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Abstract

Modern digital cameras generally count on image sig-
nal processing (ISP) pipelines for producing naturalistic
RGB images. Nevertheless, in comparison to DSLR cam-
eras, low-quality images are generally output from portable
mobile devices due to their physical limitations. The syn-
thesized low-quality images usually have multiple degrada-
tions - low-resolution owing to small camera sensors, mo-
saic patterns on account of camera filter array and sub-
pixel shifts due to camera motion. Such degradation usually
restrain the performance of single image super-resolution
methodologies for retrieving high-resolution (HR) image
from a single low-resolution (LR) image. Burst image
super-resolution aims at restoring a photo-realistic HR im-
age by capturing the abundant information from multiple
LR images. Lately, the soaring popularity of burst photog-
raphy has made multi-frame processing an attractive solu-
tion for overcoming the limitations of single image process-
ing. In our work, we thus aim to propose a generic archi-
tecture, adaptive feature consolidation network (AFCNet)
for multi-frame processing. To alleviate the challenge of
effectively modelling the long-range dependency problem,
that multi-frame approaches struggle to solve, we utilize
encoder-decoder based transformer backbone which learns
multi-scale local-global representations. We propose fea-
ture alignment module to align LR burst frame features.
Further, the aligned features are fused and reconstructed by
abridged pseudo-burst fusion module and adaptive group
upsampling modules, respectively. Our proposed approach
clearly outperforms the other existing state-of-the-art tech-
niques on benchmark datasets. The experimental results
illustrate the effectiveness and generality of our proposed
framework in upgrading the visual quality of HR images.

1. Introduction
Super-resolution (SR) is a long standing research prob-

lem, intended to synthesize high-resolution (HR) image
given low-resolution (LR) input. Depending on the num-

ber of LR inputs, super-resolution has been divided into
two main categories - single image super-resolution (SISR)
and multi-frame super-resolution (MFSR). SISR is the task
of generating HR image using a single LR image. Numer-
ous methods have been developed to solve the SISR prob-
lem [32,38]. However, the major hurdle lies in synthesizing
high-frequency details in a single input image, consistent to
the ground-truth HR image.

On the other hand, MFSR seeks the reconstruction of HR
image by employing numerous degraded LR images of a
scene. Critically, capturing LR images under the burst mode
results in sub-pixel shifts [33] among the multiple LR burst
images and thereby, generates different LR samplings of the
underlying scene. However, the process of burst image ac-
quisition brings its own issues. For example, during im-
age capturing, any slight movement in scene objects and/or
scene objects arises misalignment issues, thereby generat-
ing blurring and ghosting artifacts in the reconstructed im-
age [34]. The existing MFSR approaches utilize pre-trained
flow computation [5] or optical-flow [19] for aligning the
multi-frame features. This explicit feature alignment causes
the resulting errors in the flow estimation stage to be prop-
agated to the image processing and warping stages, thereby
negatively affecting the generated outputs.

To mitigate the aforementioned problems, we propose
an Adaptive Feature Consolidation Network (AFCNet) for
Multi-Frame Super-Resolution. The proposed AFCNet
comprises of four steps: 1) Feature alignment, 2) Feature
extraction, 3) Feature fusion and 4) Feature up-sampling.
The features of RAW burst images are initially aligned
through deformable convolution [39] followed by feature
back-projection approach. This implicit feature alignment
limits the error propagation inherent in cascaded explicit
alignment approaches [5, 19]. Further, the aligned repre-
sentations of each burst image are passed through a feature
extractor [36] to extract multi-scale local-global representa-
tions. The feature fusion mechanism enables the inter-frame
communication via abridged pseudo-burst generation such
that each and every feature in the pseudo-burst encloses
complimentary properties of all input burst images. Further-
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more, we adopt an adaptive group up-sampling module [12]
to select the reliable and desired information content from
each burst image and thus obtain the high-quality HR result.

On account of above modules, our framework efficiently
merges the image contents among multiple burst LR RAW
frames in a coherent and effective way, generating HR
RGB outputs with realistic textures and additional high-
frequency details. Highlights of the proposed approach are
outlined as follows:

1. We propose a simple but effective feature alignment
module to align the burst image features with the base
frame.

2. We utilise encoder-decoder based transformer back-
bone for feature extraction to enrich the aligned feature
representations.

3. An efficient abridged pseudo-burst fusion module is
utilized to aid inter-frame information exchange and
feature consolidation.

4. Finally, adaptive group up-sampling is performed for
progressive fusion and up-scaling of the burst features.

Comprehensive experiments have been performed on
NTIRE-21 [3] and NTIRE-22 [4] synthetic as well as real-
world benchmark datasets to validate the proposed AFC-
Net for burst SR. Our proposed methodology exemplifies
favourable SR performance on real-world bursts, notably
outperforming state-of-the-art (SOTA) techniques in a user
study. Furthermore, we layout a detailed ablation study, for
scrutinizing the influence of basic modules of the proposed
AFCNet framework.

2. Related work

In this section, a detailed discussion of the existing ap-
proaches for multi-frame super-resolution, feature align-
ment, attention mechanism and upsampling techniques have
been accomplished.

2.1. Multi-frame super-resolution

Compared with SISR, MFSR encounters new chal-
lenges while estimating the offsets among different im-
ages resulting from moving objects and camera move-
ment. Tsai and Huang [30] were the first to put for-
ward a frequency-domain based solution for MFSR prob-
lem. Since, frequency-domain resulted in visual artifacts
while processing the images, Irani and Peleg [17] and Pe-
leg et al. [26] proposed an iterative back-projection ap-
proach for sequentially estimating the HR image. Subse-
quent works [2, 13, 15] improved this approach with maxi-
mum a posteriori (MAP) model. Farsui et al. [14] proposed

a hybrid method for performing demosaicking and super-
resolution with MAP framework. Wronski et al. [35] pro-
posed a MFSR algorithm that merges burst of raw images
for supplanting the requirement of demosaicking in cam-
era pipeline. Recently, few works resorted to incorporate
deep learning for handling the MFSR problem. Deudon et
al. [9] proposed HighRes-net, the first deep learning MFSR
approach in satellite imagery, capable of learning all its sub-
tasks in an end-to-end fashion. Molini et al. [25] designed
a novel CNN-based algorithm for exploiting both temporal
and spatial correlations to combine multiple images. Bhat
et al. [6,7] addressed the problem of real-world MFSR from
any handheld camera by attention-based fusion mechanism.

2.2. Feature Alignment

The major concern of multiple frames lies at solving
the misalignment problem among multiple frames. Opti-
cal flow has been deployed in [8] for estimating the motion
between frames. Working towards this realm, [5] made use
of PWC-Net [28] as the flow estimator on account of its
high accuracy and speed. Additional studies accomplishes
implicit motion compensation by utilising deformable con-
volutions or dynamic filtering. Recently, [29, 31] used de-
formable convolution for aligning neighboring frame fea-
tures with the current frame for the task of MFSR. De-
formable convolution is quite effective while handling mis-
alignment between inter-frames and addresses the problem
arising out of explicit motion alignment approaches. In this
direction, Dudhane et al. [12] proposed edge boosting fea-
ture alignment which enhances the initial feature represen-
tations using attention based feature processing module fol-
lowed by deformable convolutions and edge boosting mech-
anism. In the proposed AFCNet, inspired from [12], we
make use of deformable convolutions and back-projection
mechanism for feature alignment. Unlike [12], we designed
a lighter alignment module by eliminating the feature pro-
cessing unit [12]. Instead, we achieve our target of feature
consolidation in the subsequent stages.

2.3. Attention Mechanism

In existing literature, capturing long-range pixel depen-
dencies for extracting global scene properties, has proved to
be helpful for a wide range of image restoration tasks [37]
(e.g., extreme low-light image enhancement [1] and im-
age/video super-resolution [24] ). Existing EDVR [31] and
EBSR [23] make use of attention, non-local operation for
fusing the information between multiple frames. Further,
BIPNet [12] is composed of global context attention mech-
anism to refine the burst features. In recent times, self at-
tention has shown its effectiveness in a variety of vision ap-
plications [18]. In particular, [20, 36] deployed multi-head
attention for improving the final restoration results. In the
same spirit, the proposed AFCNet makes use of encoder-
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Figure 1. Overall pipeline of the proposed adaptive feature consolidation network (AFCNet) for burst SR. The proposed AFCNet processes
input RAW burst image and generates a HR RGB image. It is divided into four parts: (a) Feature alignment module aligns the burst features
with respect to the reference frame, (b) Feature extraction module extracts multi-scale local-global representations, (c) Feature fusion
module enables the inter-frame communication and integrates the learned burst features to obtain the pseudo-bursts representation and (d)
Feature up-sampling module performs adaptive and progressive weighted up-sampling on pseudo-bursts to produce HR RGB image.

decoder based transformer backbone [36] to capture the
multi-scale local-global features and thus to improve the
overall representation ability of the aligned features.

2.4. Image Upsampling

Image upsampling deals with resizing of input features,
and is widely deployed in several image-related applica-
tions. The traditional interpolation techniques incorporate
nearest neighbor, bicubic and bilinear interpolation. On ac-
count of the easy implementation of these methods, they
are still quite a popular choice in various CNN-based SR
models. Lately, learning-based upsampling methods are in-
troduced into the SR field. Transposed Convolution [11]
performs upsampling by a transformation opposite to nor-
mal convolution. Pixelshuffle [27] a learn-able upsampling
layer, generates plurality of channels by first employing
convolution and then reshaping them. In MFSR, adaptive
group up-sampling [12] is proposed to handle the pseudo-
burst features in groups and progressively perform feature
up-sampling.

3. Proposed Method

On account of the rapid capture of images in a burst from
a hand-held device, they inherit minute inter-frame offsets.
This creates multiple aliased versions of the same scene,
thus generating additional signal information for SR. Our

proposed AFCNet processes multiple noisy, RAW, LR im-
ages to consider the merit of this shifted complementary
information from multiple images and combines the infor-
mation from individual LR images for generating HR RGB
image as output. Our first challenge lies in alignment of
the slight mismatches between multiple supporting frames
and the reference frame. Following this, effective merging
of the aligned features is equally important along with the
reconstruction of HR image. In subsequent sub-sections,
different modules of the proposed AFCNet are discussed.

3.1. Feature Alignment

The major hurdle in burst SR is the unknown inter-frame
sub-pixel displacement. This displacement, stemming from
camera motion and scene variations, results in misalign-
ment among the frames [5]. Thus, to align the burst features
with the reference frame, we utilized modulated deformable
convolutions [39] as shown in Figure 1(a). Considering,{
xb

}
b∈[1:S]

∈RS×n×H×W , as an initial representation of
burst having S images and n number of feature channels.
Currently, each frame feature xb is concatenated with the
reference frame feature xbr and passed through convolution
layer to get the offsets and modulated scalars required for
the deformable convolution layer. With the obtained off-
sets and modulated scalars, burst features xb are processed
through modulated deformable convolutions which returns
the aligned burst features x̄b.
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Our alignment module consists of three deformable lay-
ers for improving the overall alignment capability to en-
hance the aligned burst features. Unlike [12], we processed
and aligned the burst features without any pre-processing.
We combine it with the feature extraction module where we
compute the local-global feature representations. This re-
duces the extra overhead on feature alignment module and
simplifies the overall architecture. Further, high-frequency
residue is evaluated by calculating the difference between
these aligned features and reference frame features followed
by its addition to the aligned features [12] to enhance the
high-frequency edge information.

3.2. Feature Extraction

For further strengthening the feature alignment and to
rectify small misalignment errors, we utilize a encoder-
decoder based transformer backbone (EDTB) [36] for cap-
turing global context information among various frames.
Unlike [12], which employ feature refinement module
to capture long-range dependencies for modelling global
scene properties prior to aligning the features, we leverage
a EDTB, after the aligned features as depicted in Figure
1(b). EDTB processes the aligned features x̄b and returns
its enriched representation yb. Following [36], we employ a
4-level encoder-decoder architecture with number of trans-
former blocks as [4, 6, 6, 8], attention heads in multi-head
attention block are set to [1, 2, 4, 8], and number of channels
are [64, 128, 256, 512], respectively.

3.3. Feature Fusion

For generating a merged feature embedding of the en-
riched aligned features, we designed an abridged pseudo-
burst fusion (APBF) module inspired from [12]. It is a well
proven fact that simple pooling operations like element-
wise average or max pooling across the burst frames gen-
erates dissatisfying results [5]. The major reason tends to
attribute towards the fact that fusion module requires adap-
tive merging on the basis of image content and noise levels.
Furthermore, considering the benefits, and the indispens-
able role of inter-frame communication among the channels
with multi-path network layout, for fusing the multi-frame
features. We, thereby accomplish inter-frame connections
through concatenation of the corresponding channel-wise
burst feature maps and attain corresponding pseudo-bursts
[12] as shown in Figure 1(c). Given the refined features set
y =

{
yb
c

}b∈[1:S]

c∈[1:n]
of burst size S and n number of channels,

the pseudo-burst is generated through,

P c = W ρ
(〈
y1
c , y

2
c , · · · , yS

c

〉)
, s.t. c ∈ [1 : n],

(1)
where, ⟨·⟩ represents feature concatenation, y1

c is the cth

feature map of 1st aligned burst feature set y1, W ρ de-
notes the convolution layer with f output channel, and

P = {P c}c∈[1:n] represents the pseudo-burst of size n ×
n×H ×W . We have set n = 64 for this module.

Currently, every feature map in the pseudo-bursts em-
brace complimentary information from all the actual burst
frame features. Apart from simplifying the learning task,
the inter-frame feature representation merges the required
information through decoupling of the burst feature chan-
nels. In [12], the aligned burst features are used to ob-
tain the pseudo-bursts followed by the multi-scale feature
extractor (encoder-decoder sub-module). In the proposed
AFCNet, we abridge this process and directly process the
set of enriched features obtained from feature extraction
stage (EDTB module) to obtain pseudo-bursts. The pro-
posed abridged pseudo-burst fusion (APBF) scheme serves
the dual benefits of, (1) merging the consolidated feature in-
formation, and (2) avoiding the computational overhead of
processing pseudo-bursts through heavy multi-scale module
which is happening in [12].

3.4. Feature Up-sampling

The final step for reconstructing HR image is up-
sampling. In AFCNet, we utilized the adaptive group up-
sampling (AGU) [12] to reconstruct the HR details shown
in Figure 1(d). AGU takes the feature maps (P c) produced
by the abridged pseudo-burst fusion module as input and
generates a super-resolved output via three-level progres-
sive upsampling. In AGU, the pseudo-burst features are se-
quentially divided into groups of 4. Being mindful of the
benefits of applying different fusion weights to texture-less
and edge regions, we ought to predict the fusion weights
through an attention mechanism. To do so, we initially ob-
tain a dense attention map for each pseudo-burst and sub-
sequently apply element-wise multiplication with the cor-
responding dense attention map. This adaptively rescaled
feature response is further passed through transposed con-
volution layer to up-sample and thus reconstruct the final
HR image.

Since, for burst SR we need to perform ×8 up-
sampling1, we perform three levels, with each level per-
forming up-sampling (×2). As we have 64 pseudo-bursts,
for three levels of AGU, naturally it forms a group of 16, 4,
1 pseudo-bursts group.

4. Experiments

We evaluate the proposed AFCNet for both synthetic as
well as real burst SR task. We follow the NTIRE-21 [3] and
NTIRE-22 [4] competition guidelines to carry out network
training and testing.

1The real task is to perform upsampling by ×4, additional ×2 is on
account of mosaicked RAW LR frames.
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Base frame DBSR [5] LKR [19] MFIR [7] BIPNet [12] AFCNet (ours)

Figure 2. Comparisons for ×4 burst super-resolution on SyntheticBurst dataset [3] (NTIRE-21 Track 1). Our AFCNet produces much
cleaner and sharper results than other competing approaches (specifically the marked yellow box regions).

Figure 3. Comparisons on SyntheticBurst dataset [4] for ×4 burst super-resolution (NTIRE-22 Track 1). First and second rows depicts
results of base frame up-scaled using bilinear interpolation and the proposed AFCNet respectively.

4.1. Implementation details

Our AFCNet is a single end-to-end trainable network
designed for burst SR and requires no pre-training of the
proposed module. For overall network efficiency, all burst
frames have been processed through shared AFCNet mod-
ules. AFCNet has been trained for 100 epochs on synthetic
bursts generated by utilising 46,839 sRGB images from
Zurich-RAW-to-RGB dataset [16]. We train AFCNet for
burst SR task using L1 loss only. While for real burst SR,
we fine-tune our AFCNet with pre-trained weights on Syn-
theticBurst dataset using aligned L1 loss [7]. The models
are trained with Adam optimizer. Cosine annealing strat-

egy [22] is deployed for steadily decreasing the learning rate
from 10−4 to 10−6 during training. We augment our dataset
using horizontal and vertical flips. It should be noted that
unlike [23], we have not employed any kind of ensemble
techniques to boost the evaluation metrics.

4.2. SyntheticBurst dataset (NTIRE-21 Track 1)

It consists of 300 RAW bursts for validation. Each burst
contains 14 LR RAW images (each of size 48×48 pixels)
that are synthetically generated from a single sRGB image
[5]. Table 1 shows the quantitative evaluation on Synthet-
icBurst dataset [3]. Also, we have shown the visual com-
parison between the proposed and existing SOTA methods
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HR Image Base frame DBSR [5] MFIR [7] BIPNet [12] AFCNet (ours) Ground Truth

Figure 4. Visual Comparisons for ×4 burst super-resolution on Real BurstSR dataset [3] (NTIRE-21 Track 2). Our AFCNet generates
crisper and sharper results than other competing techniques.

for ×4 burst SR task in Figure 2. From Table 1 and Figure
2, it is clear that the proposed AFCNet outperforms other
existing SOTA methods for ×4 burst SR task.

4.3. Real BurstSR dataset (NTIRE-21 Track 2)

It consists of 5,405 and 882 patches for training and vali-
dation, respectively cropped from 200 real RAW bursts im-
ages. Each input crop has a size of 80×80 pixels. As shown
in Table 1, the proposed AFCNet performs favorably well
when compared to the other existing SOTA for ×4 real burst
SR task. Also, Figure 4 demonstrates that HR images pro-
duced by the AFCNet for ×4 are sharper with vivid details
as compared to the other existing SOTA.

4.4. SyntheticBurst dataset (NTIRE-22 Track 1)

It consists of 100 and 92 RAW bursts in validation and
test set respectively. Each RAW burst contains 14 LR RAW
images (each of size 256×256 pixels) synthetically synthe-
sized from a single sRGB image [5]. Table 2 summarises
the quantitative evaluation on validation and test dataset of
the proposed AFCNet in comparison with the baseline ap-
proach on SyntheticBurst dataset [4]. While Figure 3 dis-
play the visual results produced by the proposed AFCNet
for RAW bursts from validation set. Figure 3 shows the
ability of the proposed AFCNet in producing HR images
with enriched details. We have not fine-tuned the proposed
AFCNet for this experiment and we directly tested the net-
work trained on the training set as discussed in Section 4.1.

4.5. Ablation Study

In this section, we demonstrate the importance of each
module in our proposed AFCNet. Commencing from our
base network, we introduce different network models sys-
tematically, and exhibit its performance for burst SR appli-
cation. Every network combination has been trained for 100

Methods SyntheticBurst (Real) BurstSR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Single Image 36.17 0.91 46.29 0.982
HighRes-net [10] 37.45 0.92 46.64 0.980
DBSR [5] 40.76 0.96 48.05 0.984
LKR [19] 41.45 0.95 - -
MFIR [7] 41.56 0.96 48.33 0.985
BIPNet [12] 41.93 0.96 48.49 0.985

AFCNet (Ours) 42.21 0.96 48.63 0.986

Table 1. Performance assessment on SyntheticBurst and real
BurstSR validation datasets (NTIRE-21) [3] for ×4 burst super-
resolution.

Methods Validation set Test set

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Baseline [12] 42.24 0.97 - -

AFCNet (Ours) 42.44 0.97 42.08 0.97

Table 2. Performance evaluation on validation and test set of Syn-
theticBurst dataset (NTIRE-22 Track 1) [4] for ×4 burst super-
resolution.

epochs on the training set discussed in 4.1. Table 3 marks
all the ablation experiments conducted for ×4 burst SR task
on validation set of Zurich-RAW-to-RGB dataset [16]. For
the baseline model, we employ Resblocks [21] as our fea-
ture extraction module, simple concatenation operation has
been deployed as a fusion module, and we used transposed
convolution for upsampling. The baseline network obtains
36.38 dB PSNR. After appending the proposed modules to
the baseline, their seem to be a significant and consistent
improvement in results. For example, inclusion of align-
ment module and back projection approach improves the
PSNR by 2.54 and 0.58 dB respectively. While, feature ex-
traction stage which is composed of EDTB [36] achieves
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Table 3. Significance of AFCNet modules assessed on Synthet-
icBurst validation set [3] for ×4 burst SR task.

Modules A1 A2 A3 A4 A5 A6

Baseline
Alignment (§3.1)
Back-projection (§3.1)
EDTB (§3.2)
APBF (§3.3)
AGU (§3.4)

PSNR 36.38 38.92 39.50 41.20 41.80 42.21

significant gain of 1.70 dB in the performance. Inclu-
sion of APBF module contributes improvement of 0.60 dB
whereas, adaptive group up-sampling block takes the gain
to 42.21 dB. Overall, our AFCNet attains a captivating per-
formance gain of 5.83 dB over the baseline.

5. Conclusion

In this paper, we propose an adaptive feature consoli-
dation network (AFCNet) for burst super-resolution. The
proposed AFCNet is end-to-end trainable with provision
for implicit feature alignment mechanism as well as for
inter-frame communication. Additionally, it utilizes adap-
tive group up-sampling technique to progressively up-scale
the multi-frame features. With the help of experimental
analysis, it is observed that the proposed sub-modules work
jointly to reconstruct the high-resolution image with en-
riched details and thus, outperform other existing SOTA
approaches for burst super-resolution task. Meticulously
carried out ablation study show significant improvement in
the network performance after inclusion of its sub-modules
viz. feature alignment, feature extraction, fusion and up-
sampling modules.
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