, after a 1 × 1 convolutional
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Figure 4. The architecture of MSAG. K, P, and D represent the
kernel size, padding, and dilation rate, respectively.

layer, we use the channel splitting operation to divide the
features into two groups. Then, we apply the convolutional
layer with different dilation rates on different groups to ex-
tract image features with different scales. After that, all ex-
tracted features are concatenated, and the channel shuffle
operation is applied to overcome the side effects brought by
the channel splitting. Finally, a 1× 1 convolutional layer is
used for feature fusion and the residual learning strategy is
introduced to further improve the information flow.

Hierarchical Dense Connection. MDRN is a multi-
ple degradation and reconstruction model, thus can pro-
duce rich degraded and restored features. However, if these
features are independent of each other, it is not beneficial
for the final denoised image reconstruction. To solve this
problem, we introduce dense connections at each level to
fully utilize hierarchical features. Specifically, the current
MSAG receives the feature maps of all preceding MSAGs
xj0, x

j
1, · · · , and xji−1 in the same level as inputs

xji = Hj
i ([x

j
0, x

j
1, · · · , x

j
i−1]), (1)

where [xj0, x
j
1, · · · , x

j
i−1] refers to the concatenation opera-

tion and Hj
i (·) denotes the ith MSAG in the jth level.

3.2. Heterogeneous Knowledge Distillation

Although MDRN is an effective SID model, it is still
difficult to reconstruct high-quality denoised images under
extreme conditions, such as tiny models or severe noises.
Therefore, we propose two novel Heterogeneous Knowl-
edge Distillation Strategies (HKDS) to enable MDRN to
automatically learn the deep feature priors from the teacher
model. Different from previous works [11, 15, 30] that
learned the knowledge from different models or tasks,
we explore more efficient knowledge distillation strategies

from the model and the task itself.
Heterogeneous Architecture Distillation (HADS).

HADS aims to transfer the knowledge from a large model to
the small one. As shown in Figure 5 (Top), the framework
contains two models, a large teacher model and a student
model. Both of these two models have the same back-
bone, but the number of MSAB in each MSAG of these
two models is different. In other words, the purple mod-
ule has more MSAB than the gray one. Except for this, all
settings of these two models are consistent, including the
noise level. Under this setting, each MSAG in the teacher
model can extract richer and more accurate features than
the student. We hope that the features extracted by MSAG
in the student model can be as similar as possible to the fea-
tures extracted by MSAG in the teacher model. To achieve
this, we introduce Knowledge Distillation Loss (KDL) be-
tween the reconstructed outputs (MSAG-2, MSAG-3, and
MSAG-4) of these two models to enable the student model
can learn more accurate features from the teacher. With the
help of the HADS, the student model can converge faster
and the model performance can be further improved, which
benefits for lightweight and accurate model construction.

Heterogeneous Mode Distillation (HMDS). Although
the deep model can learn more accurate features, it is still
difficult to deal with severe noise (e.g., σ = 70) since the in-
put image has been seriously damaged. In this case, chang-
ing the size of the model itself is difficult to effectively im-
prove the model performance. To address this issue, we pro-
pose a Heterogeneous Mode Distillation Strategy (HMDS).
As shown in Figure 5 (Bottom), the framework also con-
tains two models. It is worth noting that these two mod-
els are exactly the same in model structure and size. The
only difference is that the noise levels handled by these
two models are different. In other words, HMDS aims to
transfer the knowledge from a denoising model designed
for slight noise to a model designed for severe noise. For
example, the denoising model designed for low noise lev-
els (e.g., σ = 30, σ = 50) is used as the teacher model
to guide the model designed for high noise levels (e.g.,
σ = 70). This is because low noise level images are eas-
ier to restored than high noise level images. Therefore, the
student model can learn from the teacher model more accu-
rate high-frequency details which are absent from its own
input image. Meanwhile, the model can recover more accu-
rate texture details even under high noise levels. The same
as the HADS, we also introduce knowledge distillation loss
between these two models.

3.3. Loss Function

Reconstruction Loss. Following previous works, we
also adopt L1 loss to measure the difference between the
denoised image and the corresponding clean image

LRL = ‖FSID(Inoisy)− Iclear‖1 , (2)
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Figure 5. Schematic diagram of two heterogeneous knowledge distillation strategies. It is worth noting that only the top 4 MSAGs of
MDRN are visualized in this figure for a clearer illustration .

where Inoisy and Iclear represent the noisy input and cor-
responding clear image, respectively. FSID(·) denotes the
proposed MDRN and FSID(Inoisy) is the denoised result.

Knowledge Distillation Loss. In this paper, we pro-
pose two heterogeneous knowledge distillation strategies.
In order to ensure that these two strategies can truly realize
knowledge transfer, we propose a Knowledge Distillation
Loss (KDL). KDL is essentially a feature matching func-
tion, which can be defined as

LKDL =
∑

i=2,3,4

∥∥Si
G(Inoisy)− T i

G(I
′
noisy)

∥∥
1
, (3)

where Si
G(Inoisy) and T i

G(Inoisy) denote the output fea-
tures of the ith MSAG in the student and teacher models,
respectively. Meanwhile, the noise level of the input noisy
image Inoisy = I ′noisy and Inoisy 6= I ′noisy when using the
HADS and HMDS, respectively. Therefore, the total loss is
defined as

Ltotal = LRL + LKDL. (4)

4. Experiment
4.1. Datasets

Following previous works [7, 34, 38, 40, 42], we also
choose the AWGN as our research object due to its ex-
tensiveness and practicality. During training, we use
DIV2K [1] as our training dataset since it is a high-quality
image restoration dataset. As for the test datasets, we use
Set12 [36], BSD68 [20], and Urban100 [12] for grayscale
image denoising and choose Kodak24 [8], CBSD68 [20],
and Urban100 [12] for the color image denoising. Mean-
while, in order to further verify the effectiveness and ro-
bustness of MDRN, we utilize RN6 [14] and RN15 [14] to
test the ability of MDRN for real noise removing.

4.2. Implementation Details

Model Setting. In the final version of MDRN, the num-
ber of MSAB in each MSAG is set to 8 and the input and
output channels of each MSAB or MSAG are set to 64. In
addition, the entire model contains three degradation pro-
cesses, and the kernel size and stride are set to 2 both in
the convolutional and deconvolutional layers. Meanwhile,
we also introduce the self-ensemble mechanism [28] to fur-
ther improve the model performance, which is denoted as
MDRN+. In addition, we provide a tiny version of MDRN,
which contains 2 MSABs in MSAG, named MDRN (2B).

Training Setting. During training, we randomly choose
16 noisy patches as inputs, the learning rate is initialized
as 10−4 and halved every 100 epochs. In addition, the
MDRN is implemented with the PyTorch framework, up-
dated with the Adam optimizer, and a total of 500 epochs.
It is worth noting that when the heterogeneous knowledge
distillation strategy is applied to MDRN to achieve joint
training, the teacher model is pre-trained and the weights
are fixed throughout the process without updating.

4.3. Comparison with Classic SID Methods

In order to verify the effectiveness of the proposed
MDRN, we compare it with more than 10 classic SID
methods, including BM3D [4], RED30 [19], TNRD [3],
IRCNN [39], DnCNN [38], MemNet [26], FFDNet [40],
MLEFGN [7], MFENANN [29], and DRNe [37]. All afore-
mentioned methods are the most widely used denoiser and
all of them achieved the SOTA results at the time.

Results on Gray-Scale Images: In Table 1, we pro-
vide the PSNR results of these methods on grayscale im-
ages. According to the table, we can clearly observe that
our MDRN+ and MDRN achieve the best and the second-
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Method Set12 BSD68 Urban100
Noise Level σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

BM3D 32.37 29.97 26.72 31.08 28.57 25.62 32.34 29.70 25.94
RED30 32.83 30.48 27.34 31.72 29.26 26.35 32.75 30.21 26.64
TNRD 32.50 30.06 26.81 31.42 28.92 25.97 31.98 29.29 25.71

IRCNN 32.77 30.38 27.14 31.63 29.15 26.19 32.49 29.82 26.14
DnCNN 32.86 30.43 27.18 31.73 29.23 26.23 32.68 29.97 26.28
FFDNet 32.75 30.43 27.32 31.63 29.19 26.29 32.42 29.92 26.52

MLEFGN 33.04 30.66 27.54 31.81 29.34 26.39 33.21 30.64 27.22
MFENANN 32.95 30.63 27.55 31.73 29.29 26.38 - -

DRNet 33.01 30.64 27.46 31.81 29.35 26.39 - -
MDRN (Ours) 33.06 30.67 27.56 31.83 29.36 26.41 33.22 30.67 27.24

MDRN+ (Ours) 33.10 30.71 27.60 31.86 29.39 26.44 33.31 30.78 27.31

Table 1. PSNR comparison with classic SID methods on grayscale images with noise levels σ = 15, 25, and 50.
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Figure 6. Visual comparison with DnCNN, FFDNet, and MLEFGN on grayscale images (σ = 50). Zoom in to view details.

best results, respectively. In Figure 6, we provide the vi-
sual comparison with DnCNN, FFDNet, and MLEFGN
on grayscale images. Among them, DnCNN and FFDNet
achieve competitive results and still are the most widely
used denoisers. MLEFGN is a well-designed SID model,
which achieved the best results under the same level pa-
rameters at the time. According to the figure, we can ob-
serve that images reconstructed by these methods still con-
tain a lot of noises and artifacts. Moreover, denoised im-
ages become blurred since high-frequency details have been
severely destroyed. On the contrary, MDRN can reconstruct
high-quality denoised images with more texture details.

Results on Color Images: To further verify the valid-
ity of the model, we also provide the PSNR results of these
methods on color images in Table 2. According to the ta-
ble, we can observe that MDRN still achieves the best re-
sults on color images. Meanwhile, we also provide the de-
noised color images in Figure 7. Obviously, MDRN can
reconstruct high-quality denoised images with better im-
age edges, even compared with MLEFGN. All these results
fully verified the effectiveness of the proposed MDRN.

4.4. Results with HKDS

Although our proposed MDRN has achieved excellent
performance, it still does not work well under extreme con-
ditions (tiny version models or severe noise levels). In order
to improve the denoising ability of the tiny model, we pro-

pose the Heterogeneous Architecture Distillation Strategy
(HADS). Meanwhile, to improve the ability of the model
to process images with high noise levels, we propose the
Heterogeneous Mode Distillation Strategy (HMDS). In this
part, we show the model performance with these strategies.

Results with HADS. The core idea of HADS is to use
a large model as Teacher to guide the tiny model to learn
more accurate features, thus further improving the qual-
ity of the reconstructed images. In Tables 3 and 4, we
show the PSNR results of the FFDNet and the tiny version
of MDRN (2B) with and without HADS on grayscale and
color images, respectively. Compared to FFDNet, MDRN
(2B) can achieve better results with fewer parameters. How-
ever, we also found that this improvement is not significant.
To further improve the model performance, we used the pre-
trained final MDRN (N = 8) as the Teacher and intro-
duced HADS during training. According to these results,
we can clearly observe that with the help of HADS, the per-
formance of MDRN (2B) can be further improved. There-
fore, the new results are significantly improved compared to
FFDNet. In Figure 8, we also provide the visual comparison
of MDRN (2B) with and without HADS on color images.
Obviously, with the help of HADS, MDRN can reconstruct
cleaner images with more accurate edges. All the above ex-
periments show that the proposed HADS is effective, which
can further improve the lightweight model performance.

Results with HMDS. High noise level image denoising
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Method Kodar24 CBSD68 Urban100
Noise Level σ=30 σ=50 σ=70 σ=30 σ=50 σ=70 σ=30 σ=50 σ=70

CBM3D 30.89 28.63 27.27 29.73 27.38 26.00 30.36 27.94 26.31
RED30 29.71 27.62 26.36 28.46 26.35 25.08 29.02 26.40 24.74
TNRD 28.83 27.17 24.94 27.64 25.96 23.83 27.40 25.52 22.63

IRCNN 31.24 28.93 N/A 30.22 27.86 N/A 30.28 27.69 N/A
DnCNN 31.39 29.16 27.64 30.40 28.01 26.56 30.28 28.16 26.17
MemNet 29.67 27.65 26.40 28.39 26.33 25.08 28.93 26.53 24.93
FFDNet 31.39 29.10 27.68 30.31 27.96 26.53 30.53 28.05 26.39

MLEFGN 31.67 29.38 27.94 30.56 28.21 26.75 31.32 28.92 27.28
MDRN (Ours) 31.68 29.40 27.96 30.57 28.23 26.77 31.35 28.96 27.32

MDRN+ (Ours) 31.73 29.44 28.01 30.61 28.27 26.82 31.41 29.00 27.37

Table 2. PSNR comparison with classic SID methods on color images with noise levels σ = 30, 50, and 70. Best results are highlighted.
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Figure 7. Visual comparison with DnCNN, FFDNet, and MLEFGN on color images (σ = 50). Zoom in to view details.

Method Para. Set12 BSD68 Urban100
Noise Level - σ=15 σ=50 σ=15 σ=50 σ=15 σ=50

FFDNet 851K 32.75 27.32 31.63 26.29 32.42 26.52
MDRN (2B) 770K 32.87 27.35 31.72 26.31 32.82 26.74

MDRN (2B) + HADS 770K 32.96 27.43 31.78 26.40 32.98 26.84

Table 3. PSNR results of MDRN with and without the HADS on
grayscale images. Best results are highlighted.

Method Para. Kodak24 CBSD68 Urban100
Noise Level - σ=30 σ=70 σ=30 σ=70 σ=30 σ=70

FFDNet 851K 31.39 27.68 30.31 26.53 30.53 26.39
MDRN (2B) 770K 31.40 27.69 30.38 26.59 30.66 26.57

MDRN (2B) + HADS 770K 31.47 27.73 30.42 26.63 30.78 26.64

Table 4. PSNR results of MDRN with and without the HADS on
color images. Best results are highlighted.

is still a challenging task since noise will severely dam-
age the image. Recently, the most common method to
solve this problem is to build larger CNN models. Differ-
ent from previous works, we propose HMDS to enable the
model to learn more accurate high-frequency details from
the Teacher. Specifically, according to the core idea of the
strategy, we use the model trained under σ = 25 or σ = 50
as the teacher model to guide the model trained for σ = 50
or σ = 70. In Tables 5, we show the PSNR results of
MDRN with and without HMDS. According to the results,
we can observe that (1). compared to MLEFGN [7], MDRN
can achieve better results with fewer parameters; (2). with

IMG039
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MDRN-2B

MDRN-2B

with HADS

with HADS

GT

GT

Figure 8. Visual comparison of MDRN (2B) with and without
HADS on color images (σ = 70). Zoom in to view details.

the help of HMDS, the performance of our MDRN can be
further improved. Similarly, we also provide the visual
comparison of MDRN with and without HMDS on color
images in Figure 9. Obviously, when the image suffers from
severe noise interference, it is extremely difficult to restore
clean images. Fortunately, with the help of HMDS, MDRN
can reconstruct more clean and accurate denoised images.
All aforementioned experiments fully demonstrate the ef-
fectiveness of the proposed HMDS.

4.5. Study on High Noise Level

High noise level image denoising is still a challenging
task since noise will severely damage images. In this part,
we provide more denoising results of high-noise images in
Figure 10. According to the results, we can observe that
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Method Parm. Set12 BSD68 Urban100
Noise Level - σ=50 σ=50 σ=50
MLEFGN 6.86M 27.54 26.39 27.22

MDRN 2.38M 27.56 26.41 27.24
MDRN + HMDS (25) 2.38M 27.63 26.46 27.38

Method Parm. Kodak24 CBSD68 Urban100
Noise Level - σ=70 σ=70 σ=70
MLEFGN 6.86M 27.94 26.75 27.28

MDRN 2.38M 27.96 26.77 27.32
MDRN + HMDS (50) 2.38M 28.00 26.81 27.45

Table 5. PSNR results of MDRN with and without HMDS on
grayscale and color images, respectively.

IMG012

IMG099

MDRN

MDRN

with HMDS

with HMDS

GT

GT

Figure 9. Visual comparison of MDRN with and without HMDS
(50) on color images (σ = 70). Zoom in to view details.

MLEFGN is still difficult to reconstruct high-quality de-
noised images under the high noise level even though it
is an excellent SID model. On the contrary, our MDRN
can reconstruct clearer and more accurate denoised images,
even the model parameters of MDRN is only one-third of
MLEFGN. This is because MDRN can extract rich multi-
scale image features, thus it can reconstruct more accurate
denoised images.

4.6. Study on Model Size

Recently, some outstanding SID models have been pro-
posed, such as RDN [43], RNAN [42], DIDN [34], and
DHDN [22]. However, it cannot be ignored that the param-
eters of these models are ten or even hundred times that of
our MDRN. In this paper, we provide a lightweight MDRN,
which achieves a good balance between the size and perfor-
mance of the model. However, we should notice that the
model size of MDRN can be easily changed by changing
the number of MSAB (N ) in MSAG. In Figure 11, we pro-
vide the model performance with different N . According
to the figure, we can find (1). as N increases, the model
performance can be further improved; (2). when N = 20,
MDRN exceeds RNAN with fewer parameters; (3). when
N = 40, MDRN exceeds RDN with only half of the param-
eters. Meanwhile, MDRN achieves close performance to
DIDN with only one-fifteenth of the parameters. This fully
demonstrates the effectiveness and potential of MDRN.

Noisy image MLEFGN MDRN-Ours GT

Figure 10. Visual comparison of the denoising results of MDRN
and MLEFGN on high-noise images (noise level: σ = 70).
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Figure 11. Study on the number (N ) of MSAB in each MSAG.

Moreover, we provide a more intuitive comparison in
Figure 1. It is worth noting that the point in the upper
left corner of the figure represents a better balance between
model size and performance. According to the figure, we
can clearly observe that our MDRN achieves the best trade-
off between model size and performance.

5. Conclusion
In this paper, we proposed a lightweight and effi-

cient Multiple Degradation and Reconstruction Network
(MDRN) for SID, which realizes automatic noise removal
and feature restoration through multiple down- and up-
sampling operations. Meanwhile, we proposed two novel
strategies, namely Heterogeneous Architecture Distillation
Strategy (HADS) and Heterogeneous Mode Distillation
Strategy (HMDS) to improve the performance of tiny mod-
els and the model under high noise levels, respectively. Ex-
tensive experiments have fully proved the effectiveness of
the proposed model and strategies.
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