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Abstract

This work addresses the Burst Super-Resolution
(BurstSR) task using a new architecture, which requires
restoring a high-quality image from a sequence of noisy,
misaligned, and low-resolution RAW bursts. To over-
come the challenges in BurstSR, we propose a Burst
Super-Resolution Transformer (BSRT), which can signif-
icantly improve the capability of extracting inter-frame
information and reconstruction. To achieve this goal, we
propose a Pyramid Flow-Guided Deformable Convolution
Network (Pyramid FG-DCN) and incorporate Swin Trans-
former Blocks and Groups as our main backbone. More
specifically, we combine optical flows and deformable
convolutions, hence our BSRT can handle misalignment
and aggregate the potential texture information in multi-
frames more efficiently. In addition, our Transformer-based
structure can capture long-range dependency to further
improve the performance. The evaluation on both synthetic
and real-world tracks demonstrates that our approach
achieves a new state-of-the-art in BurstSR task. Further,
our BSRT wins the championship in the NTIRE2022 Burst
Super-Resolution Challenge.

1. Introduction
Multi-frame super-resolution (MFSR) is a fundamental

low-level vision problem [2, 4, 14, 54], which aims to re-
store a high-resolution (HR) image from a sequence of
low-resolution (LR) images. Compared to single image
super-resolution [15, 26, 33], MFSR approaches are able
to aggregate sub-pixel information from multi-frames of
the same scene, alleviating the ill-posed problem in super-
resolution [29, 54]. But in recent years, the MFSR problem
receives less attention than SISR. In this work, we tackle
the practical problem of Burst Super-Resolution (BurstSR),
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(a) Visual comparison on BurstSR dataset.
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(b) Synthetic dataset.
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(c) Real-world dataset.

Figure 1. The comparison between our approach and other repre-
sentative methods [4,5,37] on Synthetic dataset [23] and BurstSR
dataset [4]. Our method achieves the best performance while be-
ing computationally efficient.

in which the inputs are low-resolution RAW snapshots cap-
tured from real-world smartphone cameras [4]. These RAW
bursts are usually noisy and misaligned, so in order to bet-
ter extract information from multi-frames to recover high-
quality images, we need a more efficient architecture to ad-
dress these challenges.

The NTIRE2022 (New Trends in Image Restoration and
Enhancement) contains the Burst Image Super-Resolution
Challenge [3]. The challenge has 2 tracks, the first track is
called Synthetic Track and the second track is Real-world
Track. In the synthetic track, the input bursts are gen-
erated from RGB images using a synthetic data genera-
tion pipeline. Meanwhile, in the real-world track, the test
set containing bursts captured from a handheld Samsung
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Galaxy S8 smartphone camera. The goal in both tracks is to
reconstruct the original image as well as possible, and not to
artificially generate a plausible, visually pleasing image [2].
This challenge promotes more research on BurstSR.

Some existing BurstSR methods solve this problem with
the following steps: feature extraction, feature alignment,
fusion and HR image reconstruction [2, 37]. To be more
specific, firstly, CNN-based residual blocks are often used
in feature extraction and reconstruction [2, 4, 37]. Sec-
ondly, both optical flow [40] and deformable convolution
network (DCN) [12, 61] can be used to align features of
multi-frames. Finally, attention mechanism [48] as well as
non-local [49] techniques are widely-used in the fusion step
to aggregate information from multiple aligned features.
However, a general convolution is a local operator that is in-
effective for long-range information interaction [32] and the
individual flow/DCN-based alignment is not sufficient to
deal with large, complex shifts between frames [10]. Fore-
most among these problems is that these rudimentary de-
signs limit the efficacy of information aggregation and thus
lead to poorer performance in rich details and occluded re-
gions.

In this paper, we propose a Burst Super-Resolution
Transformer (BSRT), which enhances the effectiveness of
feature extraction, alignment, and reconstruction in the
BurstSR task. The main components of BSRT are the
Pyramid Flow-Guided Deformable Convolution Network
(Pyramid FG-DCN) and the Transformer-based backbone.
Specifically, as shown in Fig. 2, FG-DCN combines opti-
cal flow and DCN to predict coarse-to-fine distortion and
offset, enabling the network to align images more effec-
tively. Further, we apply a pyramid structure to improve the
alignment on the top of the flow-guided DCN. On the other
hand, the self-attention mechanism and Transformer have
shown promising performance in most computer vision
tasks [31, 32, 35]. Therefore, to better use the inter-frame
information, we incorporate Swin Transformer blocks and
groups in our architecture to capture both global and local
contexts for long-range dependency modeling [32, 35].

Based on the aforementioned components, the proposed
BSRT achieves an impressive performance and surpasses
existing art methods in BurstSR by a large margin. Our ap-
proach recovers textures that are more similar to the ground-
truth, with a more clear and plausible appearance, while be-
ing computationally efficient, as illustrated in Fig. 1. The
main contributions are summarized as follows:

• We propose to use SpyNet [40] in BurstSR to obtain
pyramid flows between multi-frames, which can guide
the DCNs [12] to obtain multi-scale features with bet-
ter alignment. This design can facilitate a more effi-
cient aggregation of inter-frame information.

• We introduce the Transformer-based backbone into
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Figure 2. Details of the Flow-Guided Deformable Convolu-
tion Network (FG-DCN). There are three inputs: reference fea-
ture (Fea1), current feature (to be aligned, Fea2), and the pre-
calculated flow between Fea1 and Fea2 from PyNet.

BurstSR task to capture global interactions between
contexts, which can further improve the performance.

• Experiments on both synthetic and real-world tracks
demonstrate that the proposed BSRT leads to a new
state-of-the-art performance in the BurstSR problem.
Further, our approach wins the championship in the
Real-World track of the NTIRE2022 Burst Super-
Resolution Challenge.

2. Related Work
Single Image Super-Resolution. Single Image Super-
Resolution (SISR) is a long standing research topic due to
its importance in computer vision. SRCNN [43] is the pi-
oneering deep learning-based method that employs a three-
layers-convolutions network and applied the bicubic degra-
dation on HR images to construct HR and LR pairs. Since
then, various approaches have been proposed to handle the
SISR problem [13, 21, 26–28, 33, 36, 42, 45, 56, 58–60]. For
example, VDSR [43] adopted a very deep network to im-
prove performance and ESPCN [42] used an efficient sub-
pixel strategy for upsampling. EDSR [33] further enhanced
the network by modifying the residual blocks with a non-
batchnorm design. Moreover, VGG loss [43], perceptual
loss [25], and GAN loss [18] were also used to improve the
perceptual visual quality [30,41,50]. However, these meth-
ods can hardly recover rich details for real-world complex
images due to the ill-posed nature of SISR.

Multi-Frame Super-Resolution. To overcome the ill-
posed problem in SISR, Multi-Frame Super-Resolution
(MFSR) is proposed to aggregate pixels from multiple im-
ages of the same scene, which can provide complemen-
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Figure 3. The network inputs a sequence of low-quality RAW images and outputs a high-quality RGB image. Firstly, all RAW inputs are
upscaled to 1-channel ‘RGGB’ format by PixelShuffle and expanded to 3-channels through a 3 × 3 convolution. Then they are sent to
the SpyNet [40] to obtain multi-scale optical flows between each frame and the reference frame. Meanwhile, we extract useful features
from original RAW inputs and upscale them before alignment so that we can combine the pre-calculated flows with DCNs on multi-scale
features. We fuse these aligned features by a 1× 1 convolution and then restore the final HR image.

tary sub-pixel information for a better image reconstruc-
tion [19, 46, 47]. MFSR is also well-studied in the last
three decades. Traditionally, Tsai and Huang [47] were the
first that proposes to perform MFSR in the frequency do-
main. Peleg et al. [39] and Irani [24] proposed to itera-
tively minimize the reconstruction error between estimated
HR image and the ground truth image. The subsequent
works [1, 17, 20] extended it with a regularization term un-
der the maximum a posteriori (MAP) framework.

On the other hand, deep learning based approaches
have shown promising performance in processing MFSR
problem. DeepSum [38] and HighResNet [14] were pro-
posed for remote sensing applications. Bhat et al. [4] pro-
posed a CNN-based encoder-decoder for RAW burst super-
resolution and introduced an attention-based fusion into
their network. They then further improved its performance
in RepMFIR [5] with a deep reparameterization of the MAP
framework. Meanwhile, Lecouat et al. [29] proposed an
end-to-end approach for joint image alignment and super-
resolution from raw burst inputs. Moreover, in the last
NTIRE2021 Burst Super-Resolution Challenge, the winner
method EBSR [37] presented a deformable convolution net-
work (DCN) based alignment and non-local based fusion to
enhance the performance.

Low-Level Vision Transformer. Attention-based net-
work, i.e., Transformer, have shown great performance and
gained much popularity in various high-level computer vi-
sion tasks [7,9,16,34,35,53,55]. Recently, Transformer has
also been introduced for low-level vision and tends to learn

global interactions to focus on enhancing details and impor-
tant regions [8,11,31,32,52]. Chen et al. [11] were the first
propose to use Transformer-based backbone IPT for various
image restoration problems. Liang et al. [32] proposed an
efficient structure, SwinIR, for image restoration based on
the Swin Transformer [35]. Compared with IPT, SwinIR re-
quires fewer parameters and training datasets and achieves a
new art performance in single image super-resolution, JPEG
compression artifact reduction and denoising.

3. Method
3.1. Overview of the Framework

The overview of the proposed BSRT framework is shown
in Fig. 3. Let IHR ∈ R3×Hs×Ws be the ground truth
HR image (RGB) and {xi}Ni=1 be the input bursts which
are all 4-channels ‘RGGB’ RAW images (H , W is the im-
age height and width, s is the scale factor, N is the num-
ber of bursts, xi ∈ R4×H

2 ×W
2 ). For burst super-resolution

task, each low-quality image is obtained by transforming
the downsampling the HR image. The overall burst super-
resolution problem can be formulated as

xi = (Ti ◦ IHR)↓s
+ ηi for i = 1, . . . ,N, (1)

where Ti is a transformation representing the scene motion,
i.e., translation and rotation. ◦ is the warping operator and
↓s denotes bicubic downsampling. ηi represents some ad-
ditive noise.

Our goal is to restore a high-quality image ISR from a
set of RAW bursts. Firstly, we flatten the inputs to single
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Figure 4. Detailed architecture of the proposed pyramid flow-
guided deformable alignment module (Pyramid FG-DCN).

channel and convert them to 3-channels by a 3×3 Conv so
that they be sent to the SpyNet to obtain three level optical
flows which are calculated from each frame and the refer-
ence frame:

f1
i , f

2
i , f

3
i = LSpyNet(LConv(xi), LConv(xref)), (2)

where f1
i , f

2
i , f

3
i are the estimated pyramid flows on each

level, LSpyNet and LConv are the SpyNet and the convo-
lution layer, repectively. Particularly, we use a pre-trained
SpyNet and preserve the top-3 levels of flows to guide cor-
responding level’s deformable convolution network (DCN)
alignment. Meanwhile, the original 4-channels RAW inputs
are sent to several Swin Transformer Blocks (ST Blocks) to
extract informative features:

Fi = LSTB(xi), Fi ∈ RC×H
2 ×W

2 (3)

where the LSTB denotes the ST Blocks and C is the feature
channels. We then upscale these features using pixelshuf-
fle [22] to match the sizes of the obtained flows and align
them with the reference frame’s feature via a pyramid flow-
guided deformable alignment module, as shown in Fig. 2
and Fig. 4. After that, we fuse these features (1×1 Conv)
to reconstruct the high-resolution image via several Swin
Transformer Groups as:

IHR = LSTG(LConv1({AFi}Ni=1) (4)

where AFi ∈ RC×H×W is the i-th aligned feature. LSTG

and LConv1 are the ST Groups and the 1×1 Conv fusion
layer, respectively.

3.2. Pyramid Flow-Guided DCN Alignment

Inspired by BasicVSR++ [10], we combine the flow-
based alignment and deformable alignment. Specifically,
the pyramid optical flows {f1

i , f
2
i , f

3
i }

N

i=1 estimated by the
SpyNet can be regarded as a coarse alignment prior. Based
on these flows, DCNs tend to learn more accurate and re-
fined offsets for aligning features. The details of the Flow-
Guided DCN (FG-DCN) are illustrated in Fig. 2. Given

feature Fi and the corresponding flow fi, we can get the
coarsely warped feature F̂i by

F̂i = W(Fref , fi), (5)

where W denotes the wrapping operator. Then we concate-
nate F̂i with the reference feature to predict refined local
offsets. Subsequently we add the fine offsets with flows as
more accurate offsets:

Oi = fi ⊕ Loffconv(F̂i, Fref), (6)

where ⊕ denotes the element-wise sum operator and
Loffconv represents some convolution layers that predict the
offsets. Based on these offsets, we warp the input feature
to obtain the aligned feature AFi through an original DCN
alignment module as

AFi = W(Fi,Oi). (7)

Moreover, we design a 3-levels-pyramid structure to further
improve the alignment as shown in Fig. 4. From level-3 to
level-1 (L3-L1), the predicted offsets and aligned features
are upsampled and subsequently concatenated with the next
level’s offsets and aligned features. By doing so, we can
refine the output feature with multi-scale information and
raise superior to noise reduction. In addition, we also add
a feature enhancement network in front of the Pyramid FG-
DCN model to alleviate the negative effect of noises as in
EBSR [37].

3.3. Handling Features with Swin Transformer

To extract useful features and reconstruct high-quality
images, we introduce the powerful Swin Transformer [32,
35] as our main backbone, as shown in Fig. 3. Compared
to CNN-based structures, transformer is capable of captur-
ing long-range dependencies to aggregate correlated high-
frequency information. Inside of a ST Block, it consists of a
standard multi-head self-attention (MSA) and a multi-layer
perceptron (MLP). The layernorm is also added in front of
the MSA and MLP as same as the original Transformer
layer [48]. Let X ∈ RC×H×W be the fused feature of mul-
tiple aligned features. The whole process of a ST Block can
be formulated as

X = MSA(LN(X)) +X (8)

X = MLP (LN(X)) +X. (9)

The ST Group consists of several ST Blocks and a convolu-
tion layer (in the last). And the residual connection is also
employed in this module.

Following the common practices in super-resolution, we
use L1 loss between the restored image and the ground truth
HR image as our objective function:

L = ||SR({xi}Ni=1; θ)− IHR|| (10)
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Method #Parameters Synthetic dataset Real-world dataset

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
SingleImage [4] 13.01M 36.86 0.919 0.113 46.60 0.979 0.039
HighResNet [14] 34.78M 37.45 0.924 0.106 46.64 0.980 0.038

DBSR [4] 13.01M 39.17 0.946 0.081 47.70 0.984 0.029
EBSR [37] 26.03M 42.98 0.972 0.031 48.23 0.985 0.024
MFIR [5] 12.13M 41.55 0.964 0.045 48.32 0.985 0.023

BSRT-Small(Ours) 4.92M 42.72 0.971 0.031 48.48 0.985 0.021
BSRT-Large(Ours) 20.71M 43.62 0.975 0.025 48.57 0.986 0.021

Table 1. The table shows a comparison between our methods and the other approaches. The best one marks in red and the second best
are in blue. Note that the results of SingleImage and HighResNet are reported from [5], and all models for the real-world dataset are first
pretrained on the synthetic dataset.

where ‘SR’ is the whole network, and θ denotes its learn-
able parameters.

3.4. Pipeline for RAW images

As shown in Fig. 5, we propose a new pipeline for pro-
cessing misaligned RAW images. Note that EBSR [37] di-
rectly flatten the 4-channels RAW inputs (with size H×W )
to 1-channel ‘RGGB’ format (with a larger size 2H × 2W )
before sending them to the network. Then EBSR performs
feature extraction, alignment, fusion, and reconstruction all
based on the size 2H × 2W . Such a strategy improves
the performance but is computationally expensive. In prac-
tice, we have noticed that the performance improvement
mainly comes from performing alignment and reconstruc-
tion on the large size feature maps. Address it, we mod-
ify the pipeline to that the feature extraction is applied on
the low-resolution space, and scaled 2× before alignment.
Compared with EBSR, our approach is effective and com-
putationally efficient, and thus can use a larger patch size
and batch size to accelerate training.

4. Experiment
4.1. Dataset and Implementation Details

As previous works explored [4,5,37], our method is eval-
uated on both synthetic and real-world datasets provided by
the NTIRE2022 Burst Super-Resolution Challenge [3]. The
synthetic dataset [23] contains 46839 cropped RGB images
(with sizes fix to 448× 448) that are used to synthesize sets
of low-quality RAW burst images, with randomly translated
and rotated. The noises are also added in the RGB-to-RAW
inverse camera pipeline [6]. The real-world dataset contains
5405 real-world RAW burst patches captured by a Samsung
Galaxy S8 smartphone, with sizes of 160 × 160, and the
HR images are captured from a DSLR camera. In addition,
300 synthetically generated images (size 96 × 96) and 882
real-world patches (size 160× 160) are used for evaluation,
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(a) RAW processing pipeline of EBSR [37].
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(b) New processing pipeline of our approach.

Figure 5. Illustration of the proposed pipeline for processing RAW
bursts. In our method, the feature extraction is applied on the low-
resolution space, and scaled 2× before alignment, which is effec-
tive and computationally efficient.

with 4× scaling factor.

4.2. Training and Testing

As a common practice, our model is first trained on the
synthetic dataset, then finetuned on the real-world dataset
for real-world track. All of the inputs are 4-channels
‘RGGB’ RAW images, and the outputs are 16-bit RGBs
which can be converted to be visually pleasant by the pro-
vided post processing scripts. For synthetic training, we
optimize the whole model using ℓ1 loss as introduced in
Sec. 3.3. For real-world data training, since the ground
truth images are not pre-aligned with any inputs, we use
aligned ℓ1 loss which firstly aligns the ground truth im-
age with the super-resolved image by utilizing a pre-trained
PWC-Net [44], and then calculates the ℓ1 based on the well-
aligned images as the same as [2,4]. Note that the proposed
BSRT learns the demosaic process implicitly, so that our
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Figure 6. Comparison of our method with other state-of-the-art approaches on synthetic dataset.

network can be trained in an end-to-end manner. For both
datasets, we use Adam optimizer and set exponential decay
rates as 0.9 and 0.999. The initial learning rate is set to
8× 10−5 and then reduced to half every 150 epoch. In each
training batch, the HR images are cropped to 256×256, then
we randomly synthesize 14 burst LR image patches based
on the HR image. We implement the proposed BSRT with
PyTorch framework and 8 NVIDIA 2080Ti GPUs, taking
around 14 days.

In practice, we also find that a large patch size can fur-
ther improve the performance. So it is better to finetune the
trained model with a patch size of 384 × 384 for HR im-

ages. However, we can not train the model on such a large
patch size directly due to the limited computing resource
and memory, and we choose to freeze the model’s weights
and only finetune the alignment module and a portion of
Conv layers.

4.3. Comparisons with Existing Methods

We compare our method with state-of-the-art BurstSR
approaches including HighResNet [14], DBSR [4],
EBSR [37] and MFIR [5]. DBSR is the first deep learning-
based burst SR method, which uses optical flows to align
frames and proposes an attention-based fusion strategy. The

1003



Bicubic BSRT(Ours)DBSR EBSR HRMFIRLR

Figure 7. Comparison of our method with other state-of-the-art approaches on real-world dataset.

encoder and decoder networks are employed to extract fea-
tures and reconstruct HR images. MFIR is the improved
version of DBSR, which also incorporates flow estimations
to align frames and restores the HR image with an advanced
deep reparameterization formulation. EBSR is the winner
method in BurstSR Challenge of NTIRE2021 [2], which is
a CNN-based restoration network and only utilizes DCN in
the alignment. In addition, we also provide a single image
method that uses the same architecture as DBSR but with a
single RAW image as input. For our approach, we provide
two models that have a fewer and greater number of pa-
rameters: BSRT_Small and BSRT_Large. We use PSNR,

SSIM [51] and LPIPS [57] as the evaluation metrics for a
more convincing comparison.

The quantitative results on both datasets are shown in Ta-
ble 1. As we can see, all multi-frame super-resolution meth-
ods perform better than single image method. MFIR [5]
outperforms DBSR [4] by 2.3dB and 0.6dB on synthetic
data and real-world data, respectively, in terms of PSNR.
EBSR [37] achieves an impressive result on the synthetic
dataset, but its performance dropped when finetuned on the
real-world dataset. Our approach, the BSRT-Large, outper-
forms all other methods on both datasets by a big margin.
And the efficient one, BSRT-Small, also achieves a good
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(a) (b) (c) (d) PSNR↑ SSIM↑ LPIPS↓

% CNN % CNN 42.98 0.972 0.031√
CNN % CNN 43.12 0.972 0.030√
CNN

√
CNN 43.29 0.973 0.029√

CNN
√

STG 43.39 0.973 0.027√
STB

√
STG 43.62 0.975 0.025

Table 2. Ablation studies of the main components on synthetic
dataset. (a) Use new pipeline; (b) Network structure in feature
extraction; (c) Use Pyramid FG-DCN; (d) Network structure in
reconstruction. STB and STG are Swin Transformer blocks and
groups, repectively.

performance on the synthetic dataset and outperforms other
methods on the real-world images, even if the number of
parameters is less than 5M. The visual results on synthetic
data and real-world data are shown in Fig. 6 and Fig. 7,
respectively. It is obvious that the proposed method pro-
duces the best visually pleasant images on both datasets.
The proposed BSRT is robust to noises and meanwhile pre-
serves rich details. For example, as shown in the 3rd row
and the 5th row of Fig. 6, our method produces clean re-
sults while the details are all preserved. In contrast, all other
approaches failed to handle the noisy details. Moreover, it
can be seen that our method can restore more information
from real-world burst images. As illustrated in the second
row and the last row of Fig. 7, only our method recovers the
whole lines on the wall and in front of the car.

4.4. Ablation Study

In this section, we illustrate the effectiveness of the main
components of the proposed BSRT, including the new RAW
processing pipeline, Pyramid FG-DCN and Swin Trans-
former blocks and groups. Here, we chose the original
EBSR [37] as the baseline, which uses normal pyramid
DCN alignment and residual blocks, performing burst SR
under the old RAW processing pipeline. The results are
shown in Table 2, which show that the new processing
pipeline improves the baseline’s performance overall met-
rics. Based on the new proposed pipeline, the Pyramid
FG-DCN alignment module can further improve the re-
sults. Moreover, Swin Transformer plays an important role
in both feature extraction and HR image reconstruction. Es-
pecially, Swin Transformer blocks can extract more effec-
tive features compared to residual blocks, which improves
the performance of the network. This enhancement can
also demonstrate that long-range dependencies of the self-
attention have positive effects on BurstSR task.

5. Result on NTIRE2022 BurstSR Challenge
Our method wins 1st place in the NTIRE2022 Burst

Super-Resolution Challenge Real-World Track. The top-5

Team MegSR* HIT-IIL S&C Noah_TerminalVision VDSL

Rank 1 2 3 4 5

Table 3. The top-5 ranked teams for Track 2 (Real-World Track).
Our team is marked by ‘*’.

ranked teams are shown in Table 3. The evaluation is based
on a user study on a test set containing 20 real-world burst
sequences captured from a handheld Samsung Galaxy S8
smartphone camera. The results demonstrate that the super-
resolved images produced by our method are more pleasant
and plausible compared with other teams.

6. Conclusion
A more efficient approach, called BSRT, to BurstSR is

proposed in this paper. The main components of the BSRT
include the Pyramid Flow-based Deformable alignment
module (Pyramid FG-DCN) and the Swin Transformer-
based backbone. Compared with the previous methods, the
proposed Pyramid FG-DCN can greatly improve the align-
ment performance and alleviate the effect of noises. Mean-
while, Swin Transformer blocks and groups in our back-
bone can make more effective use of global contextual in-
formation in multi-frames and further improve the perfor-
mance through the self-attention mechanism. Our results on
both synthetic and real-world datasets demonstrate that our
method achieves a state-of-the-art performance and recov-
ers more plausible and pleasing visual results. Furthermore,
our proposed BSRT wins 1st place in real-world track of the
NTIRE 2022 Burst Super-Resolution Challenge.
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