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Abstract

We introduce DRHDR, a Dual branch Residual Convo-
lutional Neural Network for Multi-Bracket HDR Imaging.
To address the challenges of fusing multiple brackets from
dynamic scenes, we propose an efficient dual branch net-
work that operates on two different resolutions. The full
resolution branch uses a Deformable Convolutional Block
to align features and retain high-frequency details. A low
resolution branch with a Spatial Attention Block aims to
attend wanted areas from the non-reference brackets, and
suppress displaced features that could incur on ghosting
artifacts. By using a dual branch approach we are able
to achieve high quality results while constraining the com-
putational resources required to estimate the HDR results.

1. Introduction

Digital camera sensors have limited capabilities at cap-
turing the rich ranges of luminance values of natural images.
In order to produce images that resemble what the human
eye can see, common HDR methods utilize multiple frames
with different exposure values, to produce a final HDR im-
age that has a higher fidelity with respect to the original
scene. Nevertheless, HDR solutions still have to deal with
the challenges that arise when merging brackets under dif-
ferent light conditions: Saturated regions and noise. More-
over, camera motion and moving objects can also affect the
final estimated image by introducing ghosting artifacts.

Several solutions have been proposed over time to solve
these challenges: pixel rejection approaches [4,6,10,11,13,
16, 17] that select and minimize the contributions of areas
that contain motion objects or misalignment, but also pixel

3 Project available at https://github.com/drhdr-user/
drhdr

Figure 1. Qualitative comparison from our validation split com-
paring the AHDR Baseline with our technique. Our solution ef-
fectively merges the three input brackets and provide high quality
outputs, free of noise or saturated areas. Moreover, effectively
achieves higher fidelity on the zoomed areas when compared with
the ground truth sample.

registration techniques [1,7,9,22,32] for selecting the areas
that would provide the best content for the final solution.

With the recent increase on computational capabilities
and the improved collection of data, several deep learning
systems trained in a supervised fashion have improved HDR
estimation results with a big margin with respect of previ-
ous approaches. These deep learning techniques are able
to work on a feature space [8, 27], reject and align regions
based on reference frames [27,29] and on a non-determined
number of frames [2] for producing high fidelity output es-
timations.

However, despite the impressive quality improvements,
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these techniques still are far from optimal in terms of their
computational requirements. On this basis, the NTIRE
2022 HDR Challenge [19] aims to stimulate research on
HDR imaging techniques, with an emphasis on efficient so-
lutions. Two tracks are proposed in the competition. Track
1: Fidelity (Low-complexity constrain), and Track 2: Low-
Complexity (Fidelity constrain). In Track 1, participants
are asked to optimize fidelity scores (PSNR and PSNR-µ)
while keeping complexity under 200 GMACs. In Track 2,
participants are asked to minimize the complexity of their
solutions (GMACs and runtime) while achieving at least the
same fidelity scores (PSNR and PSNR-µ) as the baseline
method AHDR [29]. In this article, we describe our pro-
posed solution for Track 2.

Inspired by previous works [5, 14, 23, 24, 27] that com-
bine multiple-resolution transformations, either with U-
Nets, low resolution branches with operations that are lo-
cally smooth when translated to full resolution results; our
network aims to leverage on a spatially reduced feature
space for alleviating the number of computations that would
require operating only on full resolution. Hence, our net-
work is built with two branches that operate on different
resolutions. Branch b0 operates at full resolution while b1
operates at a fourth of the original resolution. We also in-
corporate previously successful ideas as the Spatial Atten-
tion, Deformable Convolutions, and Dilated Residual Dense
Blocks. This combination provides a faster, and less com-
putationally expensive framework, with an increase in qual-
ity compared to baseline solutions. We summarize our con-
tributions as follows:

• We propose a dual branch system that works at two dif-
ferent resolution for reducing the computational com-
plexity while still improving on quality metrics.

• We asses the benefits of the components used on each
of the branches, a careful explanation of the different
training options, followed by quantitative and qualita-
tive results.

2. Related work
For High Dynamic Range Imaging with dynamic scene

we have a series of major challenges to solve. Restoring
highly saturated regions, noise, misalignment from camera
motion on the LDR brackets and dealing with entities in
movement. The latest being the most challenging one since
foreground objects might occlude regions of interest, but
also creating ghosting artifacts. These ghosting artifacts
have a similar nature to the ones created by non-aligned
brackets, but they can be manifested in a much more severe
manner, since objects can have big displacements across the
different brackets.

Several approaches have been proposed to tackle these
challenging scenarios. Historically, these approaches were

based on either rejection or registration. Pixel rejection ap-
proaches aim to detect and minimize the contribution of
regions that contain moving objects in order to reduce the
probability of ghost areas on the final merged output. Pix-
els can be rejected after an iterative process of computing
weights per pixel and the probability that a pixel is cap-
turing the background [10], predicting and measuring color
difference from inputs [4, 6], by multi-level thresholding of
histograms [13] or by detecting clusters of moving pixels
by using binary operations [17]. Lately Lee et al. [11] and
Oh et al. [16] proposed using rank minimization for align-
ing LDR inputs and ghost region detection. Pixel or Patch
registration methods aim to estimate HDR outputs by lo-
calizing the best regions on the LDR inputs. Bogoni [1]
uses Laplacian Pyramids for salience detection, selection
and fusion. Kang et al. [9] selects the best pair of LDR
based on pixel brightness distribution, and uses hierarchical
homography for registration and compensation of pixel mo-
tion. The final output incorporates portions from the inputs
that are not saturated, and that contain the best details. Jinno
and Okuda [7] estimate displacement, occlusion and satura-
tion based on irradiance values of each pixel with a Markov
random field model, to produce blur-free results. Zimmer et
al. [32] align the input LDR with an energy-based optic flow
method that takes into account the varying exposure condi-
tions to create displacement fields with subpixel precition.
Sen et al. [22] optimized jointly alignment and reconstruc-
tion using a patch-based energy-minimization formulation.

Deep learning approaches have significantly improve re-
sults compared to previous techniques. To do so, super-
vised learning approaches require datasets with input output
pairs. Kalantari and Ramamoorthi [8] introduced a convo-
lutional neural network for alignment and merging and col-
lected a dataset of LDR inputs and an HDR output. To en-
force the misalignment of the inputs, they replace the orig-
inal low and high exposure LDR inputs with a pair of low,
high LDR inputs that are not aligned with the reference
middle bracket. Wu et al. [27] explores the utilization of
U-Nets [21] for better exploiting deep representations and
perform alignment on the feature space. Yan et al. [29]
introduced the use of Spatial Attention Layers, that based
on a reference bracket, can detect and suppress regions of
the non-reference brackets to produce ghost-free estima-
tions. For NTIRE 2021 Challenge [18], Liu et al. [12] pro-
posed the use of Deformable Convolutions for better align-
ment of brackets. Previously, the use of Deformable Con-
volutions had already shown promising improvements on
discriminative methods [3, 31] as well as for video frame
alignment [25]. Recently, Yan et al. [28] improves upon
their previous contributions, by providing a Dual Attention
mechanism and a channel Attention Mechanism. Finally,
Catley-Chandar et al. [2] introduces a system that jointly
aligns and merges frames based on uncertainty-drive at-
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Figure 2. Diagram of our method. Two main branches. b0 works at full resolution and uses a Deformable Convolutional Block while
b1 works at fourth of the original resolution and uses a spatial attention module. Both branches are supplemented with Dilated Residual
Dense Blocks and a Dual Branch Fusion Block.
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Figure 3. Deformable Convolutional Block: A stack of 2D Con-
volutions followed by a LeakyReLU are in charge of extracting the
guidance features from [Z0

̸2 , Z
0
2 ]. These features are used for gen-

erating the offsets and the mask for the deformable convolution.
The resultant non-reference features Ẑ0

̸2 are obtained applying a
Deformable Convolution over Z0

̸2 together with the mask and the
given offsets.

tention maps, and a progressive multi-stage image fusion
that can work with an arbitrary number of input brackets.
Other deep learning based works have explored unsuper-
vised HDR fusion [20], reinforcement learning for bracket
selection [26] and the use of adversarial training for better
hallucination of missing content [15].

3. Methodology

3.1. Architecture

The overall architecture comprises two routes, one
branch that operates at full resolution, and a second branch
that operates at a fourth of the original resolution. We define
a fixed number of channels for both branches ch = 42. The
full resolution branch adopts a Deformable Convolutional
Block [12] while the low resolution branch adopts Spa-
tial Attention [29]. Since both LDR and gamma adjusted
contribute to detecting and misalignments [12, 27, 29], we
opt for using LDR and gamma adjusted as inputs for both

Spatial Attention

2D
 C

on
v

Le
ak

yR
eL

U
2D

 C
on

v
Si

gm
oi

d

Figure 4. Spatial Attention Block: Attention maps Ai, i = 1, 3
are obtained from [Z1

̸2 , Z
1
2 ] after 2 2D Convolutions follows by a

LeakyReLU and a Sigmoid activation respectively. Ẑ1
̸2 is finally

obtained by a point-wise multiplication on Z1
̸2 .

branches. Given 3 input LDR brackets Ii, i = 1, 2, 3 the
network input is composed as [Ii, Ihi ], i = 1, 2, 3, a channel-
wise concatenation of the original I and its gamma cor-
rected Ih. Where I2 is the reference middle bracket, and
Ii, i = 1, 3 the non-reference ones.

3.1.1 Full Resolution Branch

The full resolution branch starts with an input layer b0 com-
posed by a 3 × 3 × 42 2D Convolution and a Leaky ReLU
activation. This layer is responsible of encoding the 6 chan-
nels input [Ii, Ihi ] onto 42 channels features Z0

i for every
bracket i = 1, 2, 3. The input layer b0 is followed by a
Guided Deformable Convolutional Block def and a Dilated
Residual Dense Block [29, 30] DRDB0.

Deformable Convolutional Block Similarly to AD-
NET [12], the Deformable Convolutional Block def is re-
sponsible for aligning images in the feature space. De-
formable convolutions improve the ability to model geo-
metric transformations. Given that their spatial support is
higher than regular convolutions [31], it can be effective
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when applied to high resolution, and not so deep, feature
representations, accounting for high frequency details and
finer alignments. Our def is a light-weight adaptation of
the module used in ADNET [12] and EDVR [25]. Instead
of a full Pyramid, Cascading and Deformable PCD convo-
lution approach, that works at 3 different resolutions, ours
work only on full resolution features. Figure 3 illustrates
the Deformable Convolutional Block. A stack of 2D Con-
volutions followed by a LeakyReLU are in charge of ex-
tracting the guidance features from [Z0

̸2 , Z
0
2 ]. These features

are used for generating the offsets and the mask for the de-
formable convolution from which the final Ẑ0

̸2 is obtained.
In particular, 2 def modules are defined, one for each set of
non-reference features li0, i = 1, 3.

3.1.2 Low Resolution Branch

The low resolution branch b1 reduces the spatial dimension-
ality of Z0

i by half on each edge after applying a strided
2D Convolution and LeakyReLU to produce Z1

i , with a
shape of B × 42× H

2 × W
2 , where B is the batch size, and

H,W the input resolution. Features Z1
i are then processed

through a Spatial Attention Block and a Dilated Residual
Dense Block [29, 30] DRDB1.

Spatial Attention The Spatial Attention Block [29] att
allows the network to extract features of particular areas of
the inputs. It suppresses activations from the features by
performing point-wise multiplications. As depicted in Fig-
ure 4, the attention maps Ai, i = 1, 3 are obtained from
[Z1

̸2 , Z
1
2 ] after 2 2D Convolutions follows by a LeakyReLU

and a Sigmoid activation respectively. Ẑ1
̸2 is finally obtained

by

Ẑ1
i = Ai ◦ Z1

i , i = 1, 3

Two att blocks are defined, for each set of non-reference
features Z1

i , i = 1, 3

3.1.3 Dual Branch Fusion

The outputs of DRDB0 and DRDB1 are the features from
the branches at different resolutions. dbf is responsible
for upscaling the set of low-resolution features from b1 to
match the resolution of b0. After this operation, both sets of
features are concatenated and fused through a 2D Convolu-
tion and a LeakyReLU.

3.1.4 Output Layer

The output layer, uses a global skip dense connection. In
particular, the output from dbf and full resolution encoded
features Z0

2 from the reference input [I2, Ih2 ] and apply 2D

Convolution and Leaky ReLU followed by another 2D Con-
volution and a final ReLU.

4. Experiments
In this section we elaborate on the most important de-

tails of the training process and the different experiments
that lead to our final solution. We also cover compar-
isons against baselines. We refer to “Baselinein” for the
AHDR implementation trained and evaluated under the
same regime as our variants and final solution. We refer
to “Baseline” when comparing against the AHDR baseline
results from the NTIRE 2022 HDR Challenge [19].

4.1. Training Details

4.1.1 Loss Function

Given that training the network on the tonemapped images
is more effective [8, 12, 29], we utilize l1 loss over the es-
timated Îh and ground truth IGT images. We normalize
using using the µ-law tonemapping [12]:

mu(x) =
log(1 + µ x)

log(1 + µ)
. (1)

We utilize µ = 5000 and prior to the tonemapping, we
apply tanh normalization using the 99 percentile from the
estimated Îh.

4.1.2 Data

We split the dataset for Training and Validation. We ran-
domly select 250 samples from the dataset for validation
and use the rest for training. The images for training are
cropped on 250× 250 patches with stride of 250px.

4.1.3 Evaluation Metrics

Evaluation is measured on two metrics. Peask Signal to
Noise Ratio PSNR that is computed directly on linear HDR
estimations. The second metric is PSNR-µ, which is com-
puted over the estimated images after tonemapping with
the µ-law defined in Sec. 4.1.1. The implementation of
these metrics are provided by the NTIRE 2022 HDR Chal-
lenge [19] administrators.

4.1.4 Training Phases

The network is trained using Adam optimizer with β1 = 0.9
and β1 = 0.999. The network is trained for 300 epochs in 3
different phases (Figure 6). The training is conducted on a
single RTX A6000 with 48GB using a batch size of 28 for
approximately 5 days.1

1By using Nvidia Automatic Mixed Precision AMP during training,
memory and time requirements can be reduced by ∼ half. However, we
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(a) (b)

Figure 5. Qualitative comparison from our validation split comparing the AHDR Baseline with our technique. Our technique achieves
higher accuracy on saturated areas but also produce more clear details.

First training phase The network is initially trained for
140 epochs with lr = 0.0005 and 10 epochs with lr =
0.0001. For speeding up the training process, in this phase
we use 50% of the available training data, and randomly
replace it at the start of each epoch.

Second training phase The network is trained for 50
epochs using all training data with an starting lr = 0.0001
that decays following Equation 2:

decay(x) = x
1− n

N
. (2)

where x, n and N are initial learning rate, the epoch and
the total of epochs of the current phase.

Last training phase In this phase we train for the remain-
ing 100 epochs using all training data with a decaying learn-
ing rate that starts from lr = 0.00005.

4.1.5 Data augmentation

We randomly apply one of the following operations during
training: vertical flip, horizontal flip, 90◦ rotation, or noth-
ing.

4.1.6 Testing

Testing is performed on a RTX Quadro 6000 with 24GB.
Our method has a measured runtime of ≈ 0.75 seconds

report results from the model submited to the challenge, that was trained
without AMP.

Method PSNR↑ PSNR-µ↑ #weights↓ GMACs↓
Variant A 40.95 35.21 1345323 2146.68
Variant B 40.83 35.17 1338087 1526.83
Ours 41.03 35.22 1222035 1769.85
Baselinein 40.61 35.14 1441283 2916.92

Table 1. Quantitative Results of the different variants on our vali-
dation split. Baselinein refers to the Baseline implementation from
AHDR [29] trained and tested under the same regime as the rest.
Please refer to Sec. 4.1.7 for more details on the different variants.

at processing images of 1060x1900 pixels. Our method
has a peak memory consumption of ≈14394MiB using
float32 precision.

4.1.7 Variants

Variant A We define a Variant A based on the AHDR
[29] implementation where we incorporate a low resolu-
tion branch with a second Spatial Attention Block and the
same number of DRDB blocks (= 6) as in the full resolu-
tion branch. In order not to double the number of model
weights, we reduce the number of channels on each convo-
lution from ch = 64 to ch = 36. We expect the low res-
olution branch to compensate the reduction on the number
of channels per convolution, but also to further reduce the
number of GMACs by performing operations on a spatially
reduced feature space.
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Method PSNR↑ PSNR-µ↑
Variant A 38.38 36.89
Variant B 38.35 36.87
Ours 38.50 36.91

Table 2. Quantitative Results of the different variants on the val-
idation split from NTIRE 2022 HDR Challenge [19].

Loss PSNR↑ PSNR-µ↑
L1 43.85 35.07
L1tanh 40.61 35.14

Table 3. Quantitative Results of the Base L1 Loss vs L1tanh

Loss on the Baselinein model. L1tanh provides better PSNR-µ
results. Results computed on our validation split.

Method PSNR↑ PSNR-µ↑
Variant B 44.02 35.14

Table 4. Quantitative Results of the combining Base L1 Loss vs
L1tanh Loss on the Variant B. Results computed on our validation
split.

Variant B Based on Variant A, we replace the Spatial At-
tention Block from the full resolution branch with a De-
formable Convolutional Block. We incorporate the De-
formable Convolutional Block only on the full resolution
branch, to perform a finer alignment and retain high fre-
quency details. On the other hand, the Spatial Attention
Block on the low resolution branch, would be responsi-
ble for the suppression of non-wanted features from the
non-reference brackets. We expect this suppression to still
be effective on a spatially reduced feature space. More-
over, since the Deformable Convolutional Block performs a
higher number operations (and has a higher number of train-
able parameters) compared to the Spatial Attention Block,
we compensate it by reducing the number of Dilated Resid-
ual Dense Blocks on the full resolution branch, in this case
= 3 DRDB on the full resolution branch, = 6 on the low
resolution branch.

Final Architecture Table 1 reports results on our valida-
tion split. We also include results of Baselinein, the Base-
line implementation from AHDR [29] trained and tested un-
der the same regime as Variant A, B and the final architec-
ture Ours. It can be seen that Variant A and B, perform
above Baselinein. Also, Variant B has similar number of
trainable parameters but performs ≈ 25% less operations
than Variant A, and ≈ 45% less operations than Baselinein.
Still, Variant A achieves slightly better quality performance
than Variant B. Motivated by these results, we adopt some

0.0000010

0.0000100

0.0001000

0.0010000

	0 	50 	100 	150 	200 	250 	300

lr

Figure 6. Learning rate training strategy. We perform training on
3 different phases. During the first phase we keep a static training
rate of 0.0005 and change it to 0.0001 for the last 10 epochs. Then
we train for 2 more phases utilizing a learning rate decay method
from Equation 2.

changes to define the final architecture, based on Variant
B we increase the number of channels from 36 to 42 and
define an equal number of DRDB layers on both branches
= 5 (+2 on the full resolution branch, -1 on the low resolu-
tion branch), and reduce the number of expanding channels
in each DRDB from 36 to 21. This leads to a model with
a further reduced footprint, in terms of trainable weights,
but a slightly more computationally expensive compared to
Variant B. Tab. 1 shows that this final architecture balances
out to a smaller but a slightly better architecture overall.
We report on Table 2 results on the validation split from
the challenge. Notice, these architectures perform above
the Baseline implementation from NTIRE 2022 HDR Chal-
lenge [19]. It can be seen that the final solution is still
more powerful in PSNR and PSNR-µ than Variant A and
B. We notice that with this validation split, PSNR-µ results
are higher and PSNR results are lower, concluding that our
internal validation split reports slightly optimist results for
PSNR.

4.2. Loss Function

In order to assess the performance of the loss function,
we train a Baselinein implementation with L1 loss, and an-
other using L1tanh where before the tonemapping, we ap-
ply tanh normalization using the 99 percentile from the es-
timated Îh. We report the results on Table 3. In this case
we see an increase of ≈3dB in PSNR using the L1, but an
increase of ≈.7dB on PSNR-µ by using the L1tanh. Af-
ter observing these results we proceed training Variant B
with both losses. We report results on Table 4 on our val-
idation set. We see an improvement on PSNR but a slight
degradation on PSNR-µ. We notice that PSNR-µ metric is
probably more challenging to increase compared to the reg-
ular PSNR: Out of 53 groups contestants, only 14 achieve
higher PSNR-µ than the reference implementation. Thus,
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Figure 7. Qualitative representation of the behavior from the main components of our system. feat0-h is a single activation channel
from Z0

3 , and dconv-h is the same channel result after applying the Deformable Convlutional Block. Dconv-h represents the effective
minimization of details from the over-exposed regions of the table, while enhancing details from the background wall. At the bottom,
feat1-l is a single activation channel from Z0

1 while att-l is the same channel after applying the Spatial Attention Block. Att-l
despite being at a fourth of the original resolution, is able to retain the well-exposed details from the table, while representing an accurate
reduction of the over-exposed details from the background wall.

LR PSNR↑ PSNR-µ↑ Epoch
0.0001 40.33 35.04 125
0.0005-0.0001 40.73 35.16 148

Table 5. Quantitative Results when training our final solution af-
ter 150 epochs, following the specifications of Fig. 6 (Only first
phase), against a model trained with a learning rate of 0.0001.
Training with a slightly higher learning rate regime, the system is
able to achieve higher accuracy faster and with room for a higher
improvement. Results computed on our validation split.

we decide to proceed only with L1tanh instead of combin-
ing both.

4.3. Learning Rate

Finally, we perform a comparison based on the initial
learning rate. We compare the performance of our final
solution after 150 epochs, following the specifications of
Fig. 6 (Only first phase), against a model trained with a
learning rate of 0.0001. Table 5 reports the results of this
experiment. By training with a slightly higher learning rate
our model achieves higher performance. On the other hand,
by training with a lower learning rate, the model seems to
stabilize on a sub-optimal local minima based on the fact
that after epoch 125 the metrics stop improving.

Method Runtime (s)↓ GMACs↓
Ours* 0.972 2534.60
Ours 0.738 1769.85

Table 6. Quantitative Results when performing inference with an
architecture where both branches operate at full resolution (Ours*)
on images of 1060x1900 pixels.

4.4. Low Resolution Branch Efficiency

To quantify the efficiency gains by having a branch oper-
ating at a fourth of the resolution, we define an architecture
(Ours *) where both branches operate at full resolution. Ta-
ble 6 reports Runtime and GMACs (#weights remain con-
stant) against the final solution. The low resolution branch
provides runtime efficiency gains of ≈ 25% and a GMACs
reduction of ≈ 30%.

4.5. Validation and Final results

For completeness, in Table 7 we include the validation
phase results and the final test results of our model and the
reference one. Our approach achieves better performance
on both metrics, it has less trainable parameters and per-
forms ≈40% less operations.

4.6. Qualitative Results

We report qualitative results in Figure 1 and Figure 5
with samples from our validation split. From the different
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Method PSNR↑ PSNR-µ↑ #weights↓ GMACs↓
Baseline 38.34 36.86 1441283 2916.92
Ours 38.50 36.91 1222035 1769.85
Baseline 37.60 37.02 1441283 2916.92
Ours 38.49 37.11 1222035 1769.85

Table 7. Quantitative Results. Validation split (top) and Test
split (bottom) results against Baseline [29] implementation from
NTIRE 2022 HDR Challenge [19].

images, it can be seen that our method reproduces with high
fidelity the ground truth samples. It also equalizes and even
outperforms AHDR baseline. Fig. 1 showcases a higher
color fidelity while Fig. 5b provides a much clear recon-
struction when compared with the ground truth.

Moreover, in Figure 7 we visualize the behavior of the
main components of our system. In particular, we il-
lustrate 3 input brackets Ii, i = 1, 2, 3, their respective
activations from [Ii, I

h
i ], i = 1, 3 and the result of De-

formable Convolutional Blocks and the Spatial Attention
Blocks. feat0-h is a single activation channel from
Z0
3 , and dconv-h is the same channel after applying

the Deformable Convlutional Block. On the other hand,
feat1-l is a single activation channel from Z0

1 while
att-l is the same channel after applying the Spatial At-
tention Block. Fig. 7 effectively illustrates how the De-
formable Convolutional Block suppresses details from the
over-exposed regions of the table, while enhancing details
from the background wall. For the low exposure bracket,
att-l despite being at a fourth of the original resolution, is
able to retain the well-exposed details from the table, while
suppressing the over-exposed details from the background
wall.

5. Conclusion

In this paper we have proposed DRHDR, an NTIRE
2022 HDR Challenge candidate solution for Track 2: Low-
Complexity (Fidelity constrain). We unearth the benefit of
exploiting spatially reduced feature representations for al-
leviating the high computational requirements of full reso-
lution transformations. Despite the lower complexity, we
demonstrate the ability of our system to provide accurate,
ghost free HDR outputs with superior detail representation
and higher efficiency when compared with baseline imple-
mentations.
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