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Abstract

Most of existing dehazing algorithms are unable to deal
with nighttime hazy scenarios well due to complex degraded
factors such as non-uniform illumination, low light and
glows. To obtain high-quality image under nighttime haze
imaging conditions, we present an effective single nighttime
image dehazing framework based on a variational decom-
position model to simultaneously address these undesirable
issues. First, a variational decomposition model consisting
of three regularization terms is proposed to simultaneously
decompose a nighttime hazy image into a structure layer,
a detail layer and a noise layer. Concretely, we employ �1
norm to constrain the structure component, adopt �0 spar-
sity term to enforce the piece-wise continuous of the detail
layer, and use �2 norm to separate the noise layer. Next, the
structure layer is recovered by means of inversing the physi-
cal model and the detail layers are revealed in a multi-scale
gradient enhancement manner. Finally, the dehazed struc-
ture layer and the enhanced detail layers are integrated into
a haze-free image. Experimental results show that the pro-
posed framework achieves superior performance on night-
time haze removal and noise suppression compared with
several state-of-the-art dehazing techniques.

1. Introduction
In contrast to daytime haze imaging conditions, the

nighttime illumination is dominated by active, artificial

light sources such as street and neon lights and these lights

may have low illumination and yield diverse colors. There-

fore, outdoor images or videos acquired under nighttime

hazy scenes usually are affected by more complex degraded

factors such as haze interference, texture blurring, glow ef-

fects, color distortion and noise disturbance. To ensure the
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Figure 1. (a) Input nighttime hazy image. (b)-(d) are dehazing re-

sults generated by DCP [10], MSCNN [30] and ours respectively.

Daytime dehazing methods fail to deal with nighttime hazy scenes.

performance of outdoor computer vision applications under

nighttime hazy scenarios, it is significant to develop special-

ized dehazing algorithm for nighttime hazy images.

To the best of our knowledge, great achievements have

been made in the field of daytime image dehazing over

the past decades. Most of existing daytime dehazing al-

gorithms can be divided into two categories: prior-based

methods [3, 4, 8, 10, 13, 14, 42] and learning-based meth-

ods [5–7, 18, 19, 28–32, 34, 36]. Despite achieving pleasant

results at daytime scenes, these methods are not capable of

improving the quality of nighttime hazy images, depicted in

Fig. 1. This is due to the fact that there exists differences on

degradation characteristics between nighttime hazy images

and daytime hazy images.

To circumvent this challenging issue, some works have

been devoted to propose dehazing techniques focusing on

nighttime hazy images. Pei and Lee [27] make use of a color

transfer method to convert the airlight color from a “blue

shift” to a “grayish” by referring to the color characteristics

of a daytime hazy image. After mitigating the color dis-

tortion, they further adopt traditional prior-based dehazing

strategy to remove the haze. Considering the non-uniform

illumination from artificial light sources, Zhang et al. [40]

modified the atmospheric scattering model [17] by replac-

ing the constant atmospheric light with pointwise variables
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Figure 2. Overview of proposed nighttime image dehazing framework.

for achieving light compensation, color correction and haze

removal. To diminish the glow effects, the glow layer is

removed in [21] by using relative smoothness constraints.

Base on a new imaging model [40], Zhang et al. [39] de-

velop the maximum reflection prior to estimate key param-

eters, and consequently produce a haze-free image. Mean-

while, a faster approximated parameters estimation method

is also given in [39]. From the viewpoint of image fu-

sion, Yu et al. [38] introduce a pixel-wise alpha blending

method to estimate model-based parameters. In [41], Zhang

et al. generate the first synthetic nighttime hazy images

benchmark dataset and also provide a optimal-scale fusion

method to remove the color cast and nighttime haze.

Although these above methods can improve the perfor-

mance of nighttime hazy images in visibility, colors and

noise suppression, they fail to consider the noise amplifi-

cation in the process of nighttime image dehazing and pro-

vide a comprehensive nighttime image dehazing solution.

In summary, existing nighttime dehazing techniques have

following problems:

Visual quality: The overall visual quality of recovered

results generated by existing approaches is unnatural and

limited because these methods only consider partial degra-

dation factors such as color distortion, glow effects and

nighttime haze. For instance, Li et al. [21] only take the

glows and nighttime haze into account but ignore the bright-

ness adjustment. Similarly, the glow effects from multiple

artificial light sources are also neglected in [39, 40]. Owing

to these issues, existing methods may have limited perfor-

mance of the visual quality.

Noise suppression: Noise is an inevitable factor in real-

world nighttime hazy scenarios, which will be amplified in

the process of enhancement or restoration. Because exist-

ing enhancement methods cannot effectively distinguish the

details and noises of the nighttime hazy images, the hidden

noises will be amplified while details enhancement. For the

restoration methods, the problem of noise amplification is

especially obvious for the regions with lower transmission

t(x) due to dividing by t(x) in the process of model in-

versing. Therefore, noise suppression should be conducted

while nighttime image dehazing.

To compensate for the aforementioned deficiencies, in

this paper, we propose a multi-purpose oriented single

nighttime image dehazing framework which can simulta-

neously handle multiple degradation factors such as glow

effects, color distortion, brightness adjustment, haze inter-

ference, detail blurring, noise amplification and so on. The

main contributions of this paper are summarized as follows:

• We fully consider multiple degradation factors of

nighttime hazy scenes and develop a comprehensive

single nighttime dehazing solution to produce a high-

quality haze-free image with more details and less

noises. Experiments demonstrate the proposed frame-

work outperforms several state-of-the-art specialized

dehazing techniques.

• A variational decomposition model is proposed to de-

compose a nighttime hazy image into a structure layer,

a detail layer and a noise layer. Specifically, the pro-

posed model includes three hybrid regularization terms

namely �1-�0-�2 norm to enforce the structure part, the

detail part and the noise part, respectively, which can

differentiate the details and the noises well.

• In order to further enhance the details and suppress

the noises simultaneously, the multi-scale decomposi-

tion strategy is used in the proposed framework. Con-

cretely, we further decompose the dehazed structure

layer into a base layer and a detail layer and set dif-

ferent coefficients to enhance two detail layers with

different attributes in the gradient domain, which can

suppress the amplified noises in the process of struc-

ture dehazing while enhancing the details.

2. Related Work
According to the dominate imaging light sources, ex-

isting dehazing approaches are roughly divided into two

categories: daytime dehazing methods [3–8, 10, 13, 14, 18,

19, 24, 28–32, 34, 36, 42] and nighttime dehazing meth-

ods [1, 2, 21, 23, 26, 27, 37–41].
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Daytime Dehazing Methods: Early dehazing meth-

ods [3, 4, 8, 10, 13, 14, 42] usually rely on the atmospheric

scattering model and the hand-crafted priors to estimate the

unknown parameters, namely the transmission t(x) and the

atmospheric light A. For example, He et al. [10] develop

a novel prior called dark channel prior (DCP) based on

the statistical analysis of massive outdoor haze-free images.

Using this prior, the physical model is inversed to obtain the

clean image. Subsequently, some effective human-selected

priors are presented for recovering haze-free images such as

color-lines [8], color attenuation prior [42], haze-lines [3],

color ellipsoid prior [4], region line prior [13] and more.

However, these prior-based methods may not always hold in

case of the complex real-world hazy scenes. To overcome

hand-designed priors dependency, numerous deep learn-

ing based dehazing networks [5–7, 18, 19, 28–32, 34, 36]

are proposed to learn the mapping relationship from hazy

images to unknown parameters or haze-free images. De-

hazeNet [5] and MSCNN [30] are first devised to predict

the transmission and then the haze-free images can be ac-

quired by substituting the estimated parameters provided by

dehazing networks into the atmospheric scattering model.

Li et al. [18] present an all-in-one dehazing network dubbed

as AOD-Net that learns t(x) and A jointly through a de-

signed K estimation module, which achieves haze removal

in an end-to-end fashion. Afterwards, various end-to-end

dehazing networks, such as GFN [31], PDN [36], FFA-

Net [28], MSBDN [7] DA-Net [32], PSD-Net [6] and more,

have been developed to directly learn hazy-to-clear image

translation. All of these aforementioned methods can han-

dle daytime hazy images well, but they show limited ca-

pability of improving performance for nighttime hazy im-

ages, as depicted in Fig. 1. This is because that the night-

time hazy images are deteriorated by multiple degraded

factors (non-uniform illumination, haze interference, low-

light, glow effects, etc.) compared with daytime hazy im-

ages and the classic atmospheric atmospheric model cannot

explain these degraded features.

Nighttime Dehazing Methods: To our knowledge, less

progress on nighttime dehazing has been made than daytime

dehazing. Pei and Lee [27] exploit the color transfer tech-

nology to convert the airlight color from a “blushift” to a

“grayish” and adopt the DCP to remove the nighttime haze.

However, this method usually needs a reference image for

color transfer, which is not well-suited for real applications.

From the viewpoint of image fusion, Ancuti et al. [1] devise

a multi-scale fusion approach to enhance nighttime hazy

images through using several inputs derived from the in-

put image. Taking the non-uniform imaging light sources

into account, a patch-based method [2] is presented for at-

mospheric light estimation. Yu et al. [38] propose a pixel-

wise alpha blending fusion method to estimate the trans-

mission map. Nevertheless, the noises are amplified in the

results obtained by fusion-based while enhancing the night-

time hazy images. Starting from the perspective of model-

based, Zhang et al. [40] build a new imaging model for

nighttime haze condition considering the degraded factors

caused by non-uniform artificial light sources and conduct

light compensation and color correction prior to dehazing.

This method can improve the contrast of the nighttime hazy

image, but the results look unnatural. Based on this model,

a prior called maximum reflectance prior (MRP) is devised

to estimate the ambient illumination. Li et al. [21] take the

glow effects into account and add a glow term into the tra-

ditional atmospheric scattering model. Leveraging the de-

composition strategy, Liu et al. [23] devise a linear model

to describe four parts of a nighttime hazy image and then

propose a weighted-�2 energy function to separate the use-

less noises and glows. More recently, deep learning based

networks [16, 41] are proposed for solving the problem of

nighttime image dehazing. For instance, Koo et al. [16] pro-

pose a glow-decomposition network based on the generative

adversarial network to alleviate the glow effects. Zhang et
al. [41] develop a synthetic benchmark and an encoder-

decoder architecture consisting of a MobileNetv2 backbone

as the encoder and a fully convolution decoder for remov-

ing the nighttime haze. In summary, these above specialized

nighttime dehazing methods fail to provide a comprehen-

sive solution for nighttime image dehazing.

3. Proposed Method

On the basis of the linear decomposition model [23], a

nighttime hazy image I (x) can be described as a linear

combination of four parts: a structure layer S (x) , a detail

layer D (x) , a noise layer N (x) and a glow layer G (x):

I (x) = S (x) +D (x) +N (x) +G (x) (1)

To correct color distortions and alleviate glow effects

prior to dehazing, the glow term is first removed based on

the method [21] to acquire the glow-free image H .

3.1. Variational Decomposition Model

After glow removal, we propose a variational decompo-

sition model consisting of hybrid �0-�1-�2 norm regulariza-

tion terms to simultaneously estimate the structure S, the

detail D and the noise N. The matrix-vector formulation of

the energy optimization function is expressed as follows:

argmin
S,D,N

‖S+D+N−H‖22 + α‖∇S‖1
+β‖∇D−∇H‖0 + δ ‖N‖22

(2)

where α, β and δ are positive that control the balance of

different regularization terms, ‖·‖p denotes the p-norm and

∇ represents first-order differential operator. In (2), the first
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term is the data fidelity term that constrains the distance be-

tween the estimated S+D+N and H and the second term

considers the piece-wise smoothness of the structure part.

The third term enforces the non-zero gradients between D
and H at the same position for preserving structural edges.

The overall noise intensity is constrained in the last term for

noise suppression.

The main contribution of the proposed variational model

is to use hybrid regularization terms in a unified way, result-

ing in providing a structure layer, a structure-aware detail

layer and a noise layer effectively. Specifically, owing to

the excellent effectiveness of �0 gradient sparsity constraint

in edge preserving [35], tone mapping [22] and low-light

enhancement [12], we employ it to constrain non-zero gra-

dients of D and H for acquiring structural edges of the in-

put image and reducing tiny edges, which is conductive to

distinguishing the details and noises and further achieving

noise suppression while enhancing details.

3.2. Numerical Solver

To solving the non-convex optimization problem (2), we

substitute two auxiliary variables T and L into (2) and the

objective function can be rewritten as follows:

argmin
S,D,N

‖S+D+N−H‖22 + α‖T‖1 + β‖L‖0 + δ ‖N‖22
s.t. T = ∇S,L = ∇D−∇H

(3)

Then, two Lagrange multipliers Z1 and Z2 are intro-

duced for removing the equality constraint and we can have:

L (S,D,N,T,L,Z1,Z2) = ‖S+D+N−H‖22
+α‖T‖1 + β‖L‖0 + δ ‖N‖22
+Φ(Z1,T−∇S) + Φ (Z2,L−∇D+∇H)

(4)

where Φ (A,B) = 〈A,B〉 + μ
2 ‖B‖22 and 〈·, ·〉 stands for

the matrix inner product. The objective function (4) can

be solved by updating each variable iteratively while fixing

other variables. Next, we give the solutions for each sub-

problem at k-th iteration.

S sub-problem: Collecting the terms related to S, we

can have the following objective function:

argmin
S

∥∥S+Dk +Nk −H
∥∥2
2
+Φ

(
Zk

1 ,T
k −∇S

)
(5)

By solving the classic least squares problem (5), Sk+1

can be calculated using 2D FFT techniques:

Sk+1 = F−1

⎛
⎜⎝ 2F

(
H−Dk −Nk

)
+ μkM1

2 + μk
∑

d∈{h,v}
F∗ (Gd) ◦ F (Gd)

⎞
⎟⎠ (6)

where M1 =
∑

d∈{h,v}
F∗ (Gd) ◦ F

(
Tk + Zk

1

/
μk

)
and G

represents the discrete gradient operator, containing Gh and

Gv . In addition, F (·) is 2D FFT operator, F−1 (·) and

F∗ (·) are the 2D inverse FFT and complex conjugate of

F (·), respectively. The operator “◦” performs in a pixel-

wise multiplication manner.

D sub-problem: Ignoring the terms unrelated to D, the

objective function (4) becomes:

argmin
D

∥∥Sk+1 +D+Nk −H
∥∥2
2

+Φ
(
Zk

2 ,L
k −∇D+∇H

) (7)

Similarly, we solve (7) by differentiating it with regard

to D and setting it to 0:

Dk+1 = F−1

⎛
⎜⎝ 2F

(
H− Sk+1 −Nk

)
+ μkM2

2 + μk
∑

d∈{h,v}
F∗ (Gd) ◦ F (Gd)

⎞
⎟⎠ (8)

where M2 =
∑

d∈{h,v}
F∗ (Gd) ◦ F

(
Lk +∇H+ Zk

2

/
μk

)
.

N sub-problem: Dropping the terms unrelated to N,

Nk+1 can be solved as follows:

Nk+1 =
(
H− Sk+1 −Dk+1

)/
(1 + δ) (9)

T sub-problem: Neglecting the terms irrelevant to T,

we can obtain:

argmin
T

= α‖T‖1 +Φ
(
Zk

1 ,T−∇Sk+1
)

(10)

Then, we perform the shrinkage operation to achieve the

closed form solution of (10):

Tk+1 = Tβ/μk

(
∇Sk+1 − Zk

1

/
μk

)
(11)

where Tt (x) = sign (x)max (|x| − t, 0).
L sub-problem: Collecting the L involved terms

from (4) leads to the following optimization problem:

argmin
L

= β‖L‖0 +Φ
(
Zk

2 ,L−∇Dk+1 +∇H
)

(12)

By analyzing [22, 35], we can optimize the above func-

tion (12) in a pre-entry fashion and the solution of Lk+1
j at

entry j is formulated as follows:

Lk+1
j =

{
0 , if

(
Rk

j

)2 ≤ 2β
/
μk

Rk
j , otherwise

(13)

where Rk
j =

(
∇Dk+1 −∇H− Zk

2

/
μk

)
j
, j = 1, . . . , 2N

and N stands for the total number of pixels within the im-

age.

Updating Z1, Z2 and μ: The updating of parameters

can be done through:

Zk+1
1 = Zk

1 + μk
(
Tk+1 −∇Sk+1

)
Zk+1

2 = Zk
2 + μk

(
Lk+1 −∇Dk+1 +∇H

)
μk+1 = 22μk

(14)

The entire iteration is stopped when the maximal number

of iterations K is achieved (K = 15).
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Algorithm 1 Solution of Proposed Model (2)

Input: pre-processed image H, parameters α, β, and δ,

maximum iterations K.

Initialization: R0 = t0 (x), N0 = 0, k = 0.

1: for k = 1 to K do
2: Update Sk+1 using (6);

3: Update Dk+1 using (8);

4: Update Nk+1 using (9);

5: Update Tk+1 using (11);

6: Update Lk+1 using (13);

7: Update Zk+1
1 , Zk+1

2 and μk using (14);

8: End
Output: Final Sk, Dk, and Nk.

3.3. Dehazing on Structure Layer

Because the research [15] have revealed that the hazes

usually affect the low-frequency part of hazy images, we

apply the dehazing operation for structure layer based on

improved atmospheric scattering model. Considering the

illumination dominated by artificial light sources, the con-

stant atmospheric light is replaced with the spatially vary-

ing variable A (x) and the restoration of structure layer is

achieved by inversing the physical model:

S′ (x) =
S (x)−A (x)

max (t (x) , t0)
+A (x) (15)

where the varying atmospheric light is assumed as the max-

imum pixel value locally and the transmission map is cal-

culated based on dark channel prior [10] and guided image

filtering [11].

3.4. Decomposition on Dehazed Structure Layer

To improve the nighttime dehazing results further, we

make use of the decomposition model based on total vari-

ation [20] to provide a piece-wise smoothness base layer

and a piece-wise constant detail layer. The base layer B is

obtained by solving the following optimization problem:

argmin
B

‖B− S′‖22 + λ‖∇B‖1 (16)

Then, the detail layer is computed by subtracting B from

S′. To differentiate two detail layers from (2) and (16), we

mark them as D1 and D2, respectively.

By leveraging multi-scale scheme, different attributes

of image details are captured into the corresponding layer

and we control different amplification coefficients to handle

them, which can not only improve prominent structures and

enhance the fine details but also suppress the undesirable

noises.

3.5. Multi-scale Enhancement

Due to the characteristics of poor illumination of the base

layer, we apply the gamma correction (1/2.2) on the base

layer to improve the brightness for highlight the structures.

In addition, inspired by [9, 23, 25], two detail layers are

enhanced by manipulating its gradient field without intro-

ducing halo artifacts. Usually, the mean transmission of a

hazy image reflects its overall degradation degree and the

smaller value of t leads to the lower visibility. Therefore,

the reciprocal of the average transmission is considered as

the enhancement coefficients and the manipulated gradients

of each detail layer are as follows:

∇D′
i =

ωi

mean (t)
∇Di (17)

where i = 1, 2 and ωi is the strength factor. From (15), we

find that the tiny noises may be amplified in the process of

dehazing especially for the region with the smaller t within

the image and therefore the value of strength factor ω2 is

generally smaller than ω1 for mitigating the noises. Empir-

ically, we set ω1 and ω2 as 1.0 and 0.5, respectively.

Finally, the detail layers D′
i are reconstructed by solving

Poisson equation [9] and thus the nighttime dehazed output

is obtained by:

O = B′ +D′
1 +D′

2 (18)

4. Experiments
In order to prove the effectiveness of the proposed frame-

work, we compare it with several professional nighttime

dehazing methods on real-world and synthetic images, in-

cluding NDIM [40], GS [21], MRP [39], MRP Faster [39],

and OSFD [41]. GS [21], and our method are conducted

using MATLAB R2019a and other methods are performed

using the executable code from authors’ website on a PC

with Intel Core i5-8350U CPU and 16GB RAM. In the pro-

posed framework, we empirically set the parameters α, β,

δ and λ as 10−2, 10−4, 10−2 and 10−2, respectively. For

the color nighttime hazy images, the proposed variational

decomposition model is employed for the V-channel in the

HSV color space and then transform it back to the RGB

color space.

4.1. Qualitative Comparisons on Real-world Images

As can be seen in Fig. 3, the details in the results pro-

vided by NDIM [40] are revealed, but they look unnatural

and are vulnerable to the noises. GS [21] can mitigate the

glow effects around artificial light sources and remove the

nighttime haze. However, the ability of details recovery is

insufficient. The results of MRP [39] and MRP Faster [39]

seem to be too dim and the details in the low light region

are not recovered well. OSFD [41] severely suffers from
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(g)(a) (b) (c) (d) (e) (f)

Figure 3. Comparisons of state-of-the-art nighttime dehazing methods on real-world scenes. (a) Nighttime hazy images. (b) NDIM [40].

(c) GS [21]. (d) MRP [39]. (e) MRP Faster [39]. (f) OSFD [41]. (g) Ours.

glow effects around artificial light sources. In addition, the

unwanted noises are also boosted in the results generated by

five specialized approaches shown in the second and sixth

row of Fig. 3. In comparison, the proposed framework

achieves visually pleasant results in terms of details en-

hancement, noise suppression, illumination compensation

and haze removal.

4.2. Quantitative Comparisons on Synthetic Images

To further verify the performance of the proposed frame-

work, comparisons on synthetic images are also conducted.

First, five representative synthetic examples with different

haze thickness are selected from the latest released dataset

called “Nighttime Hazy Middlebury”(NHM) [41] to facili-

tate the comparison, depicted in Fig. 4. From Fig. 4(b)-(h),

NDIM [40] can improve the visibility and contrast of night-

time hazy images to a great extent, whereas the dehazed

results appear unnatural and uneven illumination. GS [21]

is not capable of compensating the brightness and the re-

sults look too dim. MRP and MPR Faster [39] can ef-

fectively remove the nighttime haze, but the glow effects

nearby the light sources are not alleviated. The details are

not recovered in the results yield by OSFD [41]. Moreover,

the aforementioned methods suffer from noise amplifica-

tion due to failing to consider the noise of nighttime hazy

images, depicted in the second and last row of Fig. 4. Over-

all, these algorithms cannot provide a comprehensive solu-

tion for nighttime image dehazing. In contrast to their ap-

proaches, the proposed framework can simultaneously im-

prove the contrast, compensate the brightness, suppress the
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E1

E2

E3

E4

E5

Figure 4. Comparisons of state-of-the-art nighttime dehazing methods on synthetic scenes. (a) Nighttime hazy images. (b) NDIM [40]. (c)

GS [21]. (d) MRP [39]. (e) MRP Faster [39]. (f) OSFD [41]. (g) Ours. (h) Ground truths.

noise and reveal the details.

In order to avoid the deviation of subjective evalua-

tion, two famous full-reference metrics, peak signal-to-

noise (PSNR) and structural similarity (SSIM) [33] are used

for quantitative comparisons. Table 1 reveals the evalua-

tion results on Fig. 4. From Table 1, our results achieve

best scores for PSNR and SSIM, which signifies the supe-

rior dehazing performance on nighttime hazy scenes. More-

over, the dataset NHM including 350 synthetic images with

different haze levels is also tested for assess the robustness

of the proposed framework. By analyzing Table 2, we can

conclude that the proposed method provides the best scores

quantitatively and shows the best performance on synthetic

dataset.

4.3. Noise Suppression

We evaluate the performance of the proposed framework

in the aspect of noise suppression. Fig. 5 shows the dehazed

results with different approaches. As observed in Fig. 5, the

noise hidden in the low-light regions is very intensive. Al-

though NDIM, GS, MRP, MRP Faster and OSFD can suffi-

ciently enhance the visibility of nighttime hazy images, the

hidden noise is also amplified. Our method provides pleas-

ant dehazed results with less noise.

4.4. Ablation Study

Table 3 reveals the significance of the proposed vari-

ational decomposition model and multi-scale decomposi-

tion strategy in the proposed framework. To verify the su-

perior of the proposed model, the weighted-�2 variational

model [23] instead of our model is used in the proposed

framework while keeping other operations unchanged. In

addition, we replace the multi-scale decomposition with

single scale for proving its effectiveness. We can intuitively

observe from Table 3 that the proposed model and the de-

vised multi-scale decomposition strategy make its own con-

tribution to the performance of the overall nighttime dehaz-

ing framework.

4.5. Convergence Speed of Proposed Model

Fig. 6 plots the average curves of errors of our model on

the synthetic dataset NHM. We can find from the curves that

the proposed variational model converges within 15 itera-

tions for the dataset NHM. The selected maximum number

of iterations is sufficient to produce excellent results.
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Table 1. Quantitative comparisons on synthetic nighttime hazy images in Fig. 4.

Examples
NDIM [40] GS [21] MRP [39] MRP Faster [39] OSFD [41] Our

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

E1 12.3621 0.6162 13.7171 0.6645 14.1856 0.7247 13.7692 0.6869 14.4284 0.7277 15.8444 0.7498
E2 14.6954 0.6829 14.9221 0.7145 14.8665 0.7400 15.8630 0.7332 14.3735 0.7488 16.6698 0.7895
E3 14.9046 0.6092 14.3896 0.6284 15.7950 0.6683 14.5727 0.6462 16.5706 0.6793 16.6678 0.6887
E4 12.9891 0.5956 14.7477 0.6447 14.0008 0.6617 14.2825 0.6465 14.1065 0.6753 15.7061 0.7013
E5 13.4413 0.6130 12.8841 0.6252 14.9017 0.6893 15.1977 0.6527 14.6146 0.6940 16.8963 0.7543

(a) (b) (c) (d) (e) (g)(f)

Figure 5. Comparisons of noise suppression. (a)-(g) are the input nighttime hazy images and dehazed results generated by NDIM [40],

GS [21], MRP [39], MRP Faster [39] OSFD [41] and ours, respectively.

Table 2. Quantitative comparisons on synthetic dataset NHM1.

Methods PSNR SSIM

NDIM [40] 12.4924 0.5752

GS [21] 11.8963 0.5899

MRP [39] 12.9928 0.6299

MRP Faster [39] 13.1847 0.6164

OSFD [41] 13.3027 0.6435

Our 13.6196 0.6734

Table 3. Comparisons on the dataset NHM for different variants.

Variants
w/o

proposed model

w/o

multi-scale strategy
Our

PSNR 13.5199 13.5792 13.6196
SSIM 0.6098 0.6706 0.6734

5. Conclusion

In this paper, we have proposed a comprehensive dehaz-

ing framework focusing on nighttime hazy images. Specif-

ically, a novel variational decomposition model and multi-

scale decomposition strategy are devised to decompose a

nighttime degraded image into a base layer and two detail

layers, which can simultaneously address multiple degrada-

tion issues of nighttime hazy images by using restoration

and gradient manipulation operations according to differ-

Figure 6. The average convergence curves of our model on NHM

ent attributes of image layers. Experiments verify that our

nighttime dehazing framework produces pleasant dehazing

results with more details and less noise, performing better

than other state-of-the-art specialized nighttime dehazing

approaches in both subjective and objective assessments.
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