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Abstract

This paper reviews the NTIRE 2022 challenge on learn-
ing the super-Resolution space. This challenge aims to raise
awareness that the super-resolution problem is ill-posed.
Since many high-resolution images map to the same low-
resolution image, we asked the participants to create meth-
ods that sample diverse super-resolution from the space of
possible high-resolution images given a low-resolution im-
age. For evaluation, we use the same protocol as intro-
duced in the last year’s super-resolution space challenge
of NTIRE 2021. We compare the submissions of the partic-
ipating teams and relate them to the approaches from last
year. This challenge contains two tracks: 4× and 8× scale
factor. In total, 3 teams competed in the final testing phase.

1. Introduction

The generation of a high-resolution conditioned on a
low-resolution image is called super-resolution. This disci-
pline has a long tradition in computer vision [25, 17, 48, 56,
54, 60, 61, 62, 53, 10, 23, 55, 13, 14, 28, 31, 36, 16, 2, 3, 20,
24, 19] and is used in many different subfields. With the per-
formance leap of deep learning also most super-resolution
methods adopted this technology. As loss for those learned
methods early works optimized for pixel-wise errors, which
are favorable for the PSNR metric [13, 14, 28, 31, 36].
However, optimizing for this metric results in blurry tex-
tures. This was addressed in the works [64, 32, 58] using
adversarial losses.

Since super-resolution is often formulated as invert-
ing a downsampling kernel, which removes information,
it is an ill-posed problem. Therefore, infinitely many
high-resolution images can be mapped to the same low-
resolution image. Inversion is hence ambiguous, and to ex-
plore the space of plausible high-resolution images given

∗Andreas Lugmayr (andreas.lugmayr@vision.ee.ethz.ch),
Martin Danelljan, and Radu Timofte are the NTIRE 2022 challenge or-
ganizers. The other authors participated in the challenge.
Appendix A contains the authors’ team names and affiliations.
https://data.vision.ee.ethz.ch/cvl/ntire22/

a low-resolution image, methods need to be stochastic.
To sample from the distribution of high-resolution images,
GAN-based approaches were adapted to generate a stochas-
tic output [6, 8]. Furthermore, conditional Flow-based
methods were found to generate rich diversity for super-
resolution [41, 42, 59, 35, 26, 29]. Further technologies
used to generate diverse images use VAEs [37, 66] and
IMLE [33].

In recent years stochastic generative method using Dif-
fusion Models [52] gained in performance [21, 22, 46, 11].
They were made conditional for various tasks like color-
guided image-generation, super-resolution, inpainting and
colorization [9, 43, 38, 51, 47].

The advantages of methods that can sample super-
resolutions given a low-resolution image are that one can
choose from multiple predictions or use it to steer the super-
resolution with further conditioning.

The NTIRE 2022 Learning the Super-resolution Space
challenge aims to deepen research in the direction of
stochastic super-resolution and improve the state-of-the-art
of SR in general. The participants are evaluated using the
same metrics as in last year’s challenge [39], which are
photo-realism, consistency with the LR image, and how
well the SR space is spanned.

This challenge is one of the NTIRE 2022 associ-
ated challenges: spectral recovery [5], spectral demo-
saicing [4], perceptual image quality assessment [18],
inpainting [50], night photography rendering [15], effi-
cient super-resolution [34], learning the super-resolution
space [40], super-resolution and quality enhancement of
compressed video [63], high dynamic range [49], stereo
super-resolution [57], burst super-resolution [7].

2. NTIRE 2022 Challenge

The goals of the NTIRE 2022 Learning the Super-
Resolution Space Challenge is to (i) stimulate research into
learning the full space of plausible super-resolution; (ii)
establish a benchmark protocols and metrics for stochas-
tic super-resolution; (iii) probe the state-of-the-art in super-
resolution in general.
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Generative formulation Additional
Team Flow GAN VAE IMLE Diffusion Data

Deepest ✓ ✓
IMAG WZ ✓ ✓
IMAG ZW ✓ ✓

Deepest (21) ✓ ✓
FutureReference ✓ ✓
SR DL ✓ ✓
SSS ✓ ✓

Table 1. Information about the participating teams in the challenge.

2.1. Overview

The challenge contains two tracks, targeting 4× and 8×
super-resolution respectively. Evaluation code and informa-
tion about the challenge were provided at the public GitHub
page http://git.io/SR22. The challenge uses the
train, validation and testing sets as defined in employs the
DIV2k [1]. As the final result, the participants in the chal-
lenge were asked to submit 10 super-resolution samples for
each given LR image.

2.2. Rules

To guide the research towards useful and generalizable
techniques, submissions needed to adhere to the following
rules.

• The method must be able to generate an arbitrary num-
ber of diverse samples. That is, the method cannot be
limited to a maximum number of different SR sam-
ples (corresponding to e.g. a certain number of differ-
ent output network heads).

• All SR samples must be generated by a single model.
That is, no ensembles are allowed.

• No self-ensembles or test-time data augmentation
(flipping, rotation, etc.).

• All SR samples must be generated using the same
hyper-parameters. That is, the generated SR samples
shall not be the result of different choices of hyper-
parameters during inference.

• Submissions of deterministic methods were allowed.
However, they will naturally score zero in the diversity
measure and therefore not be able to win the challenge.

• Other than the validation and test split of the DIV2k
dataset, any training data or pre-training is allowed.

Furthermore, all participants were asked to submit the code
of their solution along with the final results.

2.3. Challenge phases

The challenge started on the 7th of February 2022 with
providing the task, evaluation scripts, training, and evalua-

tion data to the participating teams. After the teams devel-
oped their methods, they received the test input data on the
23rd of March 2022 and submitted their ten predictions per
LR image, description, code, and models until the 30th of
March 2022.

2.4. Data

We provide the standard DIV2K dataset for 4× and 8×
for training and validation. For testing, we only provide the
LR images of the test set for both Tracks.

3. Evaluation Protocol
A method is evaluated by first predicting a set of 10

randomly sampled SR images for each low-resolution im-
age in the dataset. Evaluating metrics corresponding to the
three criteria above will be considered from this set of im-
ages. First, the participating methods are ranked according
to each metric. Secondly, these ranks are combined into a
final score. The individual metrics are described below.

3.1. Photo-realism

Computing the perceived difference between two images
as humans perceive them is challenging. As an approxima-
tion, we included the LPIPS distance [65] in the evalua-
tion script that was provided along with the validation set.
For the final measurement of photo-realism, we conducted
a user study to determine the most realistic super-resolution
when seeing the low-resolution image as perceived by hu-
mans.
User Study We use the same user-study protocol as last
year, where we designed it in a way that directly measures
the rank of all methods. Therefore, we created a web in-
terface for the users where they can drag and drop crops of
images into a ranked list according to their perceptual qual-
ity. We hence calculate the final rank by directly applying
the mean over all user answers, resulting in the Mean Opin-
ion Rank (MOR). Consistent with last year’s evaluation, we
use three 80 × 80 crops for each of the 100 DIV2K test
images and ask five different users per crop.

3.2. The spanning of the SR Space

To evaluate how well a method spans the SR Space, we
measure the diversity of each method. To measure it in
a meaningful way and reduce the potential for adversarial
attacks we use the robust diversity score introduced in the
preceding challenge at NTIRE 2021 [39]. To rehearse the
motivation of this score, we consider two cohorts of images,
first texture-rich like fur, and second flat regions like a patch
of sky.

In a texture-rich image, many high-resolution images are
downsampled to the same low-resolution image spanning
a conditional distribution. We consider this distribution as
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the space of plausible super-resolutions. Since the ground
truth is an element in that distribution and the ideal super-
resolution algorithm samples the whole space, one obtain
an image which is arbitrarily close to the ground truth by
sampling enough images. Therefore, methods that span the
space of plausible super-resolutions gain closeness to the
ground truth when sampling more super-resolutions.

In the case of uniform regions like sky, the super-
resolution methods should not generate a diverse set of
high-resolutions, but only the uniform patch. Methods that
artificially add diversity for such regions generate structures
that are not contained in the original image. Therefore such
attempts do not improve in diversity score with increasing
number of samples and further harms the method for the
perceptual metric described above.

Another aspect being considered is the high-
dimensionality of the high-resolution images. Since
we consider mega-pixel images, the closeness to the
ground truth on the entire image is almost the same for all
samples of stochastic super-resolution methods. Different
samples will have regions that are closer to the ground
truth, and other regions that are closer to another plausible
high-resolution image. Due to the high-dimensionality this
effect evens out for the average distance to the ground truth
when considering multiple samples. Therefore we consider
local patches to measure the diversity score.

The used diversity score is as follows, where M is the
number of sampled super-resolutions, yk the k-th patch in
the original HR image y, and ŷiMi=1 the samples from the
super-resolution method. The detailed derivation can be
found in [39].

SM =
1

d̄M

(
d̄M − 1

K

K∑
k=1

min
{
d(yk, ŷ

i
k)
}M
i=1

)
. (1)

3.3. Low Resolution Consistency

To measure how much information is preserved in the
super-resolved image from the low-resolution image, we
measure the LR-PSNR. It is computed as the PSNR be-
tween the input LR image and the predicted sample down-
sampled with the given bicubic kernel. The goal of this
challenge is to obtain an LR-PSNR of at least 45dB.

4. Challenge Results

Before the end of the final test phase, participating teams
were required to submit results, code/executables, and fact-
sheets for their approaches. Three teams of the 54 registered
participants submitted to the final test phase. The methods
of the teams that entered the final phase are described in
Section 5 and the teams’ members and affiliations are shown
in Section Appendix A.

4.1. Baselines

As in the first challenge [39], we compare the submitted
method from this and last year to the following baselines.
ESRGAN To compare the submissions with a photo-
realistic super-resolution method, we use ESRGAN [58] as
reference. Since it is deterministic, the diversity score is
zero.
SRFlow As the baseline with diverse super-resolution
output, we use the Flow-based method SRFlow [41]. It
conditions the image generation method [30] for super-
resolution. Different from the ESRGAN, the generated
super-resolution images are highly consistent with the in-
put low-resolution image.

4.2. Architectures and Main Ideas

Here we discuss the main ideas of this and last year’s
submitted methods. The underlying technologies and the
use of external data are indicated in Table 1.
Flow-Based The winning team “Deepest (21)” based their
approach on SRFlow [41] and submitted a modified ver-
sion this year. Their strategy is to train a Normalizing
Flow model to transform a high-resolution image condi-
tioned on a low-resolution image into a latent variable. The
training objective is to minimize the negative log-likelihood
of this latent variable belonging to the gaussian distribu-
tion. For inference, they use the property of Normalizing
Flows [12] that they are invertible. They sample a latent
vector of Gaussian noise and transform it, conditioned on
the low-resolution image to a high-resolution image. Since
the method is bijective, it cannot map two different latent

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

IMAG ZW 0.171 48.14 21.938(3) 3.57(2) 2.5
Deepest 0.126 50.13 28.853(1) 3.67(3) 2.5
IMAG WZ 0.169 45.20 27.320(2) 3.34(1) 1.5

FutureReference (IMLE) 0.165 37.51 19.636 - -
SR DL (VAE) 0.234 39.80 20.508 - -
SSS (GAN) 0.110 44.70 13.285 - -
Deepest (Flow) 0.117 50.54 26.041 - -

SRFlow 0.122 49.86 25.008 3.62 -
ESRGAN 0.124 38.74 0.000 3.52 -
GT 0 ∞ - 3.15 -

Table 2. Quantitative comparison of participating teams. (4×)

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

Deepest 0.257 50.37 26.539 4.510 -

FutureReference (IMLR) 0.291 36.51 17.985 4.741 -
SSS (GAN) 0.237 37.43 13.548 4.850 -
SR DL (VAE-GAN) 0.311 42.28 14.817 4.797 -
Deepest (Flow) 0.259 48.64 26.941 4.503 -

SRFlow 0.282 47.72 25.582 4.775 -
ESRGAN 0.284 30.65 0 4.452 -
GT 0 ∞ - 3.173 -

Table 3. Quantitative comparison of participating teams. (8×)
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GT IMAG WZ Deepest IMAG ZW ESRGAN

SSS (GAN) Deepest (Flow, 2021) SRFlow FutureReference (IMLE) SR DL (VAE)

Figure 1. Qualitative comparison between the participating approaches for 4× super-resolution

GT Deepest ESRGAN SSS (GAN)

Deepest (Flow, 2021) FutureReference (IMLE) SR DL (VAE) SRFlow

Figure 2. Qualitative comparison between the participating approaches for 8× super-resolution

vectors to the same high-resolution image. Therefore, it
creates a diverse set of super-resolutions. Furthermore, dif-
ferently from ESRGAN, it was shown that SRFlow creates
super-resolution that are consistent with the input. They
downsampled the super-resolution using the same kernel as
for the training pair generation and measured the PSNR be-
tween those two low-resolution images to show this prop-
erty. The team Deepest worked on the information content
gap between the HR image and the latent space and adopted
frequency separation in this year’s submission. Noteworthy,
the team njtech&seu used multi-head attention in their ap-
proach to NTIRE 21 [39] and scored the highest Diversity
Score in both 4× and 8×. However, their perceptual quality

did not suffice to outperform the baseline SRFlow.

Diffusion-Based The teams IMAG ZW and IMAG WZ
submitted methods using diffusion models [21] which are
known to produce highly stochastic output.

GAN-Based The best performing team in terms of diver-
sity and perception of methods that relied on GAN-based
approaches was the team SSS. We observed that GAN ap-
proaches struggled to generate large diversity in their super-
resolutions. Furthermore, the adversarial loss encourages
hallucinations in the super-resolution and therefore reduces
the LR-PSNR. This method did not reach the set threshold
of 45dB and was not considered for the final human study.

VAE-Based Of methods using VAEs for super-resolution,
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Figure 3. Visualization of improvement in LPIPS for 4× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle,
Diffusion: Star
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Figure 4. Visualization of improvement in MSE for 4× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle,
Diffusion: Star

the team SR DL performed best. They leveraged the
stochastic properties of VAEs to generate diverse outputs.
An advantage of VAEs over Flow-Based methods is that
they do not pose such strict architectural constraints as the
bijectiveness and the tractability of the Jacobian. To further
improve photo-realism, this team also employed an adver-
sarial loss.
IMLE-based The team FutureReference, who was the only
method using IMLE-based [44] super-resolution, showed
that this approach is also capable of producing high-quality
and diverse outputs. Their training objective reverses the
generation process to match the super-resolutions with real
data.

4.3. Discussion

In this section, we discuss the final evaluation results on
the DIV2K test set of both the 4× and 8× super-resolution
tracks. The quantitative results of this the three teams that
participated this year, the top-performing teams for Flow,
GAN, IMLE, and VAE in the middle section, and finally,
the baselines are provided in Tables 2 and 3. The final eval-
uation for photo-realism is done employing the MOR de-
scribed above. Since the number of methods that can be
compared in the user-study is limited, we did not compare
with all methods for which we report numerical results. For
4×, we calculated the score of this year’s submissions and

the baselines, and for 8×, we compared the method Deep-
est of this year with the previous year’s methods and the
baselines. Further, we report the LPIPS, LR-PSNR, and the
diversity score. The final ranking is obtained by the average
rank of the MOR and the diversity score.

The method with the highest perceptual quality mea-
sured by the MOR for 4× was submitted by the team
IMAG WZ. They use diffusion models, which are known
for their high perceptual quality. The superiority of this
method can also be observed in the Figure 1. Further visual
results for this method on 4× are shown in Figure 9. Al-
though diffusion models have a strong prior and can there-
fore be guided with little information, this team did not sub-
mit results for 8×.

The highest diversity score on 4× was achieved by the
team Deepest. They increased the score over last year’s
approach by using frequency separation. As all previ-
ously submitted purely Flow-based methods, this method
achieves almost perfect consistency with the low-resolution
image of 50.12dB. Samples of super-resolution images
from the same low-resolution patch can be seen in figure 10.

Higher diversity scores compared to the baseline SR-
Flow were only achieved by the Flow-Based and Diffu-
sion Model-based methods submitted to this and last year’s
challenge. Furthermore, the GAN, VAE, and IMLE-based
methods that we compare with achieved a low input consis-
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Figure 5. Visualization of improvement in LPIPS for 8× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle
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Figure 6. Visualization of improvement in MSE for 8× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle

tency measured by the LR-PSNR, which was below 45dB.
Note that the VAE-based method also uses an adversar-
ial loss, which is known to lower the LR-PSNR. All three
methods submitted this year achieved an LR-PSNR above
45db in both 4× and 8×, which was set as a minimum to be
considered low-resolution consistent.

To visualize the diversity score and two of its compo-
nents, we plot it for all methods. Since the score is based
on the assumption that an ideal super-resolution method can
reach the GT arbitrary close, the diversity score should im-
prove with an increasing number of samples. This behavior
can be seen in Figures 3 and 5. Furthermore, the diversity
score defined in NTIRE 21 [39] is not bound to a specific
distance metric. Although we use the LPIPS as the primary
metric, we show that the mean square error shows similar
behavior 4 and 6. For this experiment, we smoothed the er-
ror maps with a moving average kernel of size 16, consistent
with the metrics of last year.

Furthermore, we show two components of the score in-
dividually. On the right side, we depict min

{
d(yk, ŷ

i
k)
}M
i=1

showing the local minimum distance between the super-
resolutions and the ground truth. In the middle, we plot
d̄M − 1

K

∑K
k=1 min

{
d(yk, ŷ

i
k)
}M
i=1

, showing the absolute
local impovement. On the left side we show the final diver-
sity score, which divides the absolute improvement by the
distance of the super-resolution which is globally closest to
the ground truth. Without this last operation, the diversity
score would favor methods with low distance, since it is

harder to get closer to the ground truth if the best sample is
already close.

This year the diffusion model-based IMAG WZ over-
took the Flow-based methods in the final score for 4×. Al-
though the team Deepest, the improved version of last year’s
winning team, has a better diversity score, they have worse
perceptual quality. For 8× we only received one submis-
sion which achieves comparable results to last year’s sub-
missions. All participating methods outperform last year’s
approaches using VAE, GAN and IMLE by a large margin
in diversity score.

5. Teams

5.1. Deepest
FS-NCSR: Increasing Diversity of Super-
Resolution Space via Frequency Separation
and Noise-Conditioned Normalizing Flow

This team proposes FS-NCSR (Frequency Separat-
ing Noise-Conditioned Normalizing Flow for Super-
Resolution) where the generative model for super-
resolution only produces the high-frequency elements of
the target high-resolution image x without redundant low-
frequency information. The low-frequency elements of the
high-resolution input x are filtered out by the low-pass fil-
ter during training and the generative super-resolution ar-
chitecture aims to estimate the high-frequency elements of
the target. They utilize bicubic downsampling-upsampling
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Figure 7. Algorithm overview. Our method proposes a frequency
separation on the target image and applies noise on high-frequency
input with noise-conditioned coupling layers for diverse super-
resolution outputs.

as the low-pass filter with a specific scale factor s and the
high-frequency input xhf is calculated by subtracting low-
frequency elements from the high-resolution target x,

xhf = x− ((x)s↓)s↑, (2)

where (·)s↓ and (·)s↑ indicate bicubic downsampling and
upsampling with the scale factor s respectively.

They leverage a normalizing flow based super-resolution
model, SRFlow [41], as a baseline for high-quality diverse
outputs compared to GAN which produces deterministic
single outputs. The structure of our model basically fol-
lows SRFlow which consists of a squeeze module, tran-
sition step, conditional flow step, and split module. The
main difference is that the input of the forward process in
the normalizing flow is not the high-resolution image x as
suggested in SRFlow, but the filtered high-frequency infor-
mation xhf of the high-resolution image.

xhf = fn ◦ fn−1 ◦ · · · ◦ f1(z) (3)

where z and f(·) indicate Gaussian latent variable and flow
model which consists of invertible transformation.

The motivation of the flow-based architecture is to map
the simple distribution pz to the complex image distribution
px with multi-layer invertible transformation. However, the
mismatch of the manifold input and output data distribution
induces poor generation performance, and SoftFlow [27] al-
leviate such mismatch by estimating a conditional perturbed
data distribution rather than estimating direct input distribu-
tion.

NCSR [29] applies noise-conditioned affine coupling
suggested in SoftFlow to the SRFlow architecture for di-
verse outputs without noisy artifacts. The transition step of
our proposed method consists of 5 components: ActNorm,
1×1 convolution, affine injector, and two conditional affine
coupling (noise affine coupling and low-resolution affine
coupling), which are the same as NCSR. Gaussian noise
is added to the input during the forward process in training,

Figure 8. The forward diffusion process q(left to right) gradually
adds noise to the target image. The reverse inference process p
(right to left) The reverse process p is to restore the image under
the conditions of the source image x by iterative method. Source
image x is not shown here.

and our method applies noise on the high-frequency input
xhf .

v ∼ N (0,Σ)

x+
hf = xhf + v

y+ = y + w

z = f−1(x+
hf |y

+, v)

(4)

where w indicates noise resized to the same size as the low-
resolution input y.

They formulate the loss function only with negative log-
likelihood Lnll similar to [41, 29],

Lnll = − log px|y,v(x|y, v, θ)

= − log pz(fθ(x; y, v))− log |det ∂fθ
∂y

(x; y, v)|.
(5)

5.2. IMAG WZ: Diffusion Models for Learning
the Super Resolution Space and IMAG ZW:
Learning the Super-Resolution Space Using
Diffusion Gamma Models

This team uses Conditional DDPMs, which generates a
target image by T-step refinement. The model starts with a
pure noise image, iteratively refines the corresponding im-
age over T successful iterations according to the learned
conditional transformation distribution. (see Figure 8)

The distribution of intermediate images in the inference
chain is determined in the forward process that gradually
adding noise to the signal through the Markov chain. The
goal of our model is to reverse the diffusion process by itera-
tively recovering its target image from noise given an image
through a reverse Markov chain.

As a result, they learn the reverse chain by using a neural
denoising model which can estimate the noise.

5.2.1 IMAG ZW: Learning the Super-Resolution
Space Using Diffusion Gamma Models

This team submitted a variation of the approach from
IMAG WZ differing in the noise generation process. In the
previous work on diffusion models, most of the methods
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Figure 9. Visual example of diversity in super-resolution samples. The top left image is the input LR image, to the right is the ground truth
and the ten remaining the samples from IMAG WZ. (4×)

are based on Gaussian noise, but some recent work [45] has
shown us that the Gamma distribution can be better adapted
to the estimated residual noise in the generation process.
Moreover, these methods can also achieve competitive re-
sults in the generation process. Therefore, they introduced
Gamma noise instead of Gaussian noise and trained the
model with good results.
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Figure 10. Visual example of diversity in super-resolution samples. The top left image is the input LR image, to the right is the ground
truth and the ten remaining the samples from Deepest. (8×)
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