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Abstract

The number of pictures taken by smartphones is grow-

ing exponentially. However, the smartphones’ limitations

both in size and cost negatively impact on the quality of the

implemented sensors. At the same time, their computing

power has also been steadily improving, allowing the usage

of more complex processing methods to enhance images.

In prior works, deep neural networks trained with matched

sensor outputs and DSLR images have shown to bring sub-

stantial improvements to the images, compared to classi-

cal and handcrafted methods. We propose a lightweight

attention-based network (LAN) that employs a convolu-

tional layer to learn the input mosaic and an unsupervised

pre-training strategy. Our method is validated on standard

benchmarks and shown to improve over the state-of-the-art

in both perceptual and fidelity terms without hindering GPU

inference time on smartphone devices. Our code is avail-

able at: github.com/draimundo/LAN

1. Introduction

Smartphone photography has been constantly evolving

in the past decades. Initially, the images taken by smart-

phones were of low quality, and compact cameras dom-

inated the consumer market for digital photography. By

2013, smartphones were outselling digital cameras by a

factor of ten-to-one. Nowadays, smartphones are used for

most of the stills taken worldwide. While often advertised

for similar output resolutions, the quality of shots taken by

smartphones still is inferior to the one attained by digital

single-lens reflex cameras (DSLR), which generally offer

better dynamic range, color accuracy and less digital noise,

to name a few.

One disadvantage of smartphones, compared to DSLR

cameras, is that due to their compactness, the integrated lens

and sensor systems are of smaller size, leading to a poorer

signal-to noise ratio (SNR) and other undesirable physical

effects on the (unprocessed) image. On the other hand, the

computational power of smartphones has been on a steady

rise, allowing the use of more powerful methods to com-

pensate for hardware limitations.

Most of the digital sensors embedded in cameras are

based on the Bayer filter mosaic, which is a color filter ar-

ray (CFA) superimposed on the digital image sensor, mak-

ing specific pixels more sensitive to certain wavelengths

(mainly green, red, blue). This allows imagers to capture

the color information of a scene, and output a RAW im-

age. However, this spatial separation of colors requires a

reconstruction step, called demosaicing, to obtain an image

containing complete color information at each pixel posi-

tion and a final RGB image.

In classical methods, this demosaicing step is a part of

the image signal processing (ISP) system [28], that addi-

tionally alleviates the effects of sensor noise, adjusts the

color balance, and improves the overall image quality. Even

so, the latter is limited by the sensor characteristics, and the

added processing often trades noise for a lack of details in

the result given to the end-user.

In learned ISP, a deep learning model is trained to re-

produce high-quality images taken with a DSLR camera

from the lower-quality RAW output of a smartphone sensor,

showing substantial improvement over the default smart-

phone output. We build upon previous results and show that

using a strided convolutional layer to learn the input mosaic

greatly improves sharpness without increasing the mobile

inference time by a significant amount. Furthermore, we

propose an unsupervised method to pre-train the network

on classically demosaiced images.
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(a) Smartphone output (b) DSLR reference

(c) CSANet [10] (d) LAN (ours)

Figure 1. Quality and alignment of the different outputs. Best

viewed zoomed-in on an electronic version.

As an introductory example, Fig. 1 shows a comparison

between the different outputs encountered in this work. In

Fig. 1a, the output produced by the smartphone ISP dis-

plays good contrast, but the details are exaggerated by a

watercolor effect, which also washes out the tones. Fig. 1b

depicts the same scene taken by the DSLR camera, used as a

ground truth during training. Finally, Figs. 1c and 1d show

the result obtained with CSANet [10], the highest-quality

solution at the Mobile AI 2021 learned smartphone ISP

challenge (MAI21) [13], and the proposed solution. No-

tice the differences in color balance and detail (especially

visible on the blinds in the background).

2. Related Work

The usage of machine learning for RAW-to-RGB image

mapping has been increasingly popular in the last years,

which is also related to the recent boost in the computational

power of smartphones. So far, research has been focusing

on two main objectives: finding a good network design and

training process to increase image quality, and adapting the

network to the computational constraints of smartphones.

Smartphone Image Enhancement was introduced with

convolutional neural networks (CNNs) mapping the RGB

output of the smartphone to an enhanced RGB ver-

sion, by training on smartphone-DSLR image pairs, as in

DPED [14]. A first RAW-to-RGB dataset, ZÈurich RAW-

to-RGB (ZRR) was introduced for the AIM2019 chal-

lenge [15], which PyNET [17] built upon to obtain state-

of-the-art results by using a powerful multi-scale network.

At AIM2020 [16], the focus was still on image quality. Re-

cently, attention was also given to lightweight models, no-

tably at the MAI21 smartphone ISP challenge [13], where

scoring also included the mobile runtimes.

Joint Demosaicing and Denoising started by using clas-

sical methods, showing that combining both processes

brought superior performance [9], compared to solutions

treating the problem sequentially (first demosaicing the

RAW input into an RGB image, which then gets denoised).

The creation of large-scale (partly synthetic) datasets then

enabled the usage of CNNs, to improve results further [7].

Because noise is especially visible in low-light conditions,

Chen et al. [3] introduced a paired dataset, consisting of

noisy underexposed images still in the RAW format, and

reference RGB images taken with longer exposure, as well

as a CNN for recovering high-quality RGB images from

corrupted RAW inputs.

Single Image Super-Resolution (SISR) aims to recover

details in a downsampled RGB image, using a model

trained on low- and high-resolution RGB image pairs. Ini-

tially, CNNs were shown to outperform classical meth-

ods [4]. Afterwards, adaptations to the architecture and

increasing the model capacity [20, 25, 29] lead to progres-

sively better results. Furthermore, the usage of more com-

plex loss functions instead of the mean-square-error (MSE)

[40], as well as training a discriminator in parallel, as

done for generative adversarial networks (GANs) [22] have

shown to improve the output quality even further.

Multi-Frame Super-Resolution (MFSR) combines mul-

tiple input frames to increase the output resolution. This

input, combined with classical processing methods, is al-

ready in used on flagship phones to reduce the noise level in

zoomed-in and low-luminosity contexts [35]. For this task,

CNNs have also shown promising results [1]. The draw-

back to these methods is that they rely on a high number of

input frames (10-20), and therefore long acquisition times

to get the best results.

High Dynamic Range imaging (HDR) aims to produce

outputs with an improved dynamic range compared to the

input, which can consist of a single image [5, 6, 27] or mul-

tiple shots [19, 27, 36, 37]. The models are trained with

one synthetically generated side (low- or HDR), and in the

multi-exposure case have to deal with movements between

the input frames.

The Perception-Distortion Tradeoff is an observation

that often, models obtaining good numerical results, seem

to have a perceptually (for the human viewer) lower qual-

ity [2]. Multiple metrics have been introduced to somewhat

compensate for this effect, the most used ones being the

VGG loss [18], derived from the VGG image classification

network [30] and LPIPS [39].
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(a) RAW input (equal-

ized for readability)

(b) Warped RGB DSLR

target

(c) AMAZE demo-

saiced RAW target

Figure 2. Example of input patch, warped training ground truth,

and ground truth obtained by classical demosaicing

2.1. Paired RAW­RGB Dataset

The MAI2021 dataset [13] was generated using a Sony

IMX586 quad Bayer mobile sensor, and a Fujifilm GFX100

DSLR. The images were adjusted by first converting the

RAW images to RGB using a classical algorithm, and then

using PDC-Net [32] to warp the RGB high-quality objec-

tive to the demosaiced input. This not only tries to compen-

sate for the possible physical misalignment of the cameras

during image collection, but also for the different sensor

characteristics (e.g sensor size, focal length) which change

structural characteristics of the image. Differences can

be seen between Fig. 1b (unprocessed DSLR output) and

Fig. 1a where the branches on the left side do not intersect

the window borders at the same height. While this method

generally brings good results, Fig. 2a shows a selected in-

put from the MAI2021 dataset, with the processed RGB

high-quality target displayed in 2b showing severe warping.

Fig. 2c displays the output obtained by using the classical

AMAZE demosaicing method [26] on the input RAW im-

age, and shows a higher level of noise, but no warping or

alignment issues. The warping seems to occur mainly on

images containing repeating patterns or large flat surfaces,

likely by wrong keypoint matching.

2.2. Baseline

CSANet [10] was introduced during the MAI2021 chal-

lenge [13], and was the solution with the highest PSNR

(0.43dB above all other solutions), best SSIM, and a mod-

erate runtime allowing it to place second overall. The origi-

nal architecture starts by separating the color channels with

a space-to-depth transformation, downsamples the input us-

ing a strided convolution and then uses two double attention

modules (DAMs) to learn spatial and channel dependencies,

finally upscaling the image to the desired resolution by first

using a transposed convolution and then a depth-to-space

transformation. At the lowest scale, skip-connections are

used to improve trainability.

The DAMs, shown in Fig. 4a, are inspired by the convo-

lutional block attention module (CBAM) [34], which com-

bines both spatial and channel attention, and was shown to

significantly improve the results on classification tasks.

Channel Attention first uses global average pooling on

each feature map, and then uses a bottleneck convolutional

layer with decreased channel number and a final dimension-

ality increasing layer to restore the channel dimension, as

displayed in Fig. 4b. The result of this operation weighs the

input tensor channel-wise, as introduced in SENet [11].

Spatial Attention, illustrated in Fig. 4c, bases on a depth-

wise 2−dilated 5 × 5-convolution to increase the receptive

field, without growing the complexity as much as a standard

convolution (as used in CBAM). The result of this operation

is multiplied with the input tensor, which highlights specific

regions.

3. Proposed Method

We build upon the baseline and add the modifications

proposed in the upcoming Sections. The network architec-

ture is visually detailed in Figs. 3 and 4.

3.1. Learned Demosaicing

In most RAW-to-RGB mapping CNNs, the Bayer mosaic

encountered in the RAW input image is removed by stack-

ing each 2x2 block in the original image in 4 input channels.

This ensures translational color invariance in each channel,

and biases the input interpretation towards a color separa-

tion. On the other hand, the resulting 4-channel input has a

spatial misalignement between its channels, as in the origi-

nal RAW input, every pixel carries information about a sep-

arate spatial location. One advantage of using the stacked

method is that for a fixed kernel size, the receptive field of

the first layer is doubled compared to the flat input, as en-

countered in dilated convolutions [38].

Classical demosaicing methods often explicitly use the

correlation of the luminance information between differ-

ently colored yet neighboring pixels, by interpolation over

larger regions [8]. Basing on this concept, an alternative is

to use no stacking at the input, but a stride of 2 for the first

filter which gets convolved with the RAW image, to ensure

the colors can be learned by the network. As the stride di-

vides the number of operations by 4, the computational cost

is not increased drastically by processing at full-scale. Fur-

thermore, removing the slow space-to-depth operation [31]

further reduces the latency drawback when using mobile

GPU inference.

3.2. High­Level Skip Connection

By using learned demosaicing, the span of the fea-

ture space after the first dimensionality reduction is in-

creased. This allows using the resulting feature represen-

tation in a skip connection, to circumvent downsampling

high-frequency detail. However, to avoid forcing input

noise into the output, it is added by concatenation instead
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Figure 3. LAN model. XpY s indicates a convolutional layer with kernel size X and stride Y . Skip connections are done either by addition

or concatenation, illustrated by a circled + or C symbol, respectively. Details to the DAM blocks are in Figure 4.
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(c) Spatial Attention Block

Figure 4. Submodule details. XpY s indicates a convolutional

layer with kernel size X and stride Y . C indicates a channel con-

catenation, and × a layer-wise multiplication.

of addition. Unlike CSANet, the final skip connection at the

lowest resolution is done by addition, to compensate part of

the computational complexity added by the high-level mod-

ification.

3.3. Classical Pre­Training

As mentioned in Sec. 2.1, the alignment of training RAW

inputs with DSLR images is not trivial, and often not per-

fect. Even though advanced processing methods can some-

what improve the results, the intrinsic physical sensor pa-

rameters limit perfect matches, and processing can intro-

duce further artifacts, shown in Fig. 2.

Although classical joint demosaicing and denoising

methods do not reach state-of-the-art anymore, they only

rely on input images (and generally some user fine-tuning).

This can be used to pre-train the network: instead of starting

with a random mapping, the network is first trained using

input RAW images and their classically demosaiced RGB

equivalent for a certain number of epochs. In the main

training step, the network is fed low-quality RAW images

and DSLR RGB images, and ideally only needs to learn the

new color space and denoising step.

Additionally, this pre-training can be done in an unsuper-

vised way, allowing to easily expand the amount of training

examples fed to the network overall, which usually leads to

better performance.

3.4. Loss Function

We use a combination of the different loss categories de-

tailed in the upcoming paragraphs to build the loss function

in Eq. (1).

Pixel losses: the Mean-Squared-Error (MSE or ℓ2) loss

is the most popular loss in super-resolution tasks. A com-

monly used substitute is the Mean-Absolute-Error (MAE or

ℓ1) [40]. Alternatively, the Huber loss behaves as ℓ2 for

small errors and ℓ1 for larger errors, making it theoretically

less sensitive to outliers.

Structural losses: the structural-similarity index measure

(SSIM) works on grayscale images, and bases on the hy-

pothesis that the human visual system (HVS) is more sensi-

tive to texture, which consists the pixel and its surroundings,

than absolute values. An extension of SSIM, called multi-

scale SSIM (MS-SSIM), also computes SSIM on downsam-

pled versions of the input and was shown to provide better

results than the original implementation [33].

Perceptual losses: perceptual losses, which are based

on perceptual similarity instead of similarity in pixel space,

were introduced with SRGAN [23], and showed improved

opinion scores over other loss functions. SRGAN based on

using the feature maps produced by the 5th convolution, be-

fore the 4th maxpooling layer in the pretrained VGG19 [30]

network as transformations into the perceptual space. The

Euclidean distance between the feature representation of

the reconstructed image and the reference image was then

used as a loss function. More recently, the learned percep-

tual image patch similarity (LPIPS) metric [39] was intro-

duced, which bases on the VGG [30], AlexNet [21] and

SqueezeNet [12] classification networks to produce a score.

Using smaller networks such as AlexNet or SqueezeNet

makes the loss backpropagation computationally easier, and

allows for increased batch sizes.

Color losses: the previously mentioned loss functions

generally push the network to high PSNR and SSIM scores,
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the most popular full-reference metrics to evaluate im-

age reconstruction. However, some networks attaining

high scores can show some color deviation, as even small

changes in the RGB space can lead to big perceptual color

differences. To compensate for this, DPED [14] proposed

to compute the MSE between blurred output and target im-

ages, to minimize the effect of textures, and make the loss

more global. Alternatively, we propose first blurring the im-

age using the same Gaussian blur operator with variances

σx,y = 3, then using linear transformations to map from the

RGB to the Y’UV space, before computing the MSE be-

tween the UV (chrominance) channels of the enhanced and

reference image.

Noting the reconstructed image as x̃ and the ground truth

as y, we use the following loss function (with z[U,V ] corre-

sponding to the U and V channels of the Gaussian blurred

version of z):

l(x̃, y) = 300 · lHuber(x̃, y)

+100 · (x̃[U,V ] − y[U,V ])
2

+30 ·
(

1− MS-SSIM(x̃, y)
)

+10 · LPIPSAlex(x̃, y)

(1)

which is a weighed sum of the Huber, Color, MS-SSIM and

LPIPS losses. The coefficients approximately set the mag-

nitude of each term to 1 for a fully trained model, on the

validation set.

3.5. Activation Functions

For LAN, we propose changing the ReLU activations

used in the baseline to LeakyReLU (with 0.2 leakage coef-

ficient), and use a scaled tanh (f(x) = 0.58·tanh(x)+0.5)

instead of the sigmoid activation, as in DPED [14]. The

latter allows the network to reach the extremes of the [0, 1]
pixel value range without needing to use large coefficients.

4. Experiments

Training was performed on an Nvidia Titan Xp GPU,

with a batch size of 50. The network parameters were op-

timized using the Rectified Adam (RAdam) [24] algorithm.

When pre-training is used, it is done for 200k iterations,

with a constant learning rate of 10−4. Afterwards, the net-

work is trained on RAW-RGB pairs for another 200k itera-

tions, with the same learning rate, and during a fine tuning

step of 50k iterations with a learning rate of 10−5.

Inference was done using a 16-bit floating point format,

to mimic to the 10 to 14-bit depth of the most common

Bayer RAW sensors. Inference times were evaluated us-

ing the TFLite models of the networks, on a MediaTek Di-

mensity 1000+ APU, specifically the ARM Mali-G77 MC9

GPU, as the runtimes were faster by a factor of 4 to 10 com-

pared to CPU or NNAPI inference. Inference output reso-

lution is kept to Full HD (1920 × 1088) as in the MAI21

challenge.

4.1. Dataset

The MAI21 dataset is used, with the original splits con-

sisting of 93k training image pairs, 2.2k validation image

pairs and 3.1k testing image pairs.

Additionally, the RAW images of the validation pairs

were also demosaiced as described in Sec. 2.1, to be used

as aligned pretraining images, proposed in Sec. 3.3. The

advantages of this method could be more significant if the

RAW patches were part of another (possibly without DSLR

ground truth) training split.

4.2. Ablation Study

We perform an ablation study by analysing the effect

of removing the different modifications on pixel, structural

and perceptual metrics, and compare them to the original

CSANet model. The results are reported in Tab. 1. The

results for all variants except the original CSANet were ob-

tained by using the loss function introduced in Eq. (1), and

the training procedure described in Sec. 4. The CSANet

models were trained using the original loss function and

training method. We add a classically pre-trained version

to analyze performance improvements.

All LAN variants show a significantly higher SSIM

score, indicating a better reproduction of textures, which

could be attributed to the spatial alignment between layers

of the filters at the beginning of the network. This is par-

ticularly visible for high-frequency patterns, as for example

the garage door in Fig. 5.

Adding a pre-training step increases the PSNR notice-

ably, both for the CSANet and LAN architectures. This

could be related to the ideal alignment between input and

ground truth, and that in the second step, the network only

needs to adjust to the color space of the DSLR images, learn

removing sensor noise and interpolate for high-frequency

data, instead of learning the complete pipeline immediately.

Finally, the LAN model, which uses all the proposed

modifications, shows the best numerical and also visual re-

sults, discussed in the upcoming Section.

Architecture PSNR[dB] ↑ SSIM[1] ↑ LPIPSV GG[1] ↓

LAN (ours) 24.29 0.882 0.2263

LAN-HS 24.15 0.875 0.2434
LAN-HS-PT 23.87 0.871 0.2627
CSANet+PT 23.86 0.859 0.2618
CSANet [10] 23.73 0.849 0.2552

Table 1. Results of the ablation study. Modifications: PT: Pre-

Training; HS: High-level Skip Connection.
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Model PSNR[dB] ↑ SSIM [1] ↑ Size [KB] ↓ Latency[ms] ↓ Final Score[1] ↑

LAN (ours) 24.29 0.882 197 80.6 26.68

dh isp 23.20 0.847 21 61 25.98
CSANet [10] 23.73 0.849 123 90.8 25.91
ENERZAi Research 22.97 0.839 9 65 25.67
isp forever 22.78 0.847 175 77 25.24
NOAHCTV 23.09 0.824 244 94.5 25.19

Table 2. Comparison with the best results of the MAI21 smartphone ISP challenge [13]. The latency values are computed for a Full HD

(1920× 1088) image, on the ARM Mali-G77 MC9 GPU.

(a) CSANet [10] (b) LAN (ours)

Figure 5. Effects of Learned Demosaicing.

4.3. Performance Evaluation

We compare the proposed solution to the 5 best competi-

tors at the MAI21 smarthphone ISP challenge [13], where

the final score (FS) was computed using the original score

function, in Eq. (2).

FS = PSNR + α
(

0.2− clip
(

runtime[s]
)

)

;

clip = min
(

max
(

runtime[s], 0.03
)

, 5
)

;

α =

{

20, if runtime[s] ≤ 0.2,

0.5, otherwise.

(2)

Tab. 2 shows the quality and performance metrics, as

well as the obtained final score. The model size does not

correlate well with the latency, due to the variations in ar-

chitecture and fixed costs. For example, doing convolutions

at higher resolutions requires more computations, even if

the kernel size (and therefore the memory size of the op-

eration) remains the same. Furthermore, the delays intro-

duced by memory allocation is the same for all the net-

works, so a latency floor disadvantages very small archi-

tectures. Even tough it has an increased number of layers,

LAN does not use a GPU-inefficient space-to-depth opera-

tion [31], explaining the lower latency of LAN compared to

the CSANet baseline.

The numerical scores obtained by the LAN model are

significantly higher than for all other models. While their

PSNR scores vary, the SSIM metrics of the best runner ups

are all in the same range, indicating a plateau in structural

reproduction accuracy. The increase for LAN can be at-

tributed to the learned demosaicing part, as discussed in

the last Section. We now compare some output patches ob-

tained with the Mediatek ISP, CSANet and LAN, displayed

in Fig. 6. DSLR images are provided as a comparison basis.

Detail Level: the small texts contained in the 3rd and

last rows (company info and number plate) give a good idea

of the detail level attained by the different methods. The

Mediatek ISP provides the best perceived sharpness of the 3

solutions, but on closer inspection on the company info, the

processing alters the text, which makes it harder to interpret

than the noisier output produced by LAN. Furthermore, the

details on more complex textures such as the tree in the 5th

row, are heavily flattened by the embed ISP and almost not

recognizable, unlike the methods based on CNNs.

Color Reproduction: as the ISP was not tuned with (the

same) DSLR references, absolute color comparison is not

sensible. However, contrast can be used (as it is relative),

and is clearly lower than in the CNN solutions. This is es-

pecially visible on the balcony in the 3rd row, or the plants

in the 1st and last rows. The postprocessing of the exposure

and detail flattening gives also very unnatural looks to the

image, as exemplified by the 4th row. Comparing the two

CNN solutions, the differences are not as noticeable, and

can also be related to the training methods.

Artifacts: between the CNN solutions, CSANet seems to

be more sensitive to sensor noise, which is especially visible

on the walls of the house in the 4th row. Furthermore, in

the same image, the aliasing of the cables against the sky

is more pronounced for this solution. The 5th image also

shows more unnatural colors for CSANet. At the same time,

both solutions show some residual reconstruction artifacts

in the 5th image, most noticeably on car.

Overall, the CNN solutions deliver visually more pleas-

ant images compared the ISP, and LAN provides a signifi-

cant sharpness boost over CSANet.
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(a) Mediatek ISP (b) CSANet [10] (c) LAN (ours) (d) DSLR

Figure 6. Visual comparison of the different outputs and ground truths. Best viewed zoomed-in on an electronic version.
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5. Conclusion

In this paper, we showed that adding a strided convo-

lutional layer to demosaic the input RAW image, instead

of doing the usual space-to-depth conversion allows the

network to produce RGB outputs with significantly higher

sharpness, which shows visually and in pixel, structural and

perceptual metrics. Furthermore, it can be processed faster

on mobile GPUs, leading to lower inference times.

Additionally, classically demosaicing the images allows

to pre-train the network in an unsupervised way on perfectly

aligned images, and can lead to better performance, which

we showed empirically on both the baseline and the pro-

posed model.

Finally, we compared LAN to the best solutions at the

Mobile AI 2021 Smartphone ISP challenge. While outper-

forming the PSNR runner-up by 0.56dB, it is only 20ms

slower than the fastest solution, leading to the best Final

Score among all competitors, by a large margin.
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