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Abstract

The purpose of image inpainting is to recover scratches
and damaged areas using context information from remain-
ing parts. In recent years, thanks to the resurgence of con-
volutional neural networks (CNNs), image inpainting task
has made great breakthroughs. However, most of the work
consider insufficient types of mask, and their performance
will drop dramatically when encountering unseen masks. To
combat these challenges, we propose a simple yet general
method to solve this problem based on the LaMa image in-
painting framework [35], dubbed GLaMa. Our proposed
GLaMa can better capture different types of missing infor-
mation by using more types of masks. By incorporating
more degraded images in the training phase, we can ex-
pect to enhance the robustness of the model with respect
to various masks. In order to yield more reasonable re-
sults, we further introduce a frequency-based loss in addi-
tion to the traditional spatial reconstruction loss and ad-
versarial loss. In particular, we introduce an effective re-
construction loss both in the spatial and frequency domain
to reduce the chessboard effect and ripples in the recon-
structed image. Extensive experiments demonstrate that our
method can boost the performance over the original LaMa
method for each type of mask on FFHQ [18], ImageNet
[7], Places2 [42] and WikiArt [28] dataset. The proposed
GLaMa was ranked first in terms of PSNR, LPIPS [39] and
SSIM [34] in the NTIRE 2022 Image Inpainting Challenge
Track 1 Unsupervised [27].

1. Introduction
Image inpainting, also known as image completion, has

always been regarded as a challenge to fill the missing area
of the image. Image inpainting can deal with various prob-
lems encountered in the real world, such as removing ob-
jects in photos, repairing damaged photos [32] or expanding
photos. At the same time, image inpainting needs to main-
tain the coordination and semantic consistency between the
repaired area and remaining parts of the image. Therefore,
image inpainting also calls for strong generation ability.

*Corresponding author (jiangjunjun@hit.edu.cn).
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Figure 1. Comparison with the LaMa [31], GLaMa and two-stage
GLaMa for face Inpainting over some mask settings on FFHQ [18]
dataset in 1024× 1024 resolution.

Nowadays, it has become a fundamental research topic in
the field of computer vision and image processing society.

Thanks to the fast development of deep learning, the re-
covered results of these deep learning-based image inpaint-
ing approaches are getting better and better. Recent years,
most state-of-the-art approaches are mainly based on convo-
lutional neural networks or transformer. In the approaches
of [22, 35, 38, 40], they apply the convolutional neural net-
works for image inpainting, while other line of research
[33,37] leverages the transformer in image inpainting at the
low-resolution image space, and then introduces the GAN
based networks for high quality image generation. Suvorov
et al. [31] utilize the Fast Fourier Convolution (FFC) instead
of regular convolution to obtain features of global receptive
fields in frequency domain. Most of the current work based
on the semantic consistency (with the surrounding areas)
can handle the “background completion” or “object remov-
ing” task very well.

Generally, these methods can effectively deal with some
common image inpainting tasks. However, they still face
some challenges. The trained model needs to be able to
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Figure 2. Overview of our proposed GLaMa.

deal with degraded image with various forms of mask, such
as thin strokes, rectangle, and even extreme masks, because
we do not know what image degradation process we will en-
counter. This is a challenging task because most of methods
use specific masks for training, which may acquire poor re-
sults when meeting other masks that does not appear in the
training processes. Recently, Andreas et al. [24] address the
above issues. Some other diffusion models [29,30] can also
deal with this challenge. However, it does not mean that the
models based on convolutional neural networks (CNNs) or
transformer cannot solve this problem well. In this work,
we use more kinds of mask to enhance the robustness of the
model. As shown in Fig. 4 and 5, our method can generate
more realistic images.

When we visualize the spectra of real and fake images,
we find that the difference between spectra of real pictures
and fake images is obvious as shown in Fig. 3. It can be
seen that there are many obvious errors in the spectra of
the images generated by LaMa [31]. In addition, by look-
ing closely, we can find that there will be many distinctive
checkerboard effects and ripples on the images generated by
LaMa [31]. Based on these findings, we add the reconstruc-
tion loss in the frequency domain as a regularization term
to reduce the checkerboard effect and ripple of the gener-
ated image. We propose a joint spatial and frequency loss
to train our network. As shown in Fig. 3, our method can do
better in the frequency domain and produce more realistic
results at the same time.

To demonstrate our superiority, we compare our method
with state-of-the-art image inpainting approach [31] on
multiple datasets. As shown in Tabs. 1 and 2, our method
can boost the performance for each type of mask on FFHQ
[18], ImageNet [7], Places2 [42] and WikiArt [28] datasets
with the same network architecture and training epochs as
LaMa [31]. And it was also ranked first on metric PSNR,

LPIPS [39] and SSIM [34] in the NTIRE 2022 Image In-
painting Challenge Track 1 Unsupervised [27]. The main
contributions can be summarized as follows:

• We propose to explore the types of mask used in the
training process. At the same time, using our mask
generation strategy can effectively improve the results
of the model.

• We use joint spatial and frequency loss in spatial do-
main and frequency domain with a regular term to re-
construct the image.

• As demonstrated in the experiments, our method can
achieve significant performance improvements over
LaMa [31] without changing the model architecture.

2. Related Work
2.1. Image Inpainting

Early work of image inpainting [1–3, 6, 11] are model-
driven. They explore how to fill the missing information by
exploiting clues from the local patch or neighbor patches in
the input image.

Pathak et al. [26] propose the first deep learning image
inpainting method that utilizes the CNN with an encoder-
decoder architecture trained in the same way as GAN [10].
After that, a lot of methods based on CNN have been pro-
posed. Iizuka et al. [14] improve the performance by ex-
ploiting a local-global discriminator, while Yu et al. [21] uti-
lize a contextual attention model to model the long-distance
context correlations. Due to the mask has negative influence
on the results when using the regular convolution, several
work modify the convolution operator, introducing partial-
convolution [36] conv, gated-convolution [35]. [43] propose
a mask awareness method using cascaded refinement net-
work. Zeng et al. utilize “AOT Block” and “SoftGAN” to
enhance the generator and discriminator [38]. A new GAN
called “Co-Modulated GAN” combining conditional GAN
and modulated GAN is introduced in [41].

There are also some work focusing on the fusion of local
and global information. [22] utilizes feature equalization to
fuse local and global features. Suvorov et al. [31] introduce
the Fast Fourier Convolution (FFC) [5] and regular convolu-
tion to obtain features of global and local receptive fields in
the frequency domain. These methods based on CNN could
generate reasonable contents for masked regions.

In view of the dazzling performance of transformer ar-
chitecture in other tasks, some transformer based methods
have emerged recently. For example, Wan et al. [33] pro-
pose the first transformer based image inpainting method to
get the image prior and send the image prior to a CNN. To
incorporate the image prior, the approach of [37] designs a
bidirectional and autoregressive transformer. More recently,
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Figure 3. Visualization of the spectra of real and fake images. The spectra of images generated by our method is cleaner than the LaMa [31].
At the same time, the images of our method are more realistic and cleaner.

Dong et al. [8] design a transformer by edge auxiliaries to
acquire prior and send the prior with masking positional en-
coding to a LaMa [31] like network. These methods based
on transformer enjoy excellent performance compared with
CNN-based methods.

In addition, there is another line of research based on
diffusion model. SohlDickstein et al. [29] firstly utilize
early diffusion models for image inpainting, while Song
et al. [30] propose a score-based method using stochastic
differential equations for image generation. More recently,
Andreas et al. [24] propose a special model for image in-
painting task which is based on diffusion model.

2.2. Loss Functions

In the image restoration task, the most commonly used
reconstruction loss is L1 loss, L2 loss and Charbonnier
loss. Some image restoration methods also use perceptual
loss [16] and adversarial loss [10] to improve the perceptive
performance. But above-mentioned methods all focus on
the spatial domain reconstruction. In order to improve the
reconstructed image quality, optimization in the frequency
domain has gradually attracted researchers’ attention in re-
cent years. For example, spectral regularization is a prelim-
inary attempt [23]. More recently, Gal et al. [9] propose a
wavelet based image generation method. Jiang et al. [15]
introduce the focal frequency loss which focuses on hard
frequencies.Meanwhile, there are some other work [4, 17]
on image restoration in the frequency domain.

3. Our Method
3.1. Network Architecture

Fast Fourier Convolution (FFC) in introduced in [5] to
capture the global receptive field in the frequency domain.
Inspired by this work, Suvorov et al. [31] design a network
architecture called LaMa which achieves the state-of-the-art
results using FFC to capture the global information. Fol-
lowing these pioneering work, we use LaMa as our network
architecture. Like some other inpainting models, LaMa [31]
uses an AutoEncoder model to extract the image features.
The bottleneck module includes several FFC layers which
are based on a channel-wise Fast Fourier transform (FFT),
thus capturing global context information. The FFC layer
splits feature channels into two branches: the local branch
uses regular convolutions to obtain local features, while the
global branch leverages FFC to obtain global features.

3.2. Training with General Mask

Each training image x is from a training dataset superim-
posed by a synthetically generated mask. We train four dif-
ferent models for four datasets: FFHQ [18], ImageNet [7],
Places2 [42] and WikiArt [28], respectively. After a lot of
experiments, we find that the policy of mask generation no-
ticeably influences the performance of the inpainting model
as shown in Tab. 4.

We firstly try an aggressive large mask generation strat-
egy based on LaMa [31]. This strategy uniformly uses sam-
ples from polygonal strip dilated by random strokes and
rectangles of arbitrary aspect ratios. However, from the
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Figure 4. Comparison with the state-of-the-art method: LaMa [31] for Face Inpainting over seven mask settings on FFHQ [18] dataset.
The face images generated by our method are more realistic and have more details on the hair and facial features.

experimental results shown in Tab. 4, we can learn that
the model trained with this mask generation strategy ac-
quires poor results with the types of “Completion”, “Ex-
pand”, “Every n line” and “Nearest Neighbor” masks.

Subsequently, unlike the conventional practice, e.g.
DeepFillv2 [35] or LaMa [31], we utilize seven types of
mask generation strategies, “Completion”, “Expand”, “Ev-
ery n line”, “Nearest Neighbor”, “Thin Strokes”, “Medium
Strokes”, and “Thick Strokes”, to generate samples ran-
domly, which we call it General Mask generation strat-
egy. These generated masks include not only small narrow
masks, but also large-area masks. As shown in Tabs. 1 and
2, the model trained with General Mask generation strat-
egy performs better than original LaMa [31] with all seven
types of mask. This demonstrates that the diversity of de-
graded images can improve the robustness of the model to
face various types of mask.

3.3. Loss Functions

The inpainting problem is ambiguous, which means one
image that needs to be repaired might correspond to multi-
ple images. One way is introduce some constraints to alle-
viate this. In this paper, we will introduce a joint spatial and
frequency loss to regularize the optimization of our model,
which regularizes the reconstruction results from both the

spatial and frequency domains.
For the image inpainting task, the loss in the spatial do-

main is indispensable. First of all, we use L1 loss between
the unmasked regions in the spatial domain. It can be for-
mulated as:

L1 = ∥x− x̂∥1 ⊙ (1−M) (1)

where x and x̂ indicate the ground truth and predicted im-
ages respectively. M represents 0-1 mask (1 means masked
regions and 0 means no masked regions) and ⊙ means the
element-wise multiplication. Moreover, we use the high re-
ceptive field perceptual loss LPL. It can be formulated as:

LPL = [ϕPL(x)− ϕPL(x̂)]
2 (2)

where ϕ indicates a pretrained segmentation ResNet50 [12]
with dilated convolutions.

Denote LD the discriminator loss, LG the generator loss
and LP the gradient penalty, the adversarial loss can be for-
mulated as:

LD =− Ex[logD(x)]− Ex̂,M [logD(x̂)⊙ (1−M)]

− Ex̂,M [log(1−D(x̂))⊙M ]
(3)

Notably, we only regard features from masked regions as
fake samples in LD.
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Figure 5. Comparison with the state-of-the-art method: LaMa [31] for Inpainting over seven mask settings on ImageNet [7], Places2 [42]
and WikiArt [28] datasets. The fourth column is sampled from ImageNet [7] dataset. The first, third and sixth columns are sampled from
Places2 [42] dataset. The second, fifth and seventh columns are sampled from WikiArt [28] dataset.

LG = −Ex̂[logD(x̂)] (4)

LP = Ex ∥∇xD(x)∥2 (5)

Ladv = LD + LG + λPLP (6)

We also use the feature match loss Lfm, which is based
on L1 loss between discriminator features of true and fake
images, to stable the GAN training. Finally, the loss of
LaMa [31] can be written as:

LLaMa = λ1LL1 + λadvLadv + λfmLfm + λPLLPL

(7)
where λ1 = 10, λadv = 10, λPL = 100 and λfm = 30.

We find although LaMa [31] uses Fast Fourier Convolu-
tion, the model is not optimized in the frequency domain.
Therefore, the spectrum of the images generated by LaMa
[31] is defective, as shown in Fig. 3. With this in mind, we
take the focal frequency loss [31] to construct the frequency
fidelity term. Specifically, the focal frequency loss LFFL is
defined as follows:

LFFL =
1

MN

M−1∑
u=0

N−1∑
v=0

w(u, v)|Fr(u, v)− Ff (u, v)|2

(8)
where Fr represents 2D discrete Fourier transform of real
image (represents x here), and Ff represents 2D discrete

Fourier transform of fake image (represents x̂ here). The
matrix w(u, v) represents the weight for the spatial fre-
quency at coordinate (u, v), which is defined as:

w(u, v) = |Fr(u, v)− Ff (u, v)|α (9)

where α = 1. Furthermore, we find that the reconstructed
images of LaMa [31] always get obvious checkerboard ef-
fect and ripples with the mask of “Nearest Neighbor” and
“Every N Line”. Based on this finding, we introduce the
total variation loss, which is defined as: [29]:

LTV =
∑
i,j

((xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2)
β
2 (10)

where β = 2.
The final joint spatial and frequency loss function for our

inpainting model can be written as:

L = α1LTV + α2LFFL + α3LLaMa (11)

where α1 = 1, α2 = 1 and α3 = 1.

4. Experiments
4.1. Datasets and Metrics

In our experiments, we use FFHQ [18], ImageNet [7],
Places2 [42] and WikiArt [28] datasets, which contain vari-
ous kinds of images, to demonstrate the results. For FFHQ
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Datasets Methods LPIPS (↓)
Completion Expand NearesNeighbor ThinStrokes EveryNLines MediumStrokes ThickStrokes

Places2
LaMa 0.3302 0.6098 0.6511 0.0903 0.3125 0.1193 0.1374

Big LaMa 0.3298 0.6031 0.6473 0.0807 0.2788 0.1026 0.1266
GLaMa 0.3212 0.5923 0.2280 0.0890 0.0891 0.1088 0.0774

FFHQ
LaMa 0.3102 0.6089 0.6518 0.0976 0.312 0.1124 0.1307

Big LaMa 0.3048 0.5892 0.6081 0.1109 0.3067 0.1246 0.1331
GLaMa 0.2932 0.5532 0.2402 0.1121 0.1829 0.1269 0.1324

ImageNet
LaMa 0.3106 0.5877 0.6305 0.0768 0.2946 0.0997 0.1133

Big LaMa 0.3102 0.5834 0.6283 0.0607 0.2529 0.0815 0.1010
GLaMa 0.3009 0.5719 0.2061 0.0654 0.0651 0.0834 0.0859

WikiArt
LaMa 0.3517 0.6261 0.6711 0.1093 0.3317 0.1397 0.1582

Big LaMa 0.3498 0.6217 0.6673 0.1008 0.2889 0.1219 0.1439
GLaMa 0.3311 0.5989 0.2497 0.1065 0.0870 0.1244 0.0932

Table 1. LPIPS comparisons of different methods on the four datasets. The top two performing method is highlighted in red and blue.

Datasets Methods FID (↓)
Completion Expand NearestNeighbor ThinStrokes EveryNLines MediumStrokes ThickStrokes

Places2
LaMa 33.63 87.35 163.92 6.37 17.07 10.17 13.21

Big LaMa 30.76 81.73 167.31 5.74 14.04 9.18 12.08
GLaMa 29.98 68.74 8.16 6.29 2.05 10.02 13.03

FFHQ
LaMa 23.82 117.60 133.70 6.60 21.44 8.64 9.19

Big LaMa 23.32 111.91 131.72 5.89 20.01 6.68 7.54
GLaMa 20.37 89.70 7.65 6.10 6.21 7.65 8.09

ImageNet
LaMa 25.28 119.34 135.01 8.69 23.90 10.53 11.19

Big LaMa 25.31 110.78 131.47 7.53 22.17 8.77 9.98
GLaMa 22.91 91.78 9.78 8.06 8.21 9.24 10.01

WikiArt
LaMa 39.13 92.01 162.59 12.88 23.47 16.75 18.96

Big LaMa 36.76 86.18 153.31 11.18 20.62 15.81 17.04
GLaMa 35.72 74.51 12.08 11.89 8.03 16.23 17.87

Table 2. FID comparisons of different methods on the four datasets.

[18], we use about 60K face images as the training set and
2,000 other images as the validation. For Places2 [42], we
use about 1,800K images from various scenes as the train-
ing set and 3650 other images from validation set as the
validation. For ImageNet [7], we use about 1,000K images
as the training set and 2000 other images from validation
dataset as the validation set. And for WikiArt [28], we use
the whole training set and 2000 other images from valida-
tion set as the validation.

In the training stage for FFHQ [18], our images are re-
sized to 256×256 resolution. For the remaining three train-
ing datasets, we crop the images to 256×256 pixels. More-
over, we use the original size of the images in the validation
stage without cropping or resizing them.

We follow the established practice in recent image in-
painting literature and use Learned Perceptual Image Patch
Similarity (LPIPS) [39] and Frechet inception distance
(FID) [13] metrics. Compared to PSNR and SSIM [34],
LPIPS [39] and FID [13] are more suitable for measuring
performance of inpainting for large masks.

4.2. Implementation Details

For inpainting network [31], we followed LaMa [31] us-
ing a ResNet-like [12] architecture with 3 downsampling
blocks, 6-18 residual blocks, and 3 upsampling blocks. We
use Adam optimizer [20], with the fixed learning rates 0.001
and 0.0001 for inpainting and discriminator networks, re-
spectively. We set the hyper-parameters using the grid
search strategy on FFHQ dataset, which leds to the weight
values α1 = 1, α2 = 1, α3 = 1, α = 1, β = 2. The same
parameters are used for other three datasets for training. All
models are trained for 40 epochs with a batch size of 20,
on 8 NVidia V100 GPUs for approximately 72 hours. The
LaMa and Big LaMa [31] models used as baseline in the
Tabs. 1 and 2 were retrained with the same experimental
setups. Becaused LaMa and Big LaMa [31] and the results
are higher than the original LaMa and Big LaMa [31] model
in FFHQ [18] and Places2 [42] datasets.

4.3. Comparisons to the Baselines

We compare the proposed approach with the strong base-
lines (LaMa and Big LaMa [31]). For each dataset, we
validate the performance across seven types of mask. As
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shown in Tabs. 1 and 2, we can see that our GLaMa is
better than the original LaMa [31] especially for “Comple-
tion” mask, “Expand” mask, “Nearest Neighbor” mask and
“Every N Lines” mask. Compared with the images gen-
erated by LaMa, our images are more realistic with less
checkerboard effect and ripples, as shown in Fig. 3, 4 and
5. GLaMa also works better than Big LaMa [31] in most
types of mask with the same network architecture and train-
ing time as LaMa [31]. Meanwhile, our method that simply
using the General Mask generation strategy and joint spatial
and frequency loss can bring considerable improvements.

LLaMa LTV LFFL FID (↓) LPIPS (↓)
✓ 57.015 0.3382
✓ ✓ 22.363 0.2350
✓ ✓ ✓ 20.827 0.2253

Table 3. Ablation studies over the loss functions. Here, FID and
LPIPS values of the results are reported.

LaMa Mask LaMa Plus Mask General Mask FID (↓) LPIPS (↓)
✓ 49.015 0.3118

✓ 23.514 0.2448
✓ 20.827 0.2253

Table 4. Ablation studies over the mask generation methods.
LaMa Mask, LaMa Plus Mask represent using original LaMa,
LaMa with “Nearest Neighbour” and “Every n line”, respectively.
General Mask represents using our method.

4.4. Ablation Studies

The goal of the ablation studies is to carefully validate
the influence of different components of our method. To in-
vestigate the effectiveness of ours mask generation strategy
and losses, we conduct ablation experiments and the results
comparison are shown in Tabs. 3 and 4. All these results
are conducted on FFHQ [18] dataset.

Mask Generation Strategy. We verify that the General
Mask generation strategy is necessary in Tab. 4. LaMa
Mask and LaMa Plus Mask generation strategy represent
using LaMa original policy to generate mask (three types of
mask) and LaMa original policy with “Nearest Neighbour”
and “Every n line” to generate mask (five types of mask),
respectively. General Mask generation strategy represents
using our policy to generate mask (seven types of mask).
We can see from Tab. 4 that using General Mask genera-
tion strategy can greatly improve the model performance.
This demonstrates that the diversity of degraded images can
improve the robustness of the model to face various types
of mask.

Loss Functions. We experiment with the two proposed
losses in Tab. 3, where total variation loss [25] and focal
frequency loss [15] can boost the model performance. At

the same time, it can be seen from Fig. 3 that the spec-
trum of the image generated by GLaMa is more accurate
than LaMa [31] : ours spectrum is clean, while the spectrum
of LaMa is very noisy. These experimental results further
prove the superiority of our method.

Input

Ours

LaMa

GT

Figure 6. Visual comparisons with unseen masks.

4.5. Generalization of the Proposed Method

Generalization to the Masks. To verify the generalization
ability of our model for the masks that do not appear in the
training stage, we randomly generate some other kinds of
masks that are not in the seven kinds of masks. The mask
generation strategy will combine the samples from seven
kinds of masks and rectangular mask of arbitrary aspect ra-
tios to generate some other kinds of masks. As shown in
Fig. 6, GLaMa can generate high-quality images, while
the images generated by LaMa [31] are low-quality, which
proves that our method has strong generalization perfor-
mance. Hence one can see that, whether the masks are ap-
peared during the training stage, our model can recover the
target images very well.

Generalization to the Resolution. To further exploit the
reconstruction ability of different approaches, we also con-
duct some experiments when the input images are with
512 × 512 pixels (or higher resolution) while the training
images are with 256×256 pixels. It can be seen from Figs. 1
and 7 that LaMa [31] is not good at repairing the large-area
mask of high-resolution face. Some low-quality images
are generated with the high-resolution images and large-
scale masks. Since we use 256 × 256 images to train the
LaMa [31], the image with 256×256 pixels can be repaired
very well. Based on this finding, we design a two-stage
model. In the first stage, we use the original LaMa [31] to
generate the coarse image in 256 × 256 resolution. In the
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Figure 7. Some failed examples on the FFHQ [18] dataset.

Teams FFHQ
FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

VIP 115.922 0.433 17.144 0.649
AIIA (Ours) 9.823 0.239 25.316 0.814

HSSLAB 13.504 0.236 25.187 0.821
KwaiInpainting 21.345 0.239 25.060 0.838

ArtificiallyInspired 4.719 0.205 25.999 0.816
SIGMA 7.203 0.248 24.860 0.795

Teams Places2
FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

VIP 52.471 0.415 17.256 0.626
AIIA (Ours) 8.772 0.224 24.145 0.800

HSSLAB 9.861 0.227 24.345 0.798
KwaiInpainting 18.334 0.255 23.410 0.787

ArtificiallyInspired 7.544 0.225 23.248 0.777
SIGMA 11.496 0.270 22.562 0.748

Teams ImageNet
FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

VIP 50.898 0.403 17.450 0.626
AIIA (Ours) 10.007 0.207 25.226 0.800

HSSLAB 11.770 0.227 24.303 0.798
KwaiInpainting 18.854 0.249 23.804 0.787

ArtificiallyInspired 12.059 0.217 24.278 0.777
SIGMA 19.646 0.311 22.454 0.748

Teams WikiArt
FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

VIP 75.645 0.437 17.243 0.609
AIIA (Ours) 14.974 0.244 24.350 0.767

HSSLAB 14.986 0.254 24.257 0.752
KwaiInpainting 26.395 0.276 23.142 0.759

ArtificiallyInspired 8.524 0.248 23.799 0.758
SIGMA 14.125 0.286 22.717 0.720

Table 5. Performance comparisons of different methods on the
four datasets. Results are provided from the NTIRE 2022 Image
Inpainting challenge report [27].

second stage, we use bilinear to upsample the image and
then use another LaMa-like model to refine the upsampled
image. We can see from Fig. 1 that the two-stage model
called GLaMa-2stage can generate more realistic faces.

4.6. NTIRE 2022 Image Inpainting Challenge

This work is proposed to participate in the NTIRE 2022
Image Inpainting Challenge Track 1 Unsupervised [27].
The objective of this challenge is to obtain a mask agnostic
network solution capable of producing high-quality results
for the best perceptual quality with respect to the ground
truth. Our results for the NTIRE 2022 challenge [27] are
denoted as AIIA (our team’s name) to distinguish from the
other teams in Tab. 5. It can be seen that our method
goes significantly ahead of FID, LPIPS, PSNR and SSIM
for Places2 [42], ImageNet [7] and WikiArt [28] datasets.

5. Conclusion
This study explores the mask generation strategy in im-

age inpainting task. Moreover, we introduce a joint spa-
tial and frequency loss to reduce checkerboard effect and
ripples. The proposed GLaMa achieves significant perfor-
mance improvements over LaMa [31] without changing the
model architecture. At the same time, the proposed method
is more general and other methods can simply adopt the
strategies we have explored. Extensive ablation studies are
performed to validate the effectiveness of our method, and
comparative results on four public datasets demonstrates the
state-of-the-art performance of our method.

Limitations. There are also some failed examples when the
input image are 512 × 512 pixels, as shown in Fig. 7. The
results generated by GLaMa-2stage are sometimes blurred
and unreasonable. LaMa [31] and GLaMa also generate
low-quality and unpleasant results. In the future, we will
incorporate the StyleGAN prior [19] to assist the image in-
painting task.
Acknowledgments: The research was supported by the Na-
tional Natural Science Foundation of China (61971165),
in part by the Fundamental Research Funds for the Cen-
tral Universities (FRFCU5710050119), the Natural Science
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