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Abstract

Over parameterization is a common technique in deep
learning to help models learn and generalize sufficiently to
the given task; nonetheless, this often leads to enormous
network structures and consumes considerable computing
resources during training. Recent powerful transformer-
based deep learning models on vision tasks usually have
heavy parameters and bear training difficulty. However,
many dense-prediction low-level computer vision tasks,
such as rain streak removing, often need to be executed on
devices with limited computing power and memory in prac-
tice. Hence, we introduce a recursive local window-based
self-attention structure with residual connections and pro-
pose deraining a recursive transformer (DRT), which en-
joys the superiority of the transformer but requires a small
amount of computing resources. In particular, through re-
cursive architecture, our proposed model uses only ⇠ 1.3%
of the number of parameters of the current best perform-
ing model in deraining while exceeding the state-of-the-
art methods on the Rain100L benchmark by at least 0.33
dB. Ablation studies also investigate the impact of recur-
sions on derain outcomes. Moreover, since the model con-
tains no deliberate design for deraining, it can also be
applied to other image restoration tasks. Our experiment
shows that it can achieve competitive results on desnow-
ing. The source code and pretrained model can be found at
https://github.com/YC-Liang/DRT.

1. Introduction
Computer vision is a fast-growing field and has many

real-world applications such as facial recognition for secu-
rity, object detection for autonomous vehicles, and scene
understanding for caption generation. These high-level
computer vision tasks often need to operate on non-
corrupted images for the best performance. Images taken
under rainy weather are naturally corrupted as rain streaks
block the background and lead to the loss of information.
Hence, finding an efficient way to remove rain streaks from
the image and reconstruct the background while keeping the
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Figure 1. An example from the Rain100H dataset. Boxed regions
are zoomed-in and displayed at the bottom-right corner of each
image. Complex irregular shapes, such as smokes produced by
the train, are better reconstructed by DRT whereas other methods
suffer from artifacts.

model simple is essential for high-level vision tasks to op-
erate in rainy situations, especially for devices with limited
computing resources.

In the last five years, many models have widely adopted
Convolutional Neural Networks (CNNs) to perform single
image deraining. Specifically, Fu et al. [8] designed an es-
sential lightweight CNN that takes high-frequency compo-
nents of the image as input to remove rain streaks; the re-
sulting image is added back to the low-frequency part of
the image, much like a residual connection. Following this
work, much more advanced CNN architecture is employed
to achieve better outcomes. Fan et al. [7] uses multiple
residual connections and recursive CNN blocks to perform
rain streak removal. Li et al. [11] utilize non-locally en-
hanced dense blocks and show that a deep network with
a carefully designed structure can enhance the training ro-
bustness and achieve better results. Single image derain-
ing methods prior to 2020 have been well summarised by
Yang et al. [25]; we refer to this literature survey for de-
tailed information. Recently, many vision tasks have been
well performed by architectures based on attention mech-
anisms proposed by [19]; however, they can be computa-
tionally heavy and time-consuming to train, as discussed in
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more detail in the next section. This limits the range of do-
mains that vision transformers can apply.

To design an efficient deep vision transformer for im-
age reconstruction tasks, we propose a recursive attention
structure with skip-connection, termed Deraining Recursive
Transformer (DRT). In particular, a well-designed recursive
structure shares weights among certain self-attention blocks
from the network, so the number of parameters no longer in-
creases dramatically while increasing the network’s depth.
Moreover, in image deraining, the input image and out-
put image have a large portion of overlapping information;
therefore, by leveraging residual connections from the input
to the output, a small number of self-attention blocks are
needed to focus on detecting rain streaks and hence reduc-
ing the size of the network. With these designs, our model
only needs ⇠ 1.18M parameters (i.e., ⇠ 1.3 % of the cur-
rent state of the art in single image deraining) to outper-
form other derain methods on the Rain100L benchmark by
at least 0.33dB. An example of derain outcomes of different
methods is displayed in 1, which shows the proposed DRT
has a strong ability to reconstruct various irregular back-
grounds. Furthermore, unlike ViT proposed by [6] or IPT
proposed by [3], which are trained on millions of images,
DRT only needs to be easily trained on a small data set (700
images) and hence effectively reduces the training difficulty.
In summary, this work makes the following contributions,

• To the best of our knowledge, this is the first work in-
vestigating recursively structured vision transformers
for image reconstruction tasks.

• Our model outperforms many others methods on the
task of single image deraining while consuming less
computing resources.

• The proposed model is general enough to carry out
other image restoration tasks such as single image
desnowing.

2. Related Work
2.1. Vision Transformers

Since the introduction of the transformer network by
Vaswani et al. [19], much research has been done to replace
CNNs with transformers as the backbone structure for vi-
sion tasks. In particular, Dosovitskiy et al. [6] introduce the
Vision Transformer (ViT) by splitting an image into non-
overlapping small patches and treating each of the patches
as a token in the original transformer. ViT performs well on
the classification tasks while maintaining a relatively low
computational complexity due to the image patch embed-
ding mechanism. To extend the capability of ViT, Liu et
al. [15] propose the Swin-Transformer. One of the purposes
behind the design of the Swin transformer is the same as

the purpose of our work, to reduce the computational com-
plexity of the vision transformer. This type of transformer
performs multi-headed self-attention in local windows in-
stead of globally as in ViT. The computation cost is reduced
from 4hwC2 + 2(hw)2C to 4hwC2 + 2(M)2hwC, where
the image dimension is C ⇥ h ⇥ w, and the local window
size is denoted by M .

Meanwhile, Swin-Transformer employs the shifted win-
dow approach to compensate for the loss of global infor-
mation. A single Swin Transformer Block (STB) firstly
passes the input through a layer norm (LN) and then via
a windowed multi-headed self-attention (WMSA) mecha-
nism. The output from the self-attention mechanism is com-
bined with the initial input forming the first residual con-
nection. Then the output is passed through a multi-layer
perceptron (MLP) followed by another LN. The final out-
put combines again with the output from the self-attention
mechanism forming the second residual connection. Mul-
tiple STBs are used to process a given image and achieve
state-of-the-art results in recognition, detection, and seg-
mentation tasks.

2.2. Applications of Vision Transformers to Image
Reconstruction

Vision transformers from the last section and their vari-
ants have been utilized recently to achieve better general im-
age restoration outcomes. Chen et al. [3] uses a transformer
encoder-decoder structure based on [19] to design a gen-
eral image restoration transformer termed Image Process-
ing Transformer (IPT). Similarly, Wang et al. [20] propose
to use a transformer block, namely LeWin block, and an
hourglass structure with skip-connections for background
reconstructions. This design performs well in different im-
age reconstruction tasks while maintaining a relatively low
computational cost. Furthermore, Liang et al. [13] design
residual transformer blocks on top of the Swin-Transformer
and stack multiple of the residual blocks to perform deep
feature extractions for image reconstructions. Unlike IPT,
which is pre-trained on ImageNet, this type of transformer
is trained with 800 samples while maintaining a small num-
ber of network parameters relative to many other CNN-
based or transformer-based methods.

2.3. Recursive Network Structures
A recursive structure in deep learning repetitively calls

some portion of layers in a network to process data. The
use of the recursive structure for image reconstruction tasks
can be traced back to [10]. In this work, a deeply recur-
sive CNN has been proposed to stabilize the training pro-
cess and maintain a deep structure with few parameters. It
empirically shows that a single recursive layer is enough
to achieve good image super-resolution results. Later, the
same idea is used by [7] to design a residual guided re-
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Figure 2. The Deraining Recursive Transformer architecture. RTB stands for recursive transformer block, and STB stands for Swin
Transformer block. N refer to the number of RTBs and L refers to the number of recursive calls. As mentioned in the ablation study
section, the number of RTBs, STBs and recursive depth can be made arbitrarily large.

cursive CNN network for image deraining. Our method is
similar to this work because we also thoroughly investigate
the use of recursive and residual structures on transformer-
based architectures instead of relying on CNNs. Although
recursive structures can also lead to potential issues such as
exploding gradient or overfitting, carefully designed recur-
sions can lead to optimal network architecture, as discussed
in the following sections.

3. Method
3.1. Network Architecture

DRT consists of three stages, the patch embedding stage,
f1, the deep feature extraction stage f2, and the image re-
construction stage, f3. Its visualisation is given in Fig-
ure 2. Essentially, one can view the first stage as input
pre-processing stage and the third stage as inference out-
put post-processing stage whereas the second stage is the
main inference stage. Given a raw rainy image Rinput, the
equation below hence captures the functionality of DRT,

DRT(Rinput) = f3 � f2 � f1(Rinput) (1)

The patch embedding stage f1 firstly applies a convo-
lutional layer to the rainy image Rinput 2 RH⇥W⇥C and
map it to Rconv 2 RH//P⇥W//P⇥D to divide the image into
patches and stack them depth-wisely. Here, H ⇥ W ⇥ C

is the original image’s height, width and depth respectively.
P denotes the patch size used to divide the input into small
non-overlapping windows, and D is the embedded dimen-
sion and usually D � C. Note the // sign denotes the in-
teger division operation. Since transformers typically work
with one dimensional tokens, we reshape the convolution
layer’s output Rconv 7! Rembed 2 RHW//P⇥D to complete
the first stage of the network. This output can then be fed to
transformer blocks to process. We can succinctly write the
first stage as

f1(Rinput) = PatchEmbed(Conv(Rinput)). (2)

The next stage consists of multiples of recursive trans-
former blocks (RTB) composed together to perform deep
feature extractions as described by Equation 3. We use N

to denote the total number of RTBs. The details of the RTB
are given in the next subsection. Here we note that this
stage maintains the input dimension, and there is no param-
eter sharing between each RTB. The output from this stage
is denoted as Rdeep. At the end of the process, a residual
connection is used to add the input to the deep feature ex-
traction stage to its output to restrict the RTBs from focus-
ing on detecting rain streaks.

f2(Rembed) = RTB1 � · · · � RTBN (Rembed) +Rembed. (3)

The deep features, Rdeep, are then processed by the im-
age restoration stage, which reverses the process of the
first stage as seen in equation 4. The height and width of
the input image is firstly restored by reshaping Rdeep 7!
Runembed 2 RH//P⇥W//P⇥D and convolution layers are
used to process these features to give the output Rout 2
RH⇥W⇥C . Finally, another residual connection is used be-
tween the network’s input to its output so that rain streaks
features extracted by the network can be removed from the
input.

f3(Rdeep) = Conv(PatchUnembed(Rdeep)) +Rinput. (4)

3.2. The Recursive Transformer Block
Each RTB uses the recursive and residual connections

to stack Swin Transformer Blocks (STBs). Mathematically,
the STB can be described as,

STB(x) = MLP � LN(WMSA � LN(x) + x)

+ (WMSA � LN(x) + x) (5)

Here the WMSA can be summarised by the equations [19],

MultiHead(Q,K, V ) = Concat(h1 . . . hn)WO (6)
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In the above equations, W refers to weights. The inputs, Q,
K, and V, often are called queries, keys, and values. The
term

p
dk refers to the dimension of K. If we denote the

number of STB in each residual connection as U and the
number of recursive calls as L, let the input be denoted as
Sin 2 RHW//P⇥D, then each RTB can be described with
the following equation.

RTB(Sin) =
LM

j=1

 
UM

i=1

STBi(Sin) + Sin

!
. (9)

The
L

sign is used to denote multiple function com-
positions. The dimension of the input and output is kept
the same. The residual connection always starts from the
input to the RTB. The first

L
in the above equation con-

trols the recursive calls of RTB, and the second
L

controls
the composition of different STBs. Each STBi in a resid-
ual connection can have different parameters, but recursive
calls always invoke the same STBs as seen in the equation
above since the index j is never used. For instance, in Fig-
ure 2, there are two STBs (U = 2) in each residual connec-
tion, and such connection is recursively called three times
(L = 3) in a single RTB. At the end of each RTB, con-
volutional layers are used to process information that the
local window-based Swin transformer may ignore. If a sin-
gle convolutional layer is employed, we do not use any ac-
tivation after the convolution. For multiple convolutional
layers, we use Leaky ReLU as activation functions.

3.3. Loss Function
There are many proposed loss functions to facilitate the

training of the networks; however, we find it is sufficient to
use the mean squared error loss. For an output image, x and
its corresponding ground-truth image x̄, the error is given
by,

MSE(x) =
1

M

MX

i=1

(x̄i � xi)
2
, (10)

where M denotes the total number of entries, x̄i denotes the
ground truth pixel value of the ith entry, and xi denotes the
prediction value of the ith entry. For multiple predictions,
we simply average the errors for each pair to get a final error
measure.

4. Experiments
We test DRT against other state-of-the-arts by compar-

ing their derain results (PSNR and SSIM) on three different

data sets along with the number of parameters and compu-
tational cost required. Then, an ablation study is carried out
to investigate architecture variants. Lastly, we show that
DRT can perform other image restoration tasks such as im-
age desnowing.

4.1. Datasets
Experiments are carried out on the following data sets to

evaluate the efficacy of the proposed DRT.
Rain800 [28]. This data set consists of 700 training images
and 100 test images (Test 100). These images are chosen
from the UCID data set [18] and BSD500 [1] training set
with rain streaks synthesized on top of them. Different rain
streaks are contained within Rain800.
Rain100L [24]. There are 1800 training images and 100
testing images in this data set. Background images are cho-
sen from BSD200 data set [16]. Each image consists of
light rain streaks in one direction.
Rain100H [24]. Similar to Rain100L, this data set consists
of 1800 images and 100 testing images. Background are
also chosen from BSD200 [16]. However, each image can
consist of heavy rain streaks in multiple directions, boosting
deraining performances.
Snow 100K [14]. Background images are downloaded from
the Flickr API, and there are three types of snow den-
sities (i.e., small, medium, and large) randomly selected
and synthesized on the background images. The train-
ing set consists of 50K images. Three testing sets (i.e.,
Snow100K-S, Snow100K-M, Snow100K-L) correspond to
three snow densities. Snow100K-S contains 16611 images,
Snow100K-M consists of 16588 images, and Snow100K-L
has 16801 images.

4.2. Setup and Training
Setup. The best-performing model has the network struc-
ture shown in Figure 2. The patch embedding and image
reconstruction stages consist of just one convolution layer
without any activation. There are six RTBs (N = 6) in the
deep feature extraction stage, and each of them consists of
three recursive calls (L=3) on two STBs. Only a single con-
volution is employed at the end of each RTBs without any
activation functions. All convolution operation maintains
the input size, so there is no down-scaling or up-sampling
of the image in the derain process that may cause the loss
of pixel-level information. For each STB, the local window
dimension is fixed to 7⇥7, the patch size is set to one, and
the number of heads is two. The depth of our hierarchical
feature representations is chosen to be D = 96.
Training. The initial training process is carried out mainly
on the Rain-800 data set [28], which consists of 700
synthetic-rain training samples with different types of rain
streaks and 100 testing data (test100) for network valida-
tions. Instead of training it from scratch, we fine-tune this

592



Test100 Input Hi-Net DRT (Ours) GT

Figure 3. The image is drawn from Test100 data set. Very small rain streaks cannot fully removed by Hi-Net, however, our method is able
to detect and remove these rain streaks.

Input JORDER PreNet

Hi-Net DRT (Ours) GT

Figure 4. Visual comparisons of derain results. This image is chosen from the Rain100L data set; the boxed region is enlarged and shown
under each corresponding image. DRT can distinguish rain streaks from clouds in the first image, whereas the other methods cannot.
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Table 1. Derain results of different methods on three data sets evaluated using the PSNR and SSIM metric. The number of parameters used
by each method is displayed on the right-most column. Older methods that did not publish code are ignored from this column. Our results
are displayed in bold.

Methods Test100 Rain100L Rain100H Params (M)PSNR SSIM PSNR SSIM PSNR SSIM
Ideal 1 1 1 1 1 1 –
HiNet [4] 30.29 0.906 37.28 0.97 30.65 0.894 88.7
DerainNet [8] 22.77 0.810 27.03 0.884 14.92 0.592 –
JORDER [23] 21.09 0.753 36.61 0.974 26.54 0.835 –
JORDER-E [22] 27.08 0.872 37.10 0.979 24.54 0.802 4.17
SEMI [21] 22.35 0.788 25.03 0.842 16.56 0.486 –
DIDMDN [27] 22.56 0.818 25.23 0.741 17.35 0.524 0.372
UMRL [26] 24.41 0.829 29.18 0.923 26.01 0.832 0.984
RESCAN [12] 25.00 0.835 29.80 0.881 26.36 0.786 0.150
PreNet [17] 24.81 0.851 32.44 0.950 26.77 0.858 0.169
DRT (Ours) 27.02 0.847 37.61 0.948 29.47 0.846 1.18

network on the other two data sets. The training process is
slightly different for ablation studies, discussed in the fol-
lowing sections. A single RTX 2070 super graphics card
with 8GB memory is used for the training. We use random
cropping with a crop size, 56⇥56, and random horizontal
flipping on the training set to perform data augmentation.
We choose the Adam optimizer for all training processes.
The batch size is eight, and the initial learning rate is fixed
to 1e�4. During the fine-tuning stage, the learning rate is
adjusted to a value between 1e�5 and 1e�6. The network
is trained until the error does not drop for 100 epochs, or
the error only decreases by 1e�3 in the last 50 epochs. The
best model we obtained is trained for 4600 epochs, and fur-
ther training on this model leads to overfitting. Since many
other transformer-based networks consume a large amount
of data during training, we also tried a more extensive data
set, Rain 13k [9], a mixture of different derain data set that
contains a total of 13712 rainy-clean image pairs. However,
we did not see any significant change in the performance of
the networks. A small data set is sufficient for this model.

4.3. Quantitative results
The PSNRs and SSIMs of the best performing DRT

model evaluated on three data sets and the results of com-
parisons with the other state of the arts are shown in Table 1.
Our results are in bold font for better visualization.

For Rain100L, our performance exceeds all methods
listed in Table 1 by at least 0.33db under the PSNR met-
ric. For the same metric, our method’s performances ranked
second on the Test100 and Rain100H data sets. Simi-
larly, DRT’s results ranked second on the Rain100L under
the SSIM metric. On the other hand, our method is very
lightweight with respect to the number of parameters used,

Table 2. MACs and memory usages of different methods. DRT
(displayed in bold) consumes the least amount of MACs while still
enjoying a very small memory usage.

Methods Input Dim
(C⇥H⇥W)

Input Size
(MB)

MAC
(G)

Size
(MB)

HiNet 3⇥336⇥336 1.29 293.79 2659.96
PreNet 3⇥336⇥336 1.29 114.13 417.96

DRT (Ours) 3⇥336⇥336 1.29 56.51 587.19

as seen in Table 1. Specifically, DRT only uses ⇠ 1.3 %
of the number of parameters compared to HiNet. Note for
early methods that did not release the source code; we omit
their parameters in the table. In general, there is a trade-off
between the number of parameters and the derain perfor-
mance. Refer to Figure 5 for a visualization of this trade-
off. Models with a large number of parameters are ignored
in this graph for better visualization. Methods closer to the
upper-left corner tend to balance the number of parameters
and the derain result and vice versa. DRT balances this
trade-off well by being the closest to the upper-left corner,
whereas methods such as Jorder-E and HiNet obtain good
performance with the cost of large network sizes. Other
methods may use fewer parameters but cannot achieve de-
rain results as good as DRT. We further provide a fixed input
to HiNet, PreNet, and DRT to calculate their correspond-
ing multiplier-accumulator operations (MACs) (this metric
is also used by HiNet) and the amount of memory needed
to store the network and perform a forward and backward
passing. The results are shown in Table 2. DRT consumes
the least amount of MACs while enjoying roughly 4.5 times
less memory usage than HiNet.
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Figure 5. Number of Parameters vs. PSNR of different meth-
ods evaluated on the Rain100L data set. Methods locate towards
the upper-left corner of the figure has better trade off between the
number of parameters used and the derain performance. Models
with large number of parameters are ignored in this graph.

4.4. Qualitative results
We select visual outcomes of different methods evalu-

ated on Test100, Rain100L and Rain100H and present them
in Figure 3, Figure 4 and Figure 1 respectively. These im-
ages are chosen to show the deraining performance of dif-
ferent rain types. In Figure 3, the rain density is high, but
each rain streak is very small. DRT is able to remove most
of these rain streaks, whereas Hi-Net ignores many of them.
Note that there is a tone shift in the background of the input
and the background of the ground truth (GT) images. Since
the training data do not consider background color changes,
our restored image cannot recover the original tone. In Fig-
ure 4, other methods seem to interpret some rain streaks as
parts of the land or the cloud and hence cannot fully remove
these rains, whereas DRT can remove almost all of them. In
Figure 1, we can see that artifacts are present in the smoke
produced from the train, and artifacts exist in the smoke
for images produced by Jorder and Hi-Net. Our model and
PreNet give a better reconstruction of these complex soft-
edge forms. Lastly, we also present a realistic derain out-
come as seen in Figure 6. Compared to Hi-Net, DRT can
remove most of these rains, as seen in the zoomed-in pic-
tures. Note for the realistic image that the haze caused by
rains remains expected since the training data does not con-
sider a mixture of haze and rain.

4.5. Hyper-parameter Tuning
We found out that the most critical design choice is re-

ducing the patch size used by STBs. The original Swin
transformer block sets the patch size to 4. We experience
a significant increase in PSNR when reducing the patch

Test100 Input Hi-Net DRT (Ours)

Figure 6. A realistic rainy image is presented here and DRT
successfully removes all the rain streaks whereas Hi-Net ignores
many of them.

size to one. This shows the importance of considering local
pixel information in image deraining. Furthermore, we also
found it beneficial to keep the input dimension (i.e., do not
perform any up-sampling or down-sampling to the input)
throughout the entire network. Since single image derain-
ing is essentially a dense prediction task, these two design
choices ensure there is no loss of pixel-level information for
the network to infer. Other hyper-parameters of the model
are also tuned extensively, and we summarise them here.
As mentioned before, we did not find any impact on the
use of the shift-window approach from the original Swin
transformer; this is likely due to the fact that we have used
convolutions at the end of each RTB and local positional en-
coding for each STB to consider both local and global po-
sitional information whereas the shift-window approach is
proposed to solve the loss of global information in the orig-
inal transformer. Similarly, we tried to increase the depth
of the transformer’s working dimension from 96 to 180, but
there is no improvement in performance. We tried to drop
the residual connection between the input and the output,
but no improvement was observed. This is likely because
residual connections limit the inference stage to detect rain
streaks, which occupy a small portion of information in the
input image.

4.6. Ablation Studies
We then perform an ablation study on the essential de-

sign features of the DRT, namely, the number of RTBs (N ),
the number of STBs, and the number of recursive calls
on STBs (L). During this study, each model is trained
on Rain100L from scratch with a similar training proce-
dure. All other hyper-parameters not included in the ab-
lation study are fixed on the optimal network structure. The
evaluation of each model is performed on the Rain100L data
set. The number of parameters and the PSNR for each eval-
uation is listed in Table 3 with the best model displayed
in the last row. As seen in the table, the first two rows
study the impact of the number of RTBs concerning the
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Table 3. Ablation Studies of DRT Variants on Rain100L. The
model still performs well when reducing the number of STBs in
each RTB to one while using fewer parameters (eighth row). With-
out any recursion, the performance drops dramatically. The best
configuration is displayed in bold.

N L STBs Params (M) PSNR
3 3 2 0.591 10.93
9 3 2 1.77 10.25
6 1 2 1.18 6.072
6 2 2 1.18 19.61
6 4 2 1.18 24.08
8 2 2 1.57 14.88
6 3 1 0.841 35.55
6 3 3 1.52 36.96
6 2 3 1.18 37.61

Table 4. PSNR results of different methods on Snow100K. Our
results showing in bold consistently perform best or second best.

Methods Snow100K-S Snow100K-M Snow100K-L
DehazeNet [2] 24.96 24.16 22.62
DeepLab [5] 25.95 24.36 21.29
DesnowNet [14] 32.33 30.86 27.17
DRT (Ours) 32.15 31.20 28.04

best DRT model; however, corresponding low PSNR re-
sults show that both increasing and decreasing the number
of RTBs dramatically limits the performance of DRT. Row
three to five studies the influence of the number of recursive
calls of STBs on the performance of DRT. Once again, nei-
ther increasing nor decreasing the number of calls can boost
the derain performance of DRT. Note that having only one
recursive call refers to a variant of DRT without any recur-
sion. However, its performance is the worst among all other
variants, which shows the importance of recursions in the
design. We then tune both the number of RTBs and the
number of recursive calls simultaneously, but the result is
not good. Hence, we conclude that having six RTBs and
three recursive calls is essential for a promising derain per-
formance. Contrasting to this, the second and third last row
of Table 3 indicate, that changes in the number of STBs
do not influence the derain result much. It is worth noting
that having just one STB lowers the number of parameters
from 1.18M to below a million, 0.841M, while still keeping
a good derain outcome.

4.7. Results on Single Image Desnowing
We further test DRT’s performance on the task of sin-

gle image desnowing to empirically show its capability in
solving different image restoration tasks. The best model is
trained on the Snow100K data set [14] with the same train-
ing procedure as before. The model is then tested on the
corresponding three data sets provided by Snow100K; each

Input Snow Mask

Ours GT

Figure 7. A sample visual result drawn from the Snow100K-L. As
seen in the input and mask images that snows are characterised by
different underlying functions with respect to rain streaks. DRT
successfully removes mixture of dense snows from the input.

consists of one snow type. The PSNR results of different
methods are shown in Table 4. Our model’s performance
ranks either the first or the second among these methods.
We also display a sample of desnow visual results with the
corresponding input, output, and mask images in Figure 7.
Although the snow in the input image is dense, DRT can
remove most of them and restore a clean background that is
very close to the ground truth. Rain streaks and snowflakes
can be very different both physically and visually, which
means they require different functions to be removed; this
study shows that upon training, DRT is not restricted to sin-
gle image deraining but can also be well applied to other
fields.

5. Conclusion

Transformer-based networks are often computationally
heavy. We utilize the local window-based self-attention
mechanism, the residual, and the recursive connection to
achieve rain streak removal with a lightweight architecture
for image deraining. It performs the best on the Rain100L
data set and maintains top performances for other data sets.
Due to its simple structure, it uses a small number of pa-
rameters while relying on less computing resources. Since
there is no deliberate design for removing rain streaks in
the model, we show that it can be applied to desnowing and
potentially to other image reconstruction tasks.
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