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Abstract

Single image deraining is an extreme challenge task
since it requires to not only recover the spatial detail and
high-level contextualized structure of the underlying image
but also remove multiple rain layers with various blurring
degrees and resolutions. Despite of the great performance
advance with the deep learning networks, the dominated re-
searches devote to either constructing deeper and compli-
cated network architecture for recovering reliable detailed
texture at the original resolution of the input image or ex-
ploiting multi-scale encoder-decode structure for learning
semantic context in more larger receptive field while are
still far from sufficiency to capture both complementary de-
tailed and semantic contexts. This study proposes a novel
dual heterogeneous complementary networks consisting of
a main original resolution learning subnet and an auxiliary
encoder-decoder subnet for exploring both detailed struc-
ture and semantic contexts. Specifically, to capture more
plausible intermediate features in dual subnets, we con-
currently evaluate the deraining losses of both branches in
training phase, and exploit an auxiliary pseudo-label super-
vised attention module to further guide the feature learning
in the main subnet. Moreover, to reconstruct more nat-
ural and sharper images, we incorporate multiple losses
for network training including an improved MSE, an edge-
based loss to recover reliable shape information, and a
perceptual loss by evaluating the reconstruction error on
the feature map of the learned VGGNet model instead of
pixel intensity. Experiments on several benchmark derain-
ing datasets demonstrate great superiority over the state-of-
the-arts methods.

1. Introduction
Visibility degradation of images captured in adverse

weather such as rain, haze, and fog, causes great loss of
the desirable information, which yields harmful effect on
the performance of various high-level vision tasks such
as image classification, object detection, video surveil-
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Figure 1. Deraining performance (PSNR) and model size (param-
eter number) comparisons between various deep models on the
Rain200H dataset. Our proposed MCAN can achieve the best per-
formance with the moderate model size.

lance, and aerial robots. To conquer the performance de-
terioration with the low quality rainy images, removal of
the existing rain or raindrops in the rain-polluted obser-
vation has drawn considerable research attention in recent
years [2, 11, 12, 14, 16, 17, 23, 28], and the existing methods
are mainly categorized into traditional optimization-based
and deep learning-based paradigms.

Traditional methods generally exploit the specific prior
knowledge to model the underlying structure of the clear
image, and adopt various optimization strategies to itera-
tively restore the clear image. For example, Chen et al. [2]
proposed visual depth guided rain streaks removal method
by leveraging the sparsity prior while Luo et al. [16] ex-
plored discriminative sparse coding for single image de-
raining. Further, Kang et al. [12] investigated dictionary
learning-based image decomposition for rain streak re-
moval, and Li et al. [14] adopted Gaussian mixture models
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to model rain layer priors. Although the deraining perfor-
mance has been improved with the elaborated prior knowl-
edge, the proper priors for various scenes are changeable
and diverse, and the optimization procedure of the prior-
regularized deraining model is also complicated.

Recently, driven by the powerful representation capabil-
ity of deep convolution neural network (CNN), deep learn-
ing based methods have became the dominated paradigm
for single image deraining, and promising performance
has been achieved. Most methods concentrate on build-
ing more sophisticated network architectures [4, 5, 13, 19,
20, 22, 26, 34, 37] or designing robust better learning man-
ners [11,17,23,28], and have continuously improved the de-
raining performance. The dominated pipeline of the current
CNN models mainly adopts multiple convolution blocks
(CB: Conv layer and activation function pairs) to learn rep-
resentative feature in the original resolution of the input
images, and serially pile up a large number of CBs to in-
crease the network depth for capturing the context depen-
dency in large respective field. However, these serially con-
nected CB models do not explicitly capture the multi-scale
representative features and different layers of rain struc-
tures, which are the intrinsic attributes of the existed rain
in observation. To handle this issue, on one hand, several
works [6, 10] investigated to exploit multi-scale informa-
tion for image deraining, and mainly adopted multiple ho-
mogeneous subnets (several main streams) to model differ-
ent scales of contexts in several synthesized resolution im-
ages, respectively. These multiple subnets would lead to
more complicated network architectures and high computa-
tional cost. On the other hand, motivated by the multi-level
learning characteristics of the convolution-based encoder-
decoder (E-D) networks, some works [29] leveraged this
compact network structure to effectively capture multi-scale
contexts in a lightweight way. However, these E-D models
utilize the coordinate depth of convolution blocks to learn
the representative features on different scales, and may suf-
fer from insufficient modeling capability at the original res-
olution of the input image since the deraining task aims at
recovering all detailed information.

To solve the above limitations, this study proposes a
novel dual heterogeneous complementary network (DHCN)
for single image deraining. Specifically, the proposed net-
work consists of two heterogeneous branches: one main
subnet for exploiting the representative feature of the de-
tailed structure at the original resolution of the input im-
age and one auxiliary encoder-decoder subnet for capturing
semantic context at multiple scales (resolutions). We es-
tablish the main subnet with multiple dual attention guided
convolution blocks (DAGCB) to automatically select both
effective and important channel of feature and spatial re-
gions for recovering the detailed textures and spatial struc-
tures while construct the auxiliary subnet with an encoder-

decoder structure to learn the complementary semantic con-
texts, where the learned multi-scale contexts of the auxil-
iary subnet have been aggregated with the intermediate fea-
tures of the main subnet to guide more effective and robust
learning in the following blocks. Despite of the employed
two branches, our overview DHCN still maintains moderate
model size due to the reduced channel number designing in
the auxiliary subnet. Fig. 1 shows the compared derain-
ing performances and model sizes between our method and
the state-of-the-art (SoTA) deep models. Moreover, we uti-
lize two respective losses to evaluate the learning capability
of the dual subnets, and the estimated rain-free image in
the auxiliary subnet is adopted to obtain an guided attention
map for automatically emphasizing important and effective
factors for deraining, dubbed as pseudo-label guided atten-
tion module (PLGAM). In addition, to restore more natu-
ral and sharper clear image, we incorporate multiple losses
for network training including an improved MSE, and an
edge-based loss to recover reliable shape information, and
a perceptual loss by evaluating the reconstruction error on
the feature map of the learned VGGNet model instead of
pixel intensity. Experiments on several benchmark derain-
ing datasets demonstrate great superiority over the state-of-
the-arts methods.

In summary, our contributions mainly have three-fold:
1) We exploit a novel dual heterogeneous complementary
deraining network, where the complementary features for
the detailed spatial textures and the semantic contexts can
be learned with the main subnet at the original resolution
and the auxiliary encoder-decoder subnet at several levels
of resolutions, respectively.
2) We leverage the learned semantic contexts and the pre-
dicted rain-free image in the auxiliary subnet to guide the
feature learning procedure of the main subnet. Specifically,
we exploit an aggregation module to transfer the multi-scale
semantic contexts of the auxiliary subnet to the main sub-
net, and a pseudo-label-guided attention module to carry out
supervision for the automatic emphasizing of the important
and effective features in the main subnet.
3) We incorporate multiple losses for network training in-
cluding an improved MSE, an edge-based loss and an per-
ceptual loss to recover more nature and sharp rain-free im-
age.

2. Related Work

The goal of the single image deraining is to recover a
clear (rain-free) image from its rainy observation, and sig-
nificant progress has been witnessed benefiting from the
evolution of the deep convolution neural networks. This
section briefly surveys the deep learning based single image
deraining paradigms including the single scale deep models
and multi-scale learning networks.
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2.1. Single-scale deep models

Removal of rain streaks or drops in a single image is a
fundamental but extreme challenging low-level vision task
due to its ill-posed nature. Although traditional model-
based methods have demonstrated acceptable deraining per-
formance by exploiting various hand-crafted priors based
on empirical observation, the employed priors still lack
sufficient modeling capability to further boosting perfor-
mance for diverse deraining scenarios. Recently, deep con-
volution networks have been popularly applied for single
image dearining task, and manifested increasing perfor-
mance progress via designing complicated and deep archi-
tecture. [3–5, 31, 37]. Fu et al. [4, 5] first explored a simple
deep CNN to learn mapping relation between the rain-clear
images and further extended the simple architecture via in-
corporating the deep residual-block and a global skip con-
nection for performance boosting. These pioneering works
are elaborated to remove the rain structure from the decom-
posed high-frequency components of the rainy images, and
validated significant superiority over the model-based de-
raining methods. Since the deraining task is to recover all
detailed structure and texture in the original scale of the
inputted rainy images, the following dominated CNN ar-
chitectures are evolved with the complex connection and
effective module development of high-modeling capability
on the single scale. Yang et al. [33] employed a recur-
rent dilated network for joint rain detection and removal
network by recursively leveraging the stage-wise derained
results while Li et al. [13] incorporated the squeeze-and-
excitation block [9] into the recurrent neural network ar-
chitecture to automatically learn important feature maps for
rain removal. Zhang et al. [37] took the rain density into
account to guide the network learning, and Qian et al. [19]
automatically learned the attention map to guide the resid-
ual map generation. To enhance the visual quality of the de-
rained results, adversarial learning [1] was also exploited by
incorporating the discriminated loss with the reconstruction
fidelity loss [18,19] for pursuing more sharp and natural im-
ages. Further, Fan et al. [3] integrated a residual-guide net-
work with recursive modules and multi-level supervision to
progressively recover derained images whilst Wei et al [28]
exploited a semi-supervised deraining paradigm to enhance
the generalization capability on unseen rain types. Later,
Ren et al. [20] proposed a better and simpler baseline de-
raining network via incorporating progressive ResNet, re-
current blocks inside and cross stages, and loss functions for
boosting performance. Yang et al. [32] investigated a fractal
band learning network to capture scale-robust rain features,
and Yasarla et al. [35] aggregated the Gaussian process into
a semi-supervised learning paradigm for image deraining
task. To improve the interpretability, Wang et al. [24] in-
tegrated the convolution dictionary learning with the deep
networks while Fu et al. [7] exploited a dual graph convolu-

tion network with two orthogonal graphs to carry out global
relational modeling and reasoning for rain streak removal.
In addition, meta-learning-based method [8] has also been
investigated to construct a good generalization model for
single image deraining. All these existing deep models op-
erating on the original resolution of the input image have to
stack many convolution blocks such as decades or hundreds
to model long dependency, and thus generally yields large-
scale model for performance lifting. This study employs
a lightweight single-scale network with several specifically
designed modules as the main branch while adopt an auxil-
iary encoder-decoder branch to capture multi-scale comple-
mentary contexts.

2.2. Multi-scale deep models

In order to model multiple rain streak layers and wide
varieties of image contents, multi-stage methods, which are
usually implemented in a progressive manner. [6, 36, 38],
have been exploited for single image deraining. For exam-
ple, Zheng et al. [38] employed three separate subnets to
remove the heavy rain in a coarse-resolution level of the
pyramid first and then reduce the light rain in the high-
resolution level, where the encoder-decoder architectures
were adopted in the two coarse levels while a plain resid-
ual CNN network was used in the high-resolution level.
Jiang et al. [10] presented a multi-scale progressive fu-
sion network (MSPFN) via collaboratively modeling the
rain streaks from multiple scales with the pyramid rep-
resentation. Most multi-stage paradigms generally adopt
several independent subnets (several main-streams) to cap-
ture high-representative contexts on multi-scale input im-
ages, and unavoidably yield complicated and high-cost
CNN models. Motivated by great success of the encoder-
decoder architectures such as U-Net [21] and FCN [15] in
semantic image segmentation, Yamamichi [29] introduced
a simply-implemented and naturally multi-scale deraining
framework with a single encoder-decoder subnet, and pro-
posed a multi-level context gating knowledge transfer net-
work (MCGKT-Net). To lift the deraining performance,
this method leveraged the interactive learning between the
learned features of encoder and decoder paths for internal
knowledge transfer, and further incorporated the external
knowledge in other task domains. Despite of the simple ar-
chitecture, MCGKT-Net demonstrated promising deraining
performance. However, MCGKT-Net employed the base-
line encoder-decoder architecture by doubling the feature
channel number along with the increased scale while the
interactive learning adopted convLSTM unit for capturing
the relation between features, where both would yield large
number of parameters. Moreover, the identical convolution
block are usually used in different scales of the encoder-
decoder network and may cause insufficient representation
capability in the original input resolution, which is crucial
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to recover the detailed texture of the clear image. This study
employs a lightweight encoder-decoder subnet with the re-
duced channel number in the coarse levels as an auxiliary
branch for capturing multi-scale of contexts in larger re-
ceptive field while leverage a serially connected convolu-
tion blocks as the main branch for learning the fine and de-
tailed texture context at the original resolution. With the
dual heterogeneous branches, our proposed framework has
the advantage of high modeling capability in complemen-
tary detail structure and high-representative contexts, and
thus boosts the deraining performance.

3. Proposed dual heterogeneous complemen-
tary network

In this section, we present in detail the proposed dual
heterogeneous complementary deraining network (DHCN).
DHCN mainly consists of a shared shallow module, a main
subnet for learning the representative features at the origi-
nal resolution, an auxiliary encoder-decoder subnet to learn
multi-scale semantic contexts for enhancing the comple-
mentary modeling capability of the main subnet, a sim-
ple aggregation module to transfer the multi-scale context
of the auxiliary subnet to the main subnet, and a pseudo-
label guided attention module, which leverages the pre-
dicted rain-free image in the auxiliary subnet to automat-
ically learn a supervised attention map. The conceptual
framework of our proposed DHCN is illustrated in Fig. 2.

On the whole, an input rainy image firstly passes through
the shared shallow module with two vanilla convolution lay-
ers to transform the input RGB channel to features Xs,
and then the transformed features are imported into both
main and auxiliary subnets, respectively, to further extract
more representative contexts at various resolutions. Since
the auxiliary subnet aims to assist the feature learning of
the main subnet, the multi-scale contexts extracted from
the encoder and decoder paths are aggregated with inter-
mediate features of the main subnet to enhance the model-
ing capability. Moreover, the predicted rain-free image by
the auxiliary subnet is leveraged to our proposed pseudo-
label guided attention module to learn a supervision atten-
tion map for further selecting and emphasizing the impor-
tant features while the output of the main subnet is as the
final estimation of the rain-free image. What is more, in the
dual main and auxiliary subnets, we incorporate multiple
losses for our network training. Next, we substantiate the
network architectures of the dual heterogeneous networks:
the main and auxiliary subnets, the proposed pseudo-label
guided attention module and the adopted multiple losses.

3.1. The dual heterogeneous networks

The existing deraining CNN models mainly follows two
architecture designs: a single-scale feature modeling net-
work and a multi-scale context exploitation pipeline with

an encoder-decoder structure. The single-scale CNN model
piles up a serial of convolution layers at the original resolu-
tion of the input, and aims to generate the reliable clear im-
age with spatial details [11,17,23,28], which usually suffers
from semantic robustness in the predicted output due to the
limited receptive field. In contrast, the multi-scale exploita-
tion models [6, 10] gradually decrease the resolution of the
input to construct multi-scale representations, and employ
similar convolution blocks on all scales for feature learn-
ing at the encoder path. Then, the decoder path progres-
sively applies deconvolution/up-sampling operations to re-
cover the original resolution, and exploits the semantic con-
texts using the convolution blocks on large receptive field.
Although these encoder-decoder models have powerful ca-
pability of multi-scale information modeling, they are in-
sufficient to capture spatial details due to the repeated use
of resolution decreasing operation. To handle the inherent
limitations of the aforementioned CNN models, this study
proposes a novel dual heterogeneous network by leverag-
ing the complementary feature modeling capability of two
existing pipelines to generate both contextually reliable and
spatially accurate rain-free image. Our dual heterogeneous
networks are composed of the main and auxiliary subnets
with different network architectures to exploit complemen-
tary features and contexts, where the main subnet aims to
learn the representative features of the spatial details at the
original resolution while the auxiliary subnet is used to learn
multi-scale contexts at several levels of resolutions. Next,
we will present the detailed architectures of the main and
auxiliary subnets.
The main subnet: for simplicity, we pile up a serial of same
blocks, dubbed as dual attention guided convolution blocks
(DAGCB), to configure our main subnet, which can pre-
serve all fine details from the input image to the predicted
output. Since the main subnet aims to capture the spatial de-
tails at the same resolution as the input, no down-sampling
or resolution-reduction operation has been used. Moreover,
in order to automatically emphasize important and effective
feature and regions, we incorporate both channel and spa-
tial attentions with the vanilla convolution layer, and pro-
pose a dual attention guided convolution blocks (DAGCB)
as the basic component of the main subnet. The schematic
of DAGCB is illustrated in Fig. 3(a). Given a feature map
X, the DAGCB first transforms it to X̂ using two convolu-
tion layers, and then employs channel and spatial attention
modules, which mainly consist of global average pooling
(GAP), convolution layer and sigmoid activations, to learn
both attention maps: AC and AS . The channel and spa-
tial attention guided feature maps: XC and XS can be ex-
pressed as:

XC = X̂⊙AC ,XS = X̂⊙AS , (1)

where ⊙ denotes the element-wise multiplication. Finally,
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Figure 2. The conceptual architecture of our proposed DHCN.
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Figure 3. The architecture of the dual attention guided convolu-
tion block (DAGCB) and the pseudo-label guide attention module
(PLGAM).

the output of the DAGCB is the aggregated results of the
input and the attention guided features:

X̄ = X+XC +XS (2)

After multiple stacked DAGCBs, we adopt a reconstruc-
tion layer to estimate the final rain-free image.
The auxiliary subnet: We construct the auxiliary subnet
using a Unet-like architecture, which mainly consists of
symmetric encoder and decoder paths. In overview, both
encoder and decoder paths in the auxiliary are composed

of S blocks, and each block contains 2 convolution layers
with 3*3 kernels following the PReLU activation function
after each layer. Since the encoder-decoder subnet serves as
an auxiliary role to exploiting multi-scale contexts instead
of preserving all potential information in each scale, we re-
tain similar channel number of the learned feature maps in
all scales instead of channel doubling with scale increas-
ing, which can greatly reduce the parameters in the auxiliary
subnet. Moreover, we also employ a point-wise convolution
layer instead of the simple skip connection to transform the
feature map of the encoder to the corresponding decoder
path.

In detail, given the output Xs of the shared shallow
module, the auxiliary subnet firstly extracts the represen-
tative features YE

0 at the 0 − th order scale using two
vanilla convolution layers, and then employs a down-
sampling operation using a vanilla convolution with stride
parameter 2 to obtain the first-order scale of input feature
XE

1 = fConv3s2(Y
E
0 ). Let’s denote the output features of

the encoder and decoder paths as [YE
0 ,Y

E
1 , . . . ,Y

E
S ] and

[YD
0 ,YD

1 , . . . ,YD
S ], the input: XD

s of s− th scale block in
the decoder path can be formulated as:

XD
s = fCat(fPw(Y

E
s+1), fUp(Y

D
s+1)) (3)

where fUp represents the bilinear up-sampling operation,
fPw is the point-wise convolution to transform the learned
feature map to the corresponding decoder while fCat de-
notes the concatenation layer. Finally the output of 0 − th
order scale in the decoder path is imported to a recon-
struction layer to provide an auxiliary estimation of the
rain-free image. What is more, we also unify the size
of the encoder and decoder’s outputs: [YE

0 ,Y
E
0 , . . . ,Y

E
S ]

and [YD
0 ,YD

1 , . . . ,YD
S ], and aggregate them together to be
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feed-backed to three intermediate DAGCBs for providing
the complementary contexts of the main subnet.

3.2. The pseudo-label guided attention module

As introduced above, the auxiliary subnet can estimate
an intermediate rain-free image, denoting it as GA ∈
RW×H×3, which can be potentially leveraged for further
enforcing the modeling capability of the main subnet. This
study exploits a pseudo-label guided attention module (PL-
GAM) for making full use of the auxiliary estimation and
boosting the deraining performance of the main subnet. The
schematic diagram of PLGAM is illustrated in Fig. 3(b).
Since the output image GA of the auxiliary subnet is es-
timated from the decoder’s feature YD

0 using the recon-
struction layer via minimizing the reconstruction error of
the ground truth image, and thus we dub it as pseudo label.
The PLGAM aims at leveraging the pseudo label to auto-
matically learn a supervision attention map for refining the
auxiliary subnet’s contextual feature YD

0 , and then the re-
sulted attention guided context is aggregated with the shal-
low feature Xs as the input of the main subnet. Specifically,
with the last stage output YD

0 ∈ RW×H×C of the auxiliary
subnet’s decode, a reconstruction layer is adopted for pro-
viding an estimation GA of the rain-free image. Next, per-
pixel attention map based on the pseudo label GA are gener-
ated using a point-wise convolution followed by the sigmoid
activation, and the generated attention mask is then uti-
lized to re-calibrate the transformed features from YD

0 us-
ing a point-wise convolution, which results in an attention-
guided feature map. With a residual connection structure,
the attention-guided feature is added with YD

0 to produce
the output of the PLGAM, which is passed to the main sub-
net for further processing.

3.3. Multiple loss functions

Given the predicted rain-free images GM and GA of the
main and auxiliary subnets and the corresponding ground-
truth G, we construct the loss using both predictions: GM

and GA to optimize our DHCDN in an end-to-end learning
manner as the followings:

LTotal = LM (GM ,G) + LA(GA,G) (4)

In most works, mean squared error (MSE) is commonly
used for formulate the losses: LM and LA to conduct net-
work training. However, the simple MSE loss usually pro-
duces blurry and over-smoothed visual effect due to the loss
of high-frequency textures with the squared penalty. In this
study, we adopt an improved MSE loss, which is more toler-
ant to small errors and has better convergence property dur-
ing training [20]. Further, to preserver more reliable edge
information and natural image recovering, we also incorpo-
rate an additional edge loss to constrain the high-frequency
component and a perceptual loss via feature comparison of

pre-trained VGGNet instead of per-pixel comparison. The
integrated loss is expressed as the following:

L∗ = LMSE
∗ + LEdge

∗ + LPer
∗ (5)

where ∗ denotes M or A. Concretely, we formulate the
multiple losses

LMSE
∗ =

√
(G∗ −G)2 + ϵ2

LEdge
∗ =

√
(Lap(G∗)− Lap(G))2 + ϵ2

LPer
∗ =

∑
i

∥ϕi(G∗)− ϕi(G)∥
(6)

where ϵ is a penalty coefficient, and is empirically set to
10−3 in our experiment. Lap(·) represents the edge maps
using via the Laplacian operator while ϕi(·) means the fea-
ture extraction of i−th block from the pre-trained VGGNet
using ImageNet dataset. In our experiment, we extract the
feature map from 3, 4 and 5 convolution blocks of the VG-
GNet for computing the perceptual loss.

4. Experimental Results
In this section, we conduct extensive experiments to

demonstrate the effectiveness of our proposed dual het-
erogeneous complementary deraining network. We first
present the experimental setting, and then provide the com-
parisons with the state-of-the-art deraining methods and ab-
lation study.

4.1. Experimental setting

Following the work [20], we carry out network train-
ing using the collected clean/rain images about 13700
pairs, and obtain a CNN model for evaluating the derain-
ing performance on five rainy datasets: Rain 200L [31],
Rain 200H [31], and Rain800 [20], Rain1200 [37] and
Rain2800 [5]. The images in Rain200L has light rain and
is relatively easy dataset while the images in Rain 200H are
contaminated by more heavy rain with different shapes, di-
rections, and sizes, and thus is the most challenging dataset
in deraining community. The rainy images in Rain800
are synthesized by adding fine rain streak to the clean im-
ages, and have the fine-grained streaks with noise-like struc-
tures. The rainy images in Rain1200 dataset are generated
with different levels of rainy density under light, medium
and heavy rain conditions while the rainy images in the
Rain2800 dataset are synthesized with 14 types of rain pat-
terns for one clean image.

Two evaluation metrics, i.e. PSNR and SSIM [27], are
adopted to assess the performance of our deraining method
quantitatively. SSIM evaluates the image structure differ-
ence and is more consistent with human perceptual mea-
sure. We use pytorch to train and test our proposed method.
In the training process, we crop 256× 256 patches from the
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Table 1. Average PSNR/SSIM comparison on five deraining datasets. Red and blue colors are used to indicate top 1st, 2nd performance.

Methods Rain1200 Rain200L Rain200H Rain800 Rain2800 #.Parameters Times (s)
Rainy 23.64/0.727 26.71/ 0.834 13.79/0.367 22.18/0.663 25.16/0.782 - -
DerainNet [5] 23.39/0.832 34.46/0.957 26.11/0.792 22.78/0.803 24.31/0.861 58,175 0.61
JORDER [25] 24.32/0.862 34.95/0.959 22.05/0.727 22.24/0.776 29.03/0.888 4,169,024 0.43
SEMI [28] 26.06/ 0.822 25.03/0.842 16.56/0.486 22.35/0.788 24.43/0.782 - -
DIDMDN [37] 29.66/0.899 35.40/0.962 26.61/0.824 22.53/0.812 28.13/0.867 135,800 0.53
RCDNet [30] 29.81/0.859 35.28/0.971 26.18/0.836 24.59/0.821 33.04/0.946 3,166,355 -
RESCAN [13] 30.54/0.879 29.80/0.881 26.75/0.835 24.99/0.830 31.29/0.904 499,668 0.61
UMRL [34] 30.55/0.910 29.18/0.923 26.01/0.832 24.41/0.829 29.97/0.905 984,356 2.02
PReNet [20] 31.49/0.910 32.44/0.950 26.77/0.858 24.79/0.849 31.75/0.916 168,963 0.156
SPANet [26] 31.84/0.900 35.79/0.965 26.27/0.865 22.41/0.838 28.46/0.880 283,716 1.72
MSPFN [10] 32.06/0.913 31.64/0.925 27.39/0.843 27.01/0.851 32.85/0.930 15,823,424 -
Ours 31.85/0.900 36.37/0.970 29.56/0.883 29.46/0.896 33.04/0.930 2,553,105 0.27

Input      DerainNet SEMI      DIDMDN     UMRL

Ground-Truth        RESCAN                 PReNet MSPFN       Our

(a) one example image from the Rain200L dataset
Input                                    DerainNet SEMI                                   DIDMDN                                   UMRL

Ground-Truth                          RESCAN                                   PReNet MSPFN                                      Our

(b) one example image from the Rain200H dataset

Figure 4. Compared visual results with the state-of-the-art models.

training samples, and adopt Adam to optimize our network.
The networks are trained with 4 × 105 iterations, a batch
size of 16, and the learning rate is set as 2× 10−4.

4.2. Quantitative Evaluation

Comparison with the SoTA models: We compare our
proposed DHCN with the state-of-the-art methods, includ-
ing deep detail network (DerainNet) [5], JORDER [25],
semi-supervised transfer learning (SEMI) [28], density-
aware deraining (DIDMDN) [37], the rain convolutional

574



Table 2. Ablation results.

Models Rain200L Rain200H Rain800 Rain1200 Rain2800 Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM #.Params

w/o SA 32.22 0.926 28.25 0.852 26.53 0.871 32.37 0.913 32.42 0.926 30.36 0.897 1,530,033
SinNet 33.90 0.944 28.68 0.857 28.27 0.876 31.56 0.910 32.74 0.929 31.03 0.903 1,530,058
+ LPer

∗ 35.33 0.965 28.92 0.876 27.56 0.880 31.70 0.912 32.59 0.927 31.22 0.912 1,530,058
+ PLGAM 33.24 0.937 28.69 0.856 28.14 0.873 31.20 0.910 32.84 0.930 30.97 0.901 1,552,058
+ PLGAM+ LPer

∗ 34.32 0.957 28.49 0.866 26.08 0.877 32.28 0.915 32.54 0.926 30.74 0.908 1,553,058
DualNet 34.29 0.953 29.06 0.865 28.27 0.880 32.53 0.914 32.90 0.931 31.41 0.909 2,531,105
+ LPer

∗ 35.44 0.960 29.45 0.882 27.94 0.880 32.18 0.908 32.70 0.929 31.54 0.912 2,531,105
+ PLGAM 34.66 0.953 29.45 0.869 28.93 0.883 32.07 0.909 32.99 0.932 31.61 0.909 2,553,105
+ PLGAM+ LPer

∗ 36.37 0.969 29.56 0.883 29.46 0.896 31.85 0.900 33.04 0.930 32.06 0.916 2,553,105

Input                                  SinNet SinNet+PLGAM SinNet+𝑳𝒑𝒆𝒓 SinNet+PLGAM+𝑳𝒑𝒆𝒓

Ground-Truth                             DualNet DualNet+PLGAM DualNet+𝑳𝒑𝒆𝒓 DualNet+PLGAM+𝑳𝒑𝒆𝒓

Figure 5. Compared visual results w/ or w/o the proposed modules in our DHCN.

dictionary network (RCDNet) [24], recurrent squeeze-and-
excitation context aggregation net (RESCAN) [13], uncer-
tainty guided multi-scale residual learning (UMRL) [34],
progressive deraining network (PreNet) [20], spatial atten-
tive network (SPANet) [26], and multi-scale progressive
fusion network (MSPFN) [10]. The quantitative metrics,
model sizes and running times for a 512× 512 image using
our proposed model and the compared deraining methods
are manifested in Table 1. From Table 1, we can observe
that our proposed DHCN has illustrated better or compara-
ble SSIM and PSNR in all datasets. Moreover, the visual re-
sults with our network and different SoTA methods on two
example images have been shown in Fig. 4. From Fig. 4, we
can see that the proposed model can restore clearer results.

Ablation Study: Next, we evaluate the effectiveness of
different proposed modules. Specifically, we denote the sin-
gle main subnet as SinNet, and assess the deraining perfor-
mance by incorporating different modules such as removal
of the spatial attention (SA) in the DAGCB, the perceptual
loss, the PLGAM via directly predicting the pseudo label
from the shared shallow feature using a simple reconstruc-
tion block without the auxiliary subnet. It should noted that

the simple reconstruction block for the pseudo label would
cause unreliable estimation, and thus the incorporation with
the SinNet only may degrade the deraining performance.
Moreover, we dub the incorporated main and auxiliary sub-
nets as DualNet, and then evaluate the performance w/ or
w/o additional modules: PLGAM and the perceptual loss.
The ablation results are illustrated in Table 2, which mani-
fests our proposed DHCN achieves best performance. The
visual results of one example image are given in Fig. 5.

5. Conclusions

This study proposed a novel dual heterogeneous com-
plementary deraining network, which is composed of two
subnets: a main original resolution feature learning subnet
and an auxiliary subnet with encoder-decoder structure. To
make full use of the intermediate prediction in the auxil-
iary subnet, we exploited a pseudo-label guided attention
module for supervising the important information exploita-
tion. Moreover, we also incorporated multiple losses for
our end-to-end network learning. Extensive experiments
demonstrated that our proposed method achieved superior-
ity performance over the SoTA methods.
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