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Abstract

Image Inpainting has recently become an important
research problem due to the rise of generative image
synthesis models. While many solutions have been pro-
posed for this problem, it is challenging to establish a
testbed due to the different possible types of inpaint-
ing masks e.g., completion mask, expand mask, thick
brushes mask, etc. Most inpainting solutions shine on
object removal or texture synthesis, while semantic gen-
eration is still difficult to achieve. To address these
issues, we introduce the first general Image Inpainting
Challenge. The target is to develop solutions that can
achieve a robust performance across different and chal-
lenging masks while generating compelling semantic
images. The proposed challenge consists of two tracks:
unsupervised image inpainting and semantically-guided
image inpainting. For Track 1, the participants were
provided with four datasets: FFHQ, Places, ImageNet,
and WikiArt, and trained their models to perform a
mask-agnostic image inpainting solution. For Track 2,
FFHQ and Places only. This report gathers the de-
scription and discussion of all solutions that partici-
pated in the final stage of the challenge.

1. Introduction

Image inpainting is the task of filling in missing in-
formation in an image. Usually, these regions are the
outcome of human intervention, such as object removal
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or image editing, as well as degradation or artifacts.
The main goal of image inpainting is to produce real-
istic and pleasant images that harmonize well with the
rest of the image.

In recent years there has been a substantial increase
in published papers using generative models. Since the
introduction of GANs [13], several solutions for image
inversion problems such as super-resolutions [56, 67],
image restoration [65, 24], and image inpainting [60, 50]
have been successfully applied with impressive results.
However, unlike super-resolution or restoration prob-
lems where there are clear benchmarks and evaluation
protocols [1, 33], image inpainting merely relies on a bi-
nary mask that guides the inpainted region, which hin-
ders a standardization. Therefore, even though state-
of-the-art methods directly compare to others on the
same dataset, the binary masks often vary from method
to method.

Furthermore, there is a trend in GAN-based inpaint-
ing solutions due to the fast inference and relatively
fast training. Recent GAN-based methods [42, 63, 26,
37, 19, 34, 57, 58, 15, 25, 61, 50, 18, 64] produce out-
standing results at object removal or texture synthesis.
However, hallucinating new faces, such as in the image
completion task, or producing semantically coherent
objects, such as the image expansion task, is still very
challenging.

Noteworthy, VAE-based methods [70, 68], systems
leveraging Deep Generative priors [53, 69, 43] (e.g .
StyleGAN [21]), Auto-Regressive methods [62, 40, 54],
and Diffusion Models [49, 9, 31, 35, 47, 28, 44] have
been successfully applied to image inpainting.

This Image Inpainting Challenge contributes with
two main advantages for the community. First, stan-
dardize a set of different and challenging masks that
include the classical strokes and image completion or
image extrapolation. And second, to include a bench-
mark that consists of different scene representations
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Thin Strokes Medium Strokes Thick Strokes Completion Every N Lines Expand Nearest Neighbor

Figure 1. Image Inpainting Challenge masks. We selected 7 challenging masks for our challenge. Participants should provide
a mask-agnostic model able to perform inpainting under any of the depicted cases. Purple color represents the masked
region of the image. Click on each image for full resolution and zoom-in.

such as faces, objects, landscapes, and creative art.
Jointly with the NTIRE workshop, we propose an

NTIRE challenge on Image Inpainting: the task of pre-
dicting the values of missing pixels in an image so that
the completed result looks realistic and coherent.

This challenge is a part of the NTIRE 2022 Chal-
lenges: spectral recovery [3], spectral demosaicing [2],
perceptual image quality assessment [14], inpaint-
ing [45], night photography rendering [12], efficient
super-resolution [23], learning the super-resolution
space [29], super-resolution and quality enhancement of
compressed video [59], high dynamic range [41], stereo
super-resolution [55], burst super-resolution [4].
The results obtained in the other competitions and the
description of the proposed solutions can be found in
the corresponding challenge papers.

2. Challenge

The goals of this challenge are: (i) Direct and easy
comparison of recent state-of-the-art Image Inpainting
solutions. (ii) To perform a comprehensive analysis on
the different types of masks, for instance, strokes, com-
pletion, nearest neighbor upsampling, etc. Thus, high-
lighting the pros and cons of each method for each type
of mask. (iii) To set a public benchmark on 4 differ-
ent datasets: Portraits [21], Places [71], ImageNet [11],
and WikiArt [36].

See an example of the different inpainting masks in
Figure 1.

2.1. Overview

Image inpainting is an ill-posed problem where the
main goal is to reconstruct a photo-realistic image from
the filled-with-holes image counterpart. From a classi-
cal perspective, an ideal solution should faithfully re-
semble the original image. However, in many cases,
it is unfeasible due to the size of the inpainted mask
and the lack of prior information about the scene. Mo-
tivated by this observation, we created two tracks for
this challenge: (1) the unsupervised image inpainting
track, where no conditional information of the scene
is used, and (2) the semantically-guided image in-

painting track, where a semantic segmentation mask
is used for guiding the inpainting solution. The in-
formation about the challenge was provided on a pub-
lic GitHub page: https://github.com/affromero/

NTIRE22_Inpainting.

2.2. Masks

Most image inpainting methods [50, 64, 61, 69] are
directly trained to solve the inverse problem, which
requires specifying the inpainting binary mask during
training. Indeed, in some cases the selection of the
mask is critical for better performance [50, 61], which
dramatically hinders the comparison with similar ap-
proaches. This limitation poses an important issue be-
cause there is no clear notion of the ideal mask. In this
challenge, we opt to use the common strategies found
in Image Inpainting solutions and more complex mask
generations. In total, we use seven different types of
masks (see Figure 1):

• Strokes. 3 different types of strokes (thin, medium,
and thick). These stroke generations are based on
the recent LaMa [50] inpainting solution.

• Image completion. The mask ranges from 20% to
89% of the image and could be horizontal or ver-
tical.

• Every N Lines. We also include a degradation that
involves pixel removal from an image. The removal
is uniformly either every N lines vertical or hori-
zontal, where N is randomly selected from 2, 3, or
4.

• Image Expansion. This mask analyses the extrap-
olation capabilities of each solution by maintain-
ing only the pixels of a square on the center of an
image.

• Nearest Neighbor. This mask only leaves pixels
with a stride of N in height and width dimension,
where N is randomly chosen from 2, 3, or 4. This
mask can be seen as an indirect application of im-
age inpainting to super-resolution.
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2.3. Dataset

For the unsupervised track, we use 4 different
datasets that consists of portraits (FFHQ [21]), scenes
(Places [71]), complex objects (ImageNet [11]), and cre-
ative art (WikiArt [36]). For the semantically-guided
track, we only use portraits and scenes.

FFHQ [21] Image inpainting over portraits is one
of the most popular applications of image inpainting
due to the impact on image editings, such as hair re-
placement, eyeglasses imposition, artifact removal, and
smile adjusting. The FFHQ consists of 1,028×1,028
high-resolution 70,000 portraits with a high variation
in ethnicity, age, and image background. We divide the
training, validation, and test using the standard setup:
60,000 for training, 10,000 for validation, and the re-
maining 10,000 are part of our test challenge set. For
Track 2, we use an automated semantic segmentation
model [38] to parse the face and use it as conditional
information.

Places [71] The Places dataset was created for
deep scene understanding, which collects a categor-
ical dataset with highly diverse and complex scenes
such as indoor, nature, urban, street, and rainfor-
est. The entire dataset consists of more than one
million images. Recently, many inpainting solutions
have used the Places dataset benchmark due to the
pleasant and impressive inpainted results in generic
object removal. We use the publicly available train-
ing and validation set as part of the challenge’s train-
ing, validation, and test sets. For the Track 2, we use
an automated semantic segmentation model, namely
DeepLabV3 [7] trained on CocoStuff-164k [6] - MM-
segmentation Framework [10], to parse the scene, and
use it as conditional information.

ImageNet [11] Following a recent trend in image
inpainting solutions, we also employ the ImageNet
dataset to analyze the inpainting on more structured
and semantic objects.

WikiArt [36] In contrast to the aforementioned
datasets, WikiArt has not been a usual benchmark for
the image inpainting problem. Therefore, in this chal-
lenge, we propose to include a creative art dataset. Our
rationale is that hallucinating an essential region of a
painting requires a deeper understanding of the artist’s
technique, the context, and the painter’s intention. We
use the publicly available training and validation set
as part of the challenge’s training, validation, and test
sets.

2.4. Evaluation

Given that Image Inpainting is an inverse problem,
in which most solutions differ from the ground truth
at pixel level, we use Perceptual Metrics to rank the
participants.

We use the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [66] and Frechet Inception Distance
(FID) [17] as perceptual metrics, as well as fidelity met-
rics such as the standard Peak Signal to Noise Ratio
(PSNR) and the Structural Similarity (SSIM) index as
often employed in the literature.

As a final ranking, we will select the champion based
on the perceptual metrics and a Mean Opinion Score
(MOS) for the top solutions.

• In Track 1, the participants should inpaint the in-
put image according to the input mask, and the
evaluation is conducted between the inpainted im-
age and the ground-truth image.

• In Track 2, the participants should inpaint the in-
put image according to the input mask and the
semantic input map. The evaluation is conducted
between the inpainted and ground-truth images
and should be consistent with the semantic mask.
Thus, a semantic segmentation network gener-
ates the semantic labels of the completed images,
and we compute the mean Intersection over Union
(mIoU) with reference to the ground-truth seman-
tic labels.

2.5. Challenge Phases

The challenge consisted of the following phases:

I. Development: the participants get access to the
data;

II. Validation: the participants can upload their so-
lutions to the remote server to check the fidelity
scores on the validation dataset;

III. Testing: the participants submit their final results,
codes, and factsheets.

During the final challenge phase, the participants
did not have access to the test dataset. Instead, they
had to submit their final generated images and the
trained models that the challenge organizers subse-
quently used to check both the perceptual and the fi-
delity results of each submission under identical con-
ditions. This approach solved all the issues related to
model overfitting, reproducibility of the results, and
consistency of the obtained performance values.
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3. Challenge Results

3.1. Track 1: Unsupervised Image Inpainting

From above 100 registered participants, 5 teams en-
tered the final phase and submitted valid results, codes,
executables and factsheets. Tables 1 and 2 summarizes
the final challenge results and reports FID, LPIPS,
PSNR, and SSIM scores for each submitted solution on
the final test dataset and on the validation set, while
Figure 2 shows the obtained qualitative results. Addi-
tionally, Table 3 reports the MOS scores.

The proposed methods are described in section 5.1,
and the team members and affiliations are listed in Ap-
pendix A.

3.2. Track 2: Image Inpainting guided by pixel-wise
semantic labels

From above 100 registered participants, 4 teams en-
tered the final phase and submitted valid results, codes,
executables and factsheets. Tables 4 and 5 summarizes
the final challenge results and reports FID, LPIPS,
PSNR, SSIM, and mIoU scores for each submitted solu-
tion on the final test dataset and on the validation set,
while Figure 3 shows the obtained qualitative results.
Additionally, Table 6 reports the MOS scores.

The proposed methods are described in section 5.2,
and the team members and affiliations are listed in Ap-
pendix A.

4. Discussion

4.1. Baselines

We selected two GAN-based state-of-the-art solu-
tions as baselines: LaMa [50] and CoModGAN [69]. We
use the publicly available pre-trained weights for FFHQ
and Places over all our masks and datasets. However,
CoModGAN requires a fixed image size. We bypassed
this issue by padding all our images to be 512×512 im-
age size. Therefore, larger images were unfolded and
padded accordingly. Due to this CoModGAN prepro-
cessing, images might not have harmonic transitions
as in Figure 2. Moreover, as LaMa and CoModGAN
models were trained on different masks than those used
in the challenge, directly applying their models to our
masks lead to a poor performance.

4.2. Track 1

On this track, all methods rely on GANs [13]. Most
of the reported solutions were based on existing tech-
niques, such as CoModGAN [69], LaMa [50], and Deep-
Fillv2 [60], being the top 3 solutions based on Co-
ModGAN and LaMa. The champion fine-tunes the

original version of CoModGAN to work on the more
challenging settings proposed in this challenge.

Interestingly, the runner-up AIIA solution, which is
based on LaMa, can perform surprisingly well in certain
cases, and even the LPIPS is overall better than that of
ArtificiallyInspired. However, LaMa is a method that
employs Fast Fourier Convolution (FFC) [8] layers as
the main core. FFC works well on repeated patterns
or textures, yet it lacks hallucinating new semantic in-
formation, as in the first row of Figure 2. The solution
presented by ArtificiallyInspired is superior because
CoModGAN is a method that employs Modulated Con-
volutions [22], which has been extensively used for im-
age synthesis problems, where the generation of new
semantic information is crucial, hence outperforming
other competitors on the more challenging masks.

Tables in Appendix C.1 depict the detailed results
for each mask. Image inpainting is an even more ill-
posed task if the input mask is completely unknown
to the model. Therefore, some masks harm even
more the performance of the network compared to oth-
ers. Specifically, the masks that do not interfere with
the image’s semantic information exhibit better per-
formance than the rest (i.e. Every-N-Lines, Nearest-
Neighbor, and Thin Strokes). On the contrary, masks
in which the general structure is covered and it is per-
ceptually harder to recognize the semantics, result are
harder to deal with, thus lowering the performance (i.e.
Completion, Expand, and Thick Strokes).

See additional qualitative results in Appendix B.1.

4.3. Track 2

Participants explored very different options to in-
clude the semantic information as part of the inpaint-
ing process on this Track. In contrast to Track 1, the
decision for the winner was difficult, even on the sub-
jective Mean Opinion Score (See Table 6). The top
2 methods employ different paradigms for the inpaint-
ing problem: Diffusion Models and GANs. The top
solution ensures a more faithful reconstruction of the
semantic information, i.e. see mIOU column on Table
5.

Recently, Diffusion Models have shown outstanding
results in image inpainting [32, 49, 9, 31, 35, 47, 28, 44]
as they can be applied to this task without direct su-
pervision. However, they are known for their slow in-
ference time, which hinders their practicability to real-
world cases, and in the case of this challenge, to be
tested on 7,000 images per dataset. Nevertheless, the
winner of the challenge is based on a Latent Diffusion
Model (LDM) [44] system, which performs the denois-
ing process on a latent representation instead of the
pixel level, which dramatically reduces the inference
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Masked Input AIIA HSSLAB Artificially I KwaiInpainting SIGMA LaMa [50] CoModGAN [69]

Figure 2. Qualitative Results for Track 1.

Team Author Framework FID↓ LPIPS↓ PSNR↑ SSIM↑

F
F
H
Q

AIIA Zeyu Lu PyTorch 10.107 0.172 ± 0.173 25.284 ± 8.271 0.815 ± 0.154
HSSLAB Rengang Li PyTorch 10.744 0.172 ± 0.186 26.882 ± 9.791 0.852 ± 0.146
KwaiInpainting Jiayin Cai PyTorch 21.290 0.214 ± 0.203 24.995 ± 8.580 0.839 ± 0.146
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 4.703 0.165 ± 0.181 25.907 ± 10.613 0.816 ± 0.188
SIGMA Xiaoqiang Zhou PyTorch 7.274 0.179 ± 0.161 24.804 ± 8.038 0.795 ± 0.159
CoModGan [69] 126.037 0.548 ± 0.231 10.553 ± 3.709 0.413 ± 0.307
LaMa [50] 111.481 0.486 ± 0.229 11.052 ± 4.209 0.446 ± 0.272

P
la
c
e
s

AIIA Zeyu Lu PyTorch 8.856 0.193 ± 0.209 24.142 ± 8.383 0.800 ± 0.188
HSSLAB Rengang Li PyTorch 9.262 0.190 ± 0.216 25.739 ± 9.249 0.823 ± 0.189
KwaiInpainting Jiayin Cai PyTorch 18.336 0.241 ± 0.217 23.351 ± 8.011 0.787 ± 0.195
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 7.680 0.205 ± 0.208 23.226 ± 9.595 0.777 ± 0.221
SIGMA Xiaoqiang Zhou PyTorch 11.676 0.224 ± 0.190 22.507 ± 7.211 0.747 ± 0.201
CoModGan [69] 68.742 0.496 ± 0.243 11.321 ± 4.177 0.477 ± 0.289
LaMa [50] 68.025 0.525 ± 0.238 11.118 ± 3.861 0.327 ± 0.266

Im
a
g
e
N
e
t

AIIA Zeyu Lu PyTorch 10.402 0.181 ± 0.217 25.287 ± 9.197 0.791 ± 0.217
HSSLAB Rengang Li PyTorch 9.010 0.172 ± 0.217 27.239 ± 10.377 0.817 ± 0.216
KwaiInpainting Jiayin Cai PyTorch 18.693 0.237 ± 0.243 23.913 ± 9.002 0.775 ± 0.223
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 12.546 0.197 ± 0.226 24.343 ± 10.023 0.778 ± 0.238
SIGMA Xiaoqiang Zhou PyTorch 20.251 0.254 ± 0.205 22.401 ± 6.705 0.726 ± 0.229
CoModGan [69] 40.731 0.454 ± 0.263 12.764 ± 5.507 0.525 ± 0.325
LaMa [50] 41.721 0.509 ± 0.250 11.586 ± 4.060 0.260 ± 0.231

W
ik
iA

rt

AIIA Zeyu Lu PyTorch 15.031 0.220 ± 0.216 24.204 ± 8.175 0.766 ± 0.202
HSSLAB Rengang Li PyTorch 12.788 0.203 ± 0.211 25.641 ± 8.726 0.798 ± 0.202
KwaiInpainting Jiayin Cai PyTorch 26.498 0.266 ± 0.214 22.925 ± 7.212 0.757 ± 0.204
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 8.643 0.229 ± 0.215 23.620 ± 9.169 0.757 ± 0.216
SIGMA Xiaoqiang Zhou PyTorch 14.664 0.243 ± 0.191 22.505 ± 6.816 0.718 ± 0.207
CoModGan [69] 89.204 0.514 ± 0.251 11.136 ± 4.382 0.476 ± 0.291
LaMa [50] 88.894 0.556 ± 0.242 11.022 ± 4.137 0.292 ± 0.259

Table 1. Quantitative results over the Validation set of Track 1.

time to an average of 10s per 512×512 image size.

In contrast to Baidu, Artificially Inspired does not

enforce the network to represent the semantic infor-
mation explicitly. It extends the method presented in

51154



Team Author Framework FID↓ LPIPS↓ PSNR↑ SSIM↑

F
F
H
Q

AIIA Zeyu Lu PyTorch 9.823 0.172 ± 0.173 25.316 ± 8.307 0.814 ± 0.155
HSSLAB Rengang Li PyTorch 13.504 0.171 ± 0.185 25.187 ± 8.864 0.821 ± 0.147
KwaiInpainting Jiayin Cai PyTorch 21.345 0.213 ± 0.204 25.060 ± 8.669 0.838 ± 0.147
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 4.719 0.164 ± 0.181 25.999 ± 10.597 0.816 ± 0.188
SIGMA Xiaoqiang Zhou PyTorch 7.203 0.178 ± 0.161 24.860 ± 8.064 0.795 ± 0.159
CoModGan [69] 125.824 0.546 ± 0.230 10.652 ± 3.815 0.415 ± 0.306
LaMa [50] 112.498 0.484 ± 0.229 11.152 ± 4.325 0.447 ± 0.272

P
la
c
e
s

AIIA Zeyu Lu PyTorch 8.772 0.193 ± 0.209 24.145 ± 8.307 0.800 ± 0.188
HSSLAB Rengang Li PyTorch 9.861 0.191 ± 0.217 24.345 ± 8.273 0.798 ± 0.191
KwaiInpainting Jiayin Cai PyTorch 18.334 0.239 ± 0.193 23.410 ± 7.892 0.787 ± 0.195
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 7.544 0.204 ± 0.207 23.248 ± 9.477 0.777 ± 0.220
SIGMA Xiaoqiang Zhou PyTorch 11.496 0.223 ± 0.189 22.562 ± 7.162 0.748 ± 0.200
CoModGan [69] 67.910 0.496 ± 0.244 11.403 ± 4.154 0.477 ± 0.290
LaMa [50] 66.566 0.523 ± 0.236 11.184 ± 3.758 0.328 ± 0.266

Im
a
g
e
N
e
t

AIIA Zeyu Lu PyTorch 10.007 0.179 ± 0.216 25.226 ± 9.000 0.793 ± 0.214
HSSLAB Rengang Li PyTorch 11.77 0.174 ± 0.219 24.303 ± 8.155 0.763 ± 0.221
KwaiInpainting Jiayin Cai PyTorch 18.854 0.236 ± 0.243 23.804 ± 8.781 0.776 ± 0.221
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 12.059 0.196 ± 0.225 24.278 ± 9.814 0.779 ± 0.236
SIGMA Xiaoqiang Zhou PyTorch 19.646 0.250 ± 0.203 22.454 ± 6.715 0.729 ± 0.227
CoModGan [69] 40.826 0.450 ± 0.264 12.708 ± 5.366 0.526 ± 0.327
LaMa [50] 42.204 0.504 ± 0.251 11.546 ± 4.080 0.260 ± 0.232

W
ik
iA

rt

AIIA Zeyu Lu PyTorch 14.974 0.219 ± 0.215 24.350 ± 8.248 0.767 ± 0.203
HSSLAB Rengang Li PyTorch 14.986 0.202 ± 0.187 24.257 ± 7.877 0.752 ± 0.206
KwaiInpainting Jiayin Cai PyTorch 26.395 0.265 ± 0.212 23.142 ± 7.305 0.759 ± 0.204
ArtificiallyInspired Ritwik Das PyTorch & Tensorflow 8.524 0.229 ± 0.216 23.799 ± 9.230 0.758 ± 0.217
SIGMA Xiaoqiang Zhou PyTorch 14.125 0.241 ± 0.192 22.717 ± 6.946 0.720 ± 0.208
CoModGan [69] 89.117 0.513 ± 0.252 11.339 ± 4.514 0.477 ± 0.294
LaMa [50] 88.473 0.552 ± 0.243 11.273 ± 4.191 0.297 ± 0.262

Table 2. Quantitative results over the Test set of Track 1.

Team MOS↑

F
F
H
Q

AIIA 3.478
HSSLAB 3.668
ArtificiallyInspired 4.503
GT 4.953

P
la
c
e
s AIIA 3.675

HSSLAB 3.561
ArtificiallyInspired 4.150
GT 4.975

Im
a
g
e
N
e
t AIIA 3.986

HSSLAB 4.046
ArtificiallyInspired 4.203
GT 4.993

W
ik
iA

rt AIIA 3.653
HSSLAB 3.607
ArtificiallyInspired 4.382
GT 4.882

Table 3. Mean opinion score over the test set - Track 1.

Track 1 (CoModGAN [69]) by encoding the semantic
information as a styled vector. In a more simple solu-

tion, MGTV concatenates the semantic information as
input to the network.

Tables in Appendix C.2 depict the detailed results
for each mask. Compared to Track 1, as the models
leverage on the semantic information, the performance
improves considerably. In general, the same behavior
is presented in terms of the difficulty of the masks.
However, the generation process is guided by exhibiting
better perceptual results.

See additional qualitative results in Appendix B.2.

5. Challenge Methods

This section describes solutions submitted by all teams
participating in the final stage of the NTIRE 2022 Im-
age Inpainting Challenge.

5.1. Track 1

5.1.1 Artificially Inspired

The proposed technique is based on CoModGAN [69].
As modulated convolutions are the core of the powerful
StyleGAN [22], CoModGAN exploits them for the task
of Image Inpainting. Please refer to the original paper
for more details. The proposed solution is a fine-tuned
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Masked Input Semantic Input Baidu MGTV Artificially Inspired HSSLAB

Figure 3. Qualitative Results for Track 2.

Team Author Framework FID↓ LPIPS↓ PSNR↑ SSIM↑ mIoU↑

F
F
H
Q

MGTV Xinying Wang PyTorch 4.904 0.135 ± 0.132 25.701 ± 8.817 0.839 ± 0.143 0.962
Baidu Zhihong Pan PyTorch 3.251 0.124 ± 0.133 26.156 ± 8.941 0.839 ± 0.143 0.963
HSSLAB Rengang Li PyTorch 10.744 0.172 ± 0.186 26.882 ± 9.791 0.852 ± 0.146 0.842
ArtificiallyInspired Ritwik Das PyTorch 3.662 0.139 ± 0.137 26.730 ± 9.855 0.840 ± 0.152 0.949

P
la
c
e
s

MGTV Xinying Wang PyTorch 8.913 0.193 ± 0.180 23.740 ± 7.953 0.791 ± 0.191 0.668
Baidu Zhihong Pan PyTorch 7.330 0.181 ± 0.188 23.330 ± 8.366 0.781 ± 0.201 0.635
HSSLAB Rengang Li PyTorch 9.262 0.190 ± 0.216 25.739 ± 9.249 0.823 ± 0.189 0.592
ArtificiallyInspired Ritwik Das PyTorch 7.295 0.188 ± 0.176 23.902 ± 8.940 0.784 ± 0.207 0.654

Table 4. Quantitative results over the Validation set of Track 2.

version of the publicly available CoModGAN models
for the purpose of this challenge, namely with more
generalized masks.

This method uses a sliding window technique to
evaluate arbitrary-sized images during inference. If the
input dimension is smaller than 512×512 (training di-
mension), both the image and the mask are padded
accordingly.

Every dataset was trained on 8 V100 GPUs for two
weeks. The runtime of this solution is roughly 1 second
on average for the datasets evaluated.

Upon authorization from the Artificial Inspired
team, we will release the inference code and pretrained
weights in the challenge repo https://github.com/

affromero/NTIRE22_Inpainting.

5.1.2 AIIA [27]

AIIA core solution adapts LaMA [51] for the current
challenge. LaMa is a recent method that employs Fast
Fourier Convolution [8] that allows a wide receptive
field to perform inpainting efficiently and effectively.
AIIA’s proposed solution consists of two main improve-
ments over the LaMa baseline. First, a focal frequency
loss [20] that allows for a more narrow gap in the
frequency domain. Second, in addition to the LaMa
losses, it also employs a total variation loss [30] that
helps to reduce the generated artifacts and chessboard.
Figure 4 depicts the AIIA’s proposed solution. Every
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Team Author Framework FID↓ LPIPS↓ PSNR↑ SSIM↑ mIoU↑

F
F
H
Q

MGTV Xinying Wang PyTorch 4.664 0.134 ± 0.131 25.769 ± 8.817 0.839 ± 0.143 0.962
Baidu Zhihong Pan PyTorch 3.193 0.123 ± 0.132 26.254 ± 8.892 0.838 ± 0.142 0.962
HSSLAB Rengang Li PyTorch 13.504 0.171 ± 0.185 25.187 ± 8.864 0.821 ± 0.147 0.826
ArtificiallyInspired Ritwik Das PyTorch 3.573 0.138 ± 0.136 26.827 ± 9.864 0.839 ± 0.153 0.948

P
la
c
e
s MGTV Xinying Wang PyTorch 8.735 0.193 ± 0.180 23.738 ± 7.838 0.791 ± 0.191 0.672

Baidu Zhihong Pan PyTorch 7.328 0.182 ± 0.188 23.289 ± 8.293 0.781 ± 0.201 0.636
HSSLAB Rengang Li PyTorch 9.861 0.191 ± 0.217 24.345 ± 8.273 0.798 ± 0.191 0.574
ArtificiallyInspired Ritwik Das PyTorch 7.229 0.188 ± 0.174 23.868 ± 8.864 0.784 ± 0.207 0.655

Table 5. Quantitative results over the Test set of Track 2.

Team MOS↑

F
F
H
Q

MGTV 4.267
Baidu 4.582
ArtificiallyInspired 4.575
GT 4.900

P
la
c
e
s MGTV 3.546

Baidu 3.882
ArtificiallyInspired 3.700
GT 5

Table 6. Mean opinion score over the test set - Track 2.
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Figure 4. Diagram of AIIA. It employs an adaptation of
LaMa [50].

dataset is trained on 8 V100 GPUs for three days.

5.1.3 HSSLAB

Similar to AIIA, the HSSLAB method relies on
LaMa [51]. As the original LaMa only includes main
strokes as a type of mask, the proposed technique in-
cludes the proposed challenge masks with additional
data augmentation changes. Instead of randomly in-
cluding the seven challenge masks, HSSLAB observa-
tion is to increase the probability of generation of Near-

Figure 5. The solution proposed by SIGMA is an ensemble
of a Masked AutoEncoder (MAE) [16] and LaMa [50]

est Neighbor masks, change the thickness of the stripes,
add rectangular masks, and more out-painting samples
with increasing difficulty during training. In total, this
solution includes eight data augmentation techniques.

5.1.4 SIGMA

SIGMA solution is an ensemble of a Masked Autoen-
coder (MAE) [16] and LaMa [51] (See Figure 5). It
starts the process using MAE’s transformer network to
capture the long-range dependency in the image and
learn the feature representation. Then, this complete
image, along with the masked image, is passed on to
LaMa to be used as a structure to guide the image
synthesis and restore image details.

5.1.5 KwaiInpainting [52]

The core of this method relies on DeepFillv2 [60] with
two main contributions: a progressive coarse-to-fine
approach and a semantic-aware patchGAN. In addi-
tion to the GAN loss, it also employs the perceptual
loss [66]. See Figure 6 for a schematic of the proposed
solution.

5.2. Track 2

5.2.1 Baidu

Team Baidu based their solution on diffusion mod-
els [48]. In detail, it relies on Latent Diffusion Models
(LDM) [44], which conducts the diffusion and denoising
process in a latent space of lower dimension. See the
original paper for detailed information [44]. As shown
in Figure 7, the Baidu solution for image inpainting
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Figure 6. Diagram of the method proposed by KwaiInpaint-
ing team. It uses a multi-stage strategy and a semantic-
aware discriminator.

Figure 7. The solution proposed by Baidu consists of a Dif-
fusion Model [44] guided by semantic information.

using semantic information consists of two key adapta-
tions applied to LDM. First, pre-painting the masked
image using semantic segmentation as a condition of
the denoising process. Second, a mask conditioning
MLP to break the limitation in resizing spatial masks
like Nearest-Neighbor and Every-N-Lines.

There are a few techniques employed for perfor-
mance improvement: 1) For Nearest-Neighbor and
Every-N-Lines, the masked area of the input is pre-
painted with bilinearly interpolated values without us-
ing semantic segmentation like other mask types; 2) At
inference, 100 denoising steps are used for Completion
and Expand, and 50 steps for all others; 3) Tone map-
ping is used to correct the color shift bias presented in
predicted samples to match the color of the unmasked
area of the input image; 4) For images larger than 512
× 512, a progressive sliding method is applied at infer-
ence for Completion and Expand masks to process the
full image in 512 × 512 patches.

Figure 8. The solution presented by the MGTV team is a
SPADE-based architecture [39]

5.2.2 Artificially Inspired

To include the semantic information, Artificially In-
spired extended the solution proposed for Track 1 (Sec-
tion 5.1.1). As CoModGAN uses modulated convolu-
tions that depend on a style vector, in this track, this
style vector is encoded from the semantic segmentation
guidance. On the one hand, it has the advantage of us-
ing semantic information indirectly, and on the other
hand, it converts CoModGAN into a fully-deterministic
solution.

5.2.3 HSSLAB

HSSLAB proposes the same solution for both Track 1
and 2, and this method is described in Section 5.1.3.

5.2.4 MGTV

It uses a UNet-like architecture with SPADE normal-
ization blocks to include the semantic information in
the upsampling layers (Figure 8). SPADE normalizes
the feature maps with respect to the semantic regions,
and it has been well studied in semantic image synthe-
sis [73, 5].
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Zhihong Pan (zhihongpan@baidu.com), Min Zhang,
Baopu Li, Dongliang He, Tianwei Lin, Fu Li
Affiliations:
Baidu Research (USA)
University of Southern California
Department of Computer Vision Technology (VIS),
Baidu Incorporation

AIIA LAB

Title:
GLaMa: A simple way to improve LaMa for general
mask
Members:
Zeyu Lu (leo1037987031@gmail.com), Junqin Huang,
Gang Wu, Junjun Jiang, Chengyue Wu, Xianming Liu

Affiliations:
Harbin Institute of Technology
Beihang University

MGTV

Title:
Image inpainting using semantic guidance with
SPADE
Members:
Xinying Wang (xinying@mgtv.com), Yi Yu, Jie Yang
Affiliations:
MGTV

HSSLAB

Title:
LaMa for general masks
Members:
Rengang Li (lirengang.hsslab@gmail.com), Yaqian
Zhao, Zhenhua Guo, Baoyu Fan, Xiaochuan Li, Runze
Zhang
Affiliations:
Inspur Electronic Information Industry Co.,Ltd. and
State Key Laboratory of High-end Server & Storage
Technology

SIGMA

Title:
SIGMA: Solve Image Inpainting with Guidance from
Masked Autoencoders
Members:
Xiaoqiang Zhou (13436433445@126.com)
Affiliations:
University of Science and Technology China

KwaiInpainting

Title:
multi-scale image inpainting network, in and out
painting in one model, condi- tional projection patch
discriminator.
Members:
Jiayin Cai (caijy18@tsinghua.org.cn), Changlin Li,
XinTao, YuWing Tai
Affiliations:
Kuaishou
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B. Additional Qualitative Results

B.1. Track 1: Unsupervised Image Inpainting

We show additional results for FFHQ, Places, Im-
ageNet, and WikiArt in Figure 9, 10, 11, and 12, re-
spectively.

B.2. Track 2: Image Inpainting guided by pixel-
wise semantic labels

We show additional results for FFHQ and Places in
Figure 13 and 14, respectively.

C. Additional Quantitative Results

C.1. Track 1: Unsupervised Image Inpainting

We show detailed validation scores per mask in Ta-
ble 7, 8, 10, and 9, for FFHQ [21], Places [72], Ima-
geNet [46], and WikiArt [36], respectively. Similarly,
test scores in Table 11, 12, 14, and 13.

C.2. Track 2: Image Inpainting guided by pixel-
wise semantic labels

We show detailed validation scores per mask in Ta-
ble 15 and 16, for FFHQ and Places, respectively. Sim-
ilarly, test scores in Table 17 and 18.
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Masked Input AIIA HSSLAB Artificially I KwaiInpainting SIGMA LaMa [50] CoModGAN [69]

Figure 9. Additional Qualitative Results for Track 1 - FFHQ dataset.
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Masked Input AIIA HSSLAB Artificially I KwaiInpainting SIGMA LaMa [50] CoModGAN [69]

Figure 10. Additional Qualitative Results for Track 1 - Places dataset.
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Masked Input AIIA HSSLAB Artificially I KwaiInpainting SIGMA LaMa [50] CoModGAN [69]

Figure 11. Additional Qualitative Results for Track 1 - ImageNet dataset.
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Masked Input AIIA HSSLAB Artificially I KwaiInpainting SIGMA LaMa [50] CoModGAN [69]

Figure 12. Additional Qualitative Results for Track 1 - WikiArt dataset.

191168



Masked Input Semantic Input Baidu MGTV Artificially Inspired HSSLAB

Figure 13. Additional Qualitative Results for Track 2 - FFHQ dataset.
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Masked Input Semantic Input Baidu MGTV Artificially Inspired HSSLAB

Figure 14. Additional Qualitative Results for Track 2 - Places dataset.
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
F
F
H
Q

Completion

AIIA 31.480 0.264 ± 0.113 17.270 ± 3.186 0.738 ± 0.107
HSSLAB 32.675 0.271 ± 0.124 18.412 ± 3.534 0.786 ± 0.097
KwaiInpainting 60.510 0.345 ± 0.139 16.732 ± 3.319 0.764 ± 0.103
ArtificiallyInspired 21.156 0.255 ± 0.105 15.733 ± 3.434 0.718 ± 0.117
SIGMA 25.306 0.243 ± 0.100 17.574 ± 3.446 0.739 ± 0.114
CoModGan [69] 98.807 0.499 ± 0.183 9.509 ± 2.911 0.502 ± 0.172
LaMa [50] 106.632 0.453 ± 0.179 10.220 ± 3.382 0.496 ± 0.172

EveryNLines

AIIA 10.071 0.077 ± 0.054 35.678 ± 1.777 0.931 ± 0.022
HSSLAB 5.615 0.031 ± 0.038 39.714 ± 4.572 0.959 ± 0.044
KwaiInpainting 3.126 0.031 ± 0.018 35.788 ± 3.436 0.961 ± 0.018
ArtificiallyInspired 1.083 0.011 ± 0.009 41.779 ± 2.975 0.984 ± 0.009
SIGMA 8.773 0.068 ± 0.058 34.823 ± 2.263 0.909 ± 0.041
CoModGan [69] 148.057 0.730 ± 0.091 10.901 ± 2.165 0.117 ± 0.153
LaMa [50] 74.155 0.474 ± 0.231 13.926 ± 2.248 0.392 ± 0.143

Expand

AIIA 102.086 0.526 ± 0.098 12.983 ± 2.145 0.511 ± 0.091
HSSLAB 101.753 0.513 ± 0.092 13.681 ± 2.321 0.594 ± 0.092
KwaiInpainting 180.345 0.613 ± 0.092 12.569 ± 2.197 0.554 ± 0.095
ArtificiallyInspired 58.679 0.539 ± 0.103 10.876 ± 2.364 0.435 ± 0.100
SIGMA 59.571 0.505 ± 0.078 12.402 ± 1.985 0.493 ± 0.090
CoModGan [69] 279.175 0.779 ± 0.086 8.809 ± 2.550 0.152 ± 0.079
LaMa [50] 336.515 0.728 ± 0.104 7.141 ± 2.253 0.130 ± 0.079

MediumStrokes

AIIA 13.452 0.087 ± 0.050 26.409 ± 5.670 0.891 ± 0.061
HSSLAB 12.837 0.075 ± 0.051 27.441 ± 6.805 0.921 ± 0.053
KwaiInpainting 22.227 0.135 ± 0.073 25.716 ± 5.437 0.904 ± 0.055
ArtificiallyInspired 11.857 0.083 ± 0.048 25.891 ± 6.025 0.886 ± 0.065
SIGMA 15.195 0.094 ± 0.052 26.244 ± 5.604 0.886 ± 0.065
CoModGan [69] 159.611 0.325 ± 0.141 12.598 ± 4.042 0.704 ± 0.145
LaMa [50] 160.001 0.319 ± 0.130 12.886 ± 4.115 0.688 ± 0.150

NearestNeighbor

AIIA 11.650 0.090 ± 0.040 29.575 ± 2.300 0.841 ± 0.053
HSSLAB 24.288 0.176 ± 0.176 31.066 ± 6.309 0.843 ± 0.140
KwaiInpainting 18.615 0.125 ± 0.058 30.273 ± 3.152 0.870 ± 0.051
ArtificiallyInspired 14.360 0.110 ± 0.056 33.215 ± 3.485 0.908 ± 0.044
SIGMA 17.571 0.170 ± 0.086 28.196 ± 2.493 0.754 ± 0.071
CoModGan [69] 245.667 0.748 ± 0.092 7.111 ± 1.580 0.043 ± 0.034
LaMa [50] 149.810 0.727 ± 0.169 7.597 ± 2.796 0.096 ± 0.082

ThickStrokes

AIIA 13.953 0.106 ± 0.064 24.688 ± 6.116 0.881 ± 0.071
HSSLAB 13.883 0.099 ± 0.066 25.191 ± 6.945 0.906 ± 0.062
KwaiInpainting 24.624 0.157 ± 0.089 23.868 ± 6.121 0.894 ± 0.063
ArtificiallyInspired 12.213 0.099 ± 0.063 24.071 ± 6.527 0.875 ± 0.075
SIGMA 13.883 0.105 ± 0.063 24.962 ± 5.949 0.880 ± 0.072
CoModGan [69] 118.506 0.291 ± 0.136 12.876 ± 4.271 0.727 ± 0.136
LaMa [50] 115.686 0.271 ± 0.124 13.249 ± 4.455 0.718 ± 0.139

ThinStrokes

AIIA 10.432 0.054 ± 0.030 30.385 ± 4.059 0.913 ± 0.048
HSSLAB 9.042 0.039 ± 0.041 32.668 ± 5.754 0.954 ± 0.044
KwaiInpainting 17.522 0.089 ± 0.048 30.019 ± 4.075 0.926 ± 0.041
ArtificiallyInspired 9.740 0.055 ± 0.031 29.781 ± 4.249 0.909 ± 0.051
SIGMA 14.767 0.070 ± 0.039 29.423 ± 4.111 0.903 ± 0.054
CoModGan [69] 284.832 0.467 ± 0.158 12.069 ± 3.404 0.643 ± 0.159
LaMa [50] 289.891 0.429 ± 0.127 12.349 ± 3.433 0.601 ± 0.172

Table 7. Detailed Validation Track 1 - FFHQ dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
P
la
c
e
s

Completion

AIIA 45.245 0.325 ± 0.157 16.651 ± 3.940 0.714 ± 0.139
HSSLAB 45.657 0.313 ± 0.152 17.962 ± 4.278 0.735 ± 0.138
KwaiInpainting 61.070 0.359 ± 0.153 16.480 ± 3.953 0.706 ± 0.143
ArtificiallyInspired 45.429 0.331 ± 0.147 14.346 ± 3.960 0.654 ± 0.155
SIGMA 47.469 0.299 ± 0.131 16.756 ± 4.089 0.681 ± 0.151
CoModGan [69] 70.310 0.503 ± 0.188 10.355 ± 2.767 0.507 ± 0.170
LaMa [50] 62.571 0.508 ± 0.176 11.424 ± 3.200 0.375 ± 0.170

EveryNLines

AIIA 3.498 0.035 ± 0.027 34.464 ± 4.578 0.956 ± 0.032
HSSLAB 3.999 0.027 ± 0.028 36.246 ± 4.628 0.964 ± 0.037
KwaiInpainting 4.758 0.043 ± 0.032 32.471 ± 4.738 0.944 ± 0.038
ArtificiallyInspired 2.413 0.022 ± 0.024 36.504 ± 5.134 0.973 ± 0.024
SIGMA 15.010 0.141 ± 0.124 29.399 ± 4.352 0.867 ± 0.098
CoModGan [69] 95.907 0.544 ± 0.136 12.873 ± 2.410 0.399 ± 0.158
LaMa [50] 121.108 0.692 ± 0.129 10.901 ± 2.305 0.131 ± 0.118

Expand

AIIA 93.091 0.604 ± 0.117 13.016 ± 2.595 0.456 ± 0.147
HSSLAB 93.050 0.590 ± 0.124 13.968 ± 2.870 0.499 ± 0.150
KwaiInpainting 135.283 0.655 ± 0.102 12.652 ± 2.626 0.439 ± 0.146
ArtificiallyInspired 72.726 0.612 ± 0.098 10.688 ± 2.375 0.355 ± 0.136
SIGMA 96.539 0.590 ± 0.098 12.439 ± 2.370 0.404 ± 0.136
CoModGan [69] 244.386 0.880 ± 0.078 6.962 ± 1.796 0.114 ± 0.060
LaMa [50] 210.674 0.885 ± 0.105 9.011 ± 2.721 0.070 ± 0.052

MediumStrokes

AIIA 19.277 0.087 ± 0.057 25.624 ± 6.371 0.886 ± 0.079
HSSLAB 17.306 0.075 ± 0.054 26.946 ± 7.173 0.910 ± 0.072
KwaiInpainting 32.982 0.140 ± 0.084 25.315 ± 6.281 0.888 ± 0.078
ArtificiallyInspired 21.832 0.105 ± 0.065 23.944 ± 6.423 0.869 ± 0.088
SIGMA 23.096 0.106 ± 0.063 25.036 ± 5.990 0.872 ± 0.086
CoModGan [69] 137.617 0.277 ± 0.141 13.638 ± 4.789 0.746 ± 0.136
LaMa [50] 141.473 0.311 ± 0.137 13.067 ± 4.090 0.560 ± 0.196

NearestNeighbor

AIIA 14.548 0.129 ± 0.069 26.508 ± 4.160 0.801 ± 0.116
HSSLAB 25.402 0.182 ± 0.186 29.040 ± 7.111 0.819 ± 0.182
KwaiInpainting 34.803 0.225 ± 0.112 24.896 ± 4.154 0.746 ± 0.134
ArtificiallyInspired 18.713 0.165 ± 0.102 28.046 ± 4.987 0.841 ± 0.109
SIGMA 23.556 0.227 ± 0.095 23.135 ± 3.555 0.656 ± 0.132
CoModGan [69] 253.322 0.611 ± 0.133 8.667 ± 1.257 0.122 ± 0.091
LaMa [50] 201.330 0.564 ± 0.093 7.531 ± 2.503 0.058 ± 0.078

ThickStrokes

AIIA 23.017 0.117 ± 0.074 23.895 ± 6.903 0.869 ± 0.088
HSSLAB 21.813 0.108 ± 0.073 24.926 ± 7.778 0.888 ± 0.082
KwaiInpainting 35.425 0.165 ± 0.095 23.400 ± 6.925 0.869 ± 0.088
ArtificiallyInspired 25.768 0.132 ± 0.078 21.979 ± 7.125 0.847 ± 0.098
SIGMA 25.485 0.127 ± 0.073 23.526 ± 6.204 0.856 ± 0.095
CoModGan [69] 103.779 0.272 ± 0.139 13.478 ± 4.749 0.740 ± 0.137
LaMa [50] 107.666 0.302 ± 0.135 13.176 ± 4.234 0.561 ± 0.193

ThinStrokes

AIIA 10.931 0.051 ± 0.031 28.836 ± 5.179 0.916 ± 0.058
HSSLAB 8.536 0.036 ± 0.029 31.088 ± 6.101 0.947 ± 0.053
KwaiInpainting 21.338 0.098 ± 0.060 28.243 ± 4.961 0.915 ± 0.057
ArtificiallyInspired 14.722 0.071 ± 0.041 27.075 ± 5.235 0.899 ± 0.066
SIGMA 18.041 0.080 ± 0.042 27.260 ± 4.832 0.895 ± 0.066
CoModGan [69] 177.499 0.385 ± 0.157 13.277 ± 3.893 0.713 ± 0.132
LaMa [50] 179.192 0.412 ± 0.153 12.717 ± 3.524 0.536 ± 0.192

Table 8. Detailed Validation Track 1 - Places dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
W

ik
iA

rt

Completion

AIIA 59.445 0.335 ± 0.150 17.821 ± 4.216 0.690 ± 0.146
ArtificiallyInspired 46.046 0.333 ± 0.142 15.764 ± 4.160 0.648 ± 0.157
HSSLAB 57.208 0.308 ± 0.142 19.032 ± 4.304 0.717 ± 0.145
KwaiInpainting 80.706 0.365 ± 0.148 17.555 ± 4.114 0.696 ± 0.149
SIGMA 51.591 0.306 ± 0.130 17.616 ± 4.147 0.667 ± 0.154
CoModGan [69] 109.840 0.519 ± 0.187 10.097 ± 2.724 0.500 ± 0.170
LaMa [50] 96.648 0.537 ± 0.181 11.272 ± 3.250 0.339 ± 0.180

EveryNLines

AIIA 7.142 0.049 ± 0.044 33.988 ± 4.882 0.930 ± 0.054
ArtificiallyInspired 5.378 0.035 ± 0.035 36.031 ± 5.560 0.954 ± 0.039
HSSLAB 9.266 0.049 ± 0.050 35.880 ± 4.859 0.943 ± 0.046
KwaiInpainting 9.663 0.063 ± 0.047 30.550 ± 4.686 0.911 ± 0.056
SIGMA 25.096 0.166 ± 0.105 28.085 ± 4.269 0.824 ± 0.092
CoModGan [69] 120.675 0.571 ± 0.161 12.950 ± 3.065 0.399 ± 0.181
LaMa [50] 149.480 0.728 ± 0.141 10.924 ± 3.066 0.097 ± 0.122

Expand

AIIA 140.356 0.646 ± 0.116 12.877 ± 3.285 0.413 ± 0.166
ArtificiallyInspired 70.428 0.639 ± 0.099 11.617 ± 2.903 0.364 ± 0.140
HSSLAB 112.234 0.589 ± 0.125 14.680 ± 3.535 0.475 ± 0.171
KwaiInpainting 150.421 0.660 ± 0.105 13.287 ± 3.188 0.426 ± 0.168
SIGMA 106.047 0.611 ± 0.102 13.327 ± 3.181 0.398 ± 0.161
CoModGan [69] 308.476 0.901 ± 0.076 6.416 ± 1.655 0.107 ± 0.062
LaMa [50] 275.811 0.908 ± 0.099 9.024 ± 2.854 0.065 ± 0.052

MediumStrokes

AIIA 28.644 0.108 ± 0.066 25.844 ± 5.894 0.868 ± 0.087
ArtificiallyInspired 26.107 0.116 ± 0.069 24.507 ± 6.086 0.855 ± 0.094
HSSLAB 24.665 0.089 ± 0.061 26.960 ± 6.563 0.899 ± 0.079
KwaiInpainting 50.474 0.162 ± 0.091 25.041 ± 5.532 0.876 ± 0.082
SIGMA 29.956 0.118 ± 0.068 25.269 ± 5.772 0.859 ± 0.092
CoModGan [69] 172.011 0.293 ± 0.146 13.606 ± 4.885 0.746 ± 0.135
LaMa [50] 175.952 0.339 ± 0.144 12.980 ± 4.411 0.510 ± 0.215

NearestNeighbor

AIIA 24.876 0.189 ± 0.106 26.381 ± 4.592 0.724 ± 0.146
ArtificiallyInspired 32.178 0.250 ± 0.144 27.755 ± 5.417 0.774 ± 0.139
HSSLAB 39.325 0.207 ± 0.191 27.314 ± 6.713 0.750 ± 0.215
KwaiInpainting 49.009 0.298 ± 0.133 23.511 ± 4.082 0.644 ± 0.156
SIGMA 34.909 0.256 ± 0.104 22.602 ± 3.845 0.569 ± 0.146
CoModGan [69] 232.360 0.609 ± 0.171 8.491 ± 1.618 0.135 ± 0.137
LaMa [50] 191.660 0.602 ± 0.117 7.464 ± 3.258 0.045 ± 0.079

ThickStrokes

AIIA 33.025 0.142 ± 0.088 23.949 ± 6.366 0.848 ± 0.097
ArtificiallyInspired 28.948 0.144 ± 0.085 22.494 ± 6.591 0.831 ± 0.106
HSSLAB 29.278 0.122 ± 0.081 24.846 ± 7.039 0.872 ± 0.091
KwaiInpainting 50.202 0.186 ± 0.104 23.009 ± 6.197 0.852 ± 0.096
SIGMA 31.063 0.141 ± 0.082 23.636 ± 6.130 0.838 ± 0.103
CoModGan [69] 128.603 0.286 ± 0.144 13.248 ± 4.696 0.736 ± 0.138
LaMa [50] 135.064 0.328 ± 0.140 12.945 ± 4.448 0.506 ± 0.207

ThinStrokes

AIIA 19.859 0.073 ± 0.043 28.566 ± 5.271 0.888 ± 0.072
ArtificiallyInspired 21.117 0.088 ± 0.050 27.174 ± 5.513 0.873 ± 0.081
HSSLAB 16.144 0.053 ± 0.042 30.773 ± 6.363 0.931 ± 0.066
KwaiInpainting 38.984 0.130 ± 0.077 27.525 ± 4.851 0.892 ± 0.071
SIGMA 27.601 0.100 ± 0.056 27.003 ± 5.055 0.870 ± 0.081
CoModGan [69] 218.209 0.418 ± 0.174 13.147 ± 4.252 0.706 ± 0.143
LaMa [50] 218.445 0.452 ± 0.170 12.543 ± 3.906 0.479 ± 0.206

Table 9. Detailed Validation Track 1 - Wikiart dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
Im

a
g
e
N
e
t

Completion

AIIA 52.467 0.326 ± 0.156 16.848 ± 4.298 0.685 ± 0.149
HSSLAB 49.421 0.300 ± 0.149 18.180 ± 4.546 0.709 ± 0.147
KwaiInpainting 65.015 0.372 ± 0.160 16.111 ± 4.143 0.683 ± 0.150
ArtificiallyInspired 64.521 0.335 ± 0.149 14.539 ± 4.009 0.637 ± 0.157
SIGMA 64.697 0.332 ± 0.135 16.905 ± 3.871 0.661 ± 0.152
CoModGan [69] 67.921 0.493 ± 0.186 10.213 ± 3.216 0.509 ± 0.168
LaMa [50] 60.158 0.538 ± 0.183 11.092 ± 3.280 0.269 ± 0.151

EveryNLines

AIIA 4.057 0.038 ± 0.029 32.060 ± 5.098 0.932 ± 0.050
HSSLAB 4.005 0.034 ± 0.037 34.065 ± 5.446 0.945 ± 0.052
KwaiInpainting 6.989 0.058 ± 0.041 29.854 ± 4.762 0.914 ± 0.055
ArtificiallyInspired 3.218 0.030 ± 0.029 33.657 ± 5.409 0.951 ± 0.040
SIGMA 26.220 0.200 ± 0.114 25.851 ± 3.371 0.804 ± 0.099
CoModGan [69] 85.583 0.539 ± 0.152 13.145 ± 2.751 0.425 ± 0.172
LaMa [50] 111.663 0.706 ± 0.137 10.759 ± 2.585 0.114 ± 0.118

Expand

AIIA 110.120 0.601 ± 0.126 12.980 ± 2.942 0.409 ± 0.173
HSSLAB 92.768 0.566 ± 0.135 13.733 ± 3.254 0.450 ± 0.179
KwaiInpainting 137.069 0.684 ± 0.129 11.856 ± 2.857 0.402 ± 0.165
ArtificiallyInspired 122.694 0.635 ± 0.107 10.391 ± 2.422 0.328 ± 0.144
SIGMA 143.855 0.628 ± 0.107 12.367 ± 2.521 0.374 ± 0.153
CoModGan [69] 192.334 0.846 ± 0.096 7.540 ± 2.193 0.117 ± 0.068
LaMa [50] 172.496 0.869 ± 0.116 8.974 ± 3.145 0.051 ± 0.048

MediumStrokes

AIIA 6.410 0.034 ± 0.028 31.970 ± 8.582 0.948 ± 0.044
HSSLAB 5.014 0.026 ± 0.024 34.188 ± 10.276 0.963 ± 0.038
KwaiInpainting 10.672 0.062 ± 0.049 30.945 ± 8.998 0.947 ± 0.046
ArtificiallyInspired 7.654 0.041 ± 0.032 30.588 ± 8.820 0.941 ± 0.048
SIGMA 13.687 0.081 ± 0.036 28.210 ± 4.052 0.930 ± 0.049
CoModGan [69] 60.368 0.162 ± 0.096 18.388 ± 6.371 0.883 ± 0.076
LaMa [50] 64.712 0.237 ± 0.095 14.896 ± 3.616 0.461 ± 0.206

NearestNeighbor

AIIA 19.938 0.152 ± 0.094 25.011 ± 4.772 0.728 ± 0.153
HSSLAB 31.189 0.193 ± 0.192 27.799 ± 6.729 0.774 ± 0.209
KwaiInpainting 62.126 0.309 ± 0.154 22.421 ± 4.168 0.645 ± 0.165
ArtificiallyInspired 29.493 0.206 ± 0.133 26.088 ± 5.500 0.772 ± 0.152
SIGMA 42.165 0.325 ± 0.126 20.595 ± 3.319 0.525 ± 0.143
CoModGan [69] 178.784 0.617 ± 0.148 8.683 ± 1.542 0.121 ± 0.109
LaMa [50] 151.271 0.571 ± 0.108 7.860 ± 2.738 0.054 ± 0.079

ThickStrokes

AIIA 17.338 0.086 ± 0.066 26.012 ± 6.974 0.886 ± 0.088
HSSLAB 13.799 0.071 ± 0.059 27.379 ± 8.012 0.910 ± 0.078
KwaiInpainting 25.386 0.131 ± 0.091 25.101 ± 6.818 0.886 ± 0.087
ArtificiallyInspired 20.256 0.097 ± 0.071 24.580 ± 7.118 0.873 ± 0.096
SIGMA 24.613 0.132 ± 0.069 24.604 ± 4.748 0.866 ± 0.094
CoModGan [69] 74.570 0.237 ± 0.143 14.929 ± 5.356 0.787 ± 0.135
LaMa [50] 80.411 0.303 ± 0.137 13.224 ± 3.765 0.420 ± 0.196

ThinStrokes

AIIA 4.928 0.027 ± 0.020 32.128 ± 5.773 0.950 ± 0.040
HSSLAB 3.409 0.017 ± 0.017 35.328 ± 7.259 0.972 ± 0.033
KwaiInpainting 8.532 0.045 ± 0.035 31.099 ± 5.307 0.949 ± 0.041
ArtificiallyInspired 7.095 0.037 ± 0.027 30.563 ± 5.915 0.941 ± 0.046
SIGMA 15.244 0.080 ± 0.036 28.276 ± 3.588 0.922 ± 0.052
CoModGan [69] 112.792 0.287 ± 0.135 16.453 ± 4.170 0.833 ± 0.092
LaMa [50] 114.879 0.341 ± 0.129 14.296 ± 3.272 0.447 ± 0.195

Table 10. Detailed Validation Track 1 - ImageNet dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
F
F
H
Q

Completion

AIIA 31.345 0.295 ± 0.112 17.212 ± 3.366 0.735 ± 0.108
HSSLAB 33.486 0.300 ± 0.121 17.128 ± 3.665 0.757 ± 0.101
KwaiInpainting 60.420 0.322 ± 0.125 16.702 ± 3.485 0.763 ± 0.102
ArtificiallyInspired 21.663 0.291 ± 0.110 15.857 ± 3.665 0.716 ± 0.117
SIGMA 25.226 0.284 ± 0.105 17.592 ± 3.520 0.736 ± 0.113
CoModGan [69] 98.368 0.498 ± 0.184 9.713 ± 3.129 0.502 ± 0.172
LaMa [50] 106.641 0.451 ± 0.180 10.465 ± 3.669 0.497 ± 0.173

EveryNLines

AIIA 9.853 0.190 ± 0.051 35.747 ± 1.894 0.931 ± 0.023
HSSLAB 6.055 0.087 ± 0.055 37.019 ± 4.068 0.958 ± 0.027
KwaiInpainting 3.009 0.103 ± 0.048 35.969 ± 3.512 0.961 ± 0.018
ArtificiallyInspired 1.011 0.032 ± 0.019 41.778 ± 2.975 0.984 ± 0.009
SIGMA 8.437 0.192 ± 0.075 34.874 ± 2.369 0.910 ± 0.043
CoModGan [69] 146.304 0.719 ± 0.093 11.063 ± 2.256 0.127 ± 0.156
LaMa [50] 75.865 0.469 ± 0.229 14.102 ± 2.360 0.400 ± 0.144

Expand

AIIA 101.904 0.554 ± 0.082 13.028 ± 2.264 0.509 ± 0.091
HSSLAB 103.304 0.536 ± 0.077 12.750 ± 2.227 0.563 ± 0.093
KwaiInpainting 180.148 0.574 ± 0.077 12.480 ± 2.204 0.551 ± 0.097
ArtificiallyInspired 59.827 0.567 ± 0.083 10.985 ± 2.484 0.437 ± 0.103
SIGMA 59.769 0.546 ± 0.071 12.447 ± 2.046 0.494 ± 0.093
CoModGan [69] 278.421 0.778 ± 0.086 8.813 ± 2.607 0.153 ± 0.081
LaMa [50] 333.231 0.728 ± 0.104 7.120 ± 2.346 0.131 ± 0.081

MediumStrokes

AIIA 12.830 0.129 ± 0.068 26.525 ± 5.736 0.891 ± 0.063
HSSLAB 17.545 0.137 ± 0.087 26.147 ± 5.730 0.884 ± 0.072
KwaiInpainting 21.740 0.152 ± 0.078 25.894 ± 5.562 0.904 ± 0.056
ArtificiallyInspired 11.386 0.123 ± 0.065 26.038 ± 6.103 0.885 ± 0.067
SIGMA 14.571 0.138 ± 0.070 26.371 ± 5.567 0.886 ± 0.066
CoModGan [69] 164.666 0.324 ± 0.141 12.672 ± 4.410 0.704 ± 0.145
LaMa [50] 164.672 0.319 ± 0.130 12.938 ± 4.471 0.688 ± 0.151

NearestNeighbor

AIIA 12.067 0.248 ± 0.046 29.490 ± 2.376 0.837 ± 0.057
HSSLAB 39.959 0.335 ± 0.172 29.002 ± 4.705 0.798 ± 0.110
KwaiInpainting 19.571 0.230 ± 0.077 30.262 ± 3.150 0.869 ± 0.054
ArtificiallyInspired 14.966 0.178 ± 0.067 33.159 ± 3.556 0.907 ± 0.046
SIGMA 18.374 0.301 ± 0.058 28.193 ± 2.608 0.753 ± 0.074
CoModGan [69] 242.698 0.746 ± 0.091 7.205 ± 1.585 0.046 ± 0.036
LaMa [50] 149.602 0.725 ± 0.170 7.694 ± 2.779 0.094 ± 0.079

ThickStrokes

AIIA 13.428 0.134 ± 0.074 24.765 ± 5.997 0.882 ± 0.071
HSSLAB 17.633 0.145 ± 0.086 24.150 ± 5.807 0.878 ± 0.072
KwaiInpainting 25.109 0.156 ± 0.082 23.992 ± 5.967 0.895 ± 0.064
ArtificiallyInspired 11.605 0.128 ± 0.073 24.269 ± 6.433 0.877 ± 0.075
SIGMA 13.601 0.137 ± 0.074 25.010 ± 5.898 0.881 ± 0.073
CoModGan [69] 119.135 0.290 ± 0.137 12.892 ± 4.317 0.727 ± 0.136
LaMa [50] 116.625 0.271 ± 0.124 13.258 ± 4.475 0.718 ± 0.139

ThinStrokes

AIIA 9.983 0.119 ± 0.057 30.449 ± 4.175 0.912 ± 0.049
HSSLAB 12.709 0.111 ± 0.074 30.113 ± 5.090 0.908 ± 0.059
KwaiInpainting 17.384 0.136 ± 0.066 30.123 ± 4.320 0.925 ± 0.042
ArtificiallyInspired 9.190 0.116 ± 0.055 29.906 ± 4.418 0.908 ± 0.052
SIGMA 14.007 0.142 ± 0.067 29.535 ± 4.239 0.902 ± 0.055
CoModGan [69] 282.020 0.463 ± 0.158 12.209 ± 3.431 0.645 ± 0.158
LaMa [50] 285.306 0.426 ± 0.128 12.486 ± 3.448 0.603 ± 0.171

Table 11. Detailed Test Track 1 - FFHQ dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
P
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c
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Completion

AIIA 47.357 0.326 ± 0.136 16.588 ± 4.030 0.701 ± 0.142
HSSLAB 46.38 0.316 ± 0.130 16.921 ± 4.244 0.705 ± 0.144
KwaiInpainting 62.936 0.337 ± 0.132 16.513 ± 3.958 0.693 ± 0.148
ArtificiallyInspired 46.091 0.338 ± 0.137 14.277 ± 3.967 0.641 ± 0.159
SIGMA 49.437 0.321 ± 0.125 16.708 ± 4.006 0.668 ± 0.155
CoModGan [69] 72.826 0.514 ± 0.193 10.491 ± 2.814 0.498 ± 0.175
LaMa [50] 63.599 0.516 ± 0.181 11.565 ± 3.175 0.368 ± 0.175

EveryNLines

AIIA 3.409 0.091 ± 0.050 34.463 ± 4.554 0.956 ± 0.036
HSSLAB 4.772 0.086 ± 0.067 34.130 ± 4.544 0.956 ± 0.038
KwaiInpainting 4.548 0.100 ± 0.049 32.516 ± 4.485 0.946 ± 0.040
ArtificiallyInspired 2.301 0.041 ± 0.031 36.474 ± 5.112 0.973 ± 0.025
SIGMA 13.768 0.220 ± 0.102 29.541 ± 4.223 0.877 ± 0.084
CoModGan [69] 96.899 0.550 ± 0.141 12.944 ± 2.435 0.398 ± 0.160
LaMa [50] 120.704 0.690 ± 0.126 10.976 ± 2.374 0.135 ± 0.118

Expand

AIIA 90.619 0.593 ± 0.089 13.104 ± 2.574 0.463 ± 0.149
HSSLAB 87.303 0.572 ± 0.092 13.244 ± 2.782 0.483 ± 0.152
KwaiInpainting 135.921 0.603 ± 0.084 12.768 ± 2.587 0.445 ± 0.150
ArtificiallyInspired 72.053 0.607 ± 0.082 10.878 ± 2.241 0.363 ± 0.135
SIGMA 96.439 0.594 ± 0.078 12.543 ± 2.388 0.412 ± 0.139
CoModGan [69] 242.577 0.875 ± 0.079 6.968 ± 1.785 0.116 ± 0.059
LaMa [50] 205.250 0.879 ± 0.100 9.055 ± 2.676 0.071 ± 0.048

MediumStrokes

AIIA 17.812 0.110 ± 0.064 25.660 ± 6.236 0.888 ± 0.078
HSSLAB 16.746 0.108 ± 0.059 25.878 ± 5.307 0.888 ± 0.075
KwaiInpainting 30.531 0.138 ± 0.077 25.330 ± 6.021 0.890 ± 0.075
ArtificiallyInspired 20.307 0.126 ± 0.072 24.008 ± 6.256 0.871 ± 0.086
SIGMA 21.742 0.132 ± 0.071 25.109 ± 5.862 0.874 ± 0.084
CoModGan [69] 134.389 0.273 ± 0.138 13.709 ± 4.767 0.750 ± 0.134
LaMa [50] 137.856 0.307 ± 0.132 13.081 ± 3.850 0.561 ± 0.189

NearestNeighbor

AIIA 14.160 0.228 ± 0.065 26.674 ± 4.047 0.805 ± 0.113
HSSLAB 37.341 0.291 ± 0.183 26.998 ± 6.276 0.765 ± 0.184
KwaiInpainting 34.299 0.336 ± 0.122 24.987 ± 4.013 0.749 ± 0.132
ArtificiallyInspired 18.421 0.203 ± 0.092 28.213 ± 4.825 0.845 ± 0.107
SIGMA 23.253 0.348 ± 0.082 23.211 ± 3.414 0.655 ± 0.126
CoModGan [69] 249.782 0.609 ± 0.138 8.761 ± 1.291 0.121 ± 0.094
LaMa [50] 200.398 0.563 ± 0.091 7.579 ± 2.504 0.052 ± 0.075

ThickStrokes

AIIA 23.031 0.134 ± 0.077 23.440 ± 6.319 0.866 ± 0.088
HSSLAB 22.035 0.132 ± 0.073 23.740 ± 5.687 0.867 ± 0.086
KwaiInpainting 35.220 0.156 ± 0.086 23.187 ± 6.397 0.867 ± 0.087
ArtificiallyInspired 24.899 0.148 ± 0.083 21.563 ± 6.350 0.844 ± 0.098
SIGMA 25.246 0.148 ± 0.080 23.252 ± 5.903 0.853 ± 0.094
CoModGan [69] 101.557 0.271 ± 0.137 13.549 ± 4.600 0.739 ± 0.137
LaMa [50] 105.310 0.300 ± 0.132 13.186 ± 3.919 0.558 ± 0.188

ThinStrokes

AIIA 10.605 0.087 ± 0.046 29.085 ± 5.013 0.920 ± 0.056
HSSLAB 9.804 0.081 ± 0.040 29.503 ± 4.723 0.920 ± 0.054
KwaiInpainting 20.601 0.116 ± 0.061 28.572 ± 4.856 0.919 ± 0.056
ArtificiallyInspired 14.029 0.111 ± 0.056 27.320 ± 5.100 0.903 ± 0.065
SIGMA 17.196 0.126 ± 0.061 27.570 ± 4.772 0.899 ± 0.065
CoModGan [69] 177.811 0.380 ± 0.154 13.398 ± 3.803 0.720 ± 0.134
LaMa [50] 178.810 0.406 ± 0.149 12.845 ± 3.386 0.550 ± 0.187

Table 12. Detailed Test Track 1 - Places dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
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AIIA 59.04 0.314 ± 0.121 17.871 ± 4.427 0.696 ± 0.143
HSSLAB 54.893 0.309 ± 0.117 18.143 ± 4.555 0.695 ± 0.143
KwaiInpainting 79.088 0.326 ± 0.123 17.658 ± 4.411 0.702 ± 0.146
ArtificiallyInspired 45.855 0.332 ± 0.131 15.92 ± 4.388 0.652 ± 0.156
SIGMA 50.438 0.316 ± 0.121 17.787 ± 4.43 0.673 ± 0.152
CoModGan [69] 108.929 0.516 ± 0.186 10.356 ± 3.024 0.502 ± 0.170
LaMa [50] 95.278 0.529 ± 0.179 11.635 ± 3.500 0.345 ± 0.173

EveryNLines

AIIA 7.405 0.109 ± 0.062 34.093 ± 4.719 0.931 ± 0.050
HSSLAB 9.905 0.116 ± 0.061 33.578 ± 4.564 0.920 ± 0.053
KwaiInpainting 9.558 0.135 ± 0.062 30.75 ± 4.727 0.914 ± 0.053
ArtificiallyInspired 5.602 0.070 ± 0.049 36.178 ± 5.426 0.955 ± 0.037
SIGMA 23.168 0.250 ± 0.098 28.503 ± 4.177 0.830 ± 0.088
CoModGan [69] 118.959 0.575 ± 0.163 13.096 ± 3.173 0.400 ± 0.188
LaMa [50] 146.771 0.731 ± 0.140 11.049 ± 3.090 0.098 ± 0.125

Expand

AIIA 139.489 0.598 ± 0.072 12.811 ± 3.210 0.404 ± 0.158
HSSLAB 112.939 0.578 ± 0.082 13.748 ± 3.345 0.429 ± 0.165
KwaiInpainting 154.693 0.599 ± 0.076 13.359 ± 3.084 0.418 ± 0.159
ArtificiallyInspired 69.536 0.624 ± 0.079 11.592 ± 2.731 0.357 ± 0.135
SIGMA 102.994 0.605 ± 0.073 13.303 ± 2.939 0.390 ± 0.155
CoModGan [69] 314.232 0.902 ± 0.078 6.488 ± 1.795 0.108 ± 0.061
LaMa [50] 281.157 0.908 ± 0.101 9.134 ± 2.889 0.065 ± 0.052

MediumStrokes

AIIA 28.116 0.132 ± 0.076 26.191 ± 6.142 0.869 ± 0.090
HSSLAB 26.233 0.134 ± 0.070 26.149 ± 5.611 0.860 ± 0.089
KwaiInpainting 48.812 0.155 ± 0.085 25.536 ± 5.879 0.877 ± 0.085
ArtificiallyInspired 25.331 0.139 ± 0.079 24.860 ± 6.324 0.856 ± 0.097
SIGMA 29.411 0.143 ± 0.080 25.602 ± 6.168 0.859 ± 0.095
CoModGan [69] 170.570 0.291 ± 0.149 13.871 ± 5.134 0.746 ± 0.138
LaMa [50] 173.157 0.337 ± 0.150 13.293 ± 4.573 0.519 ± 0.219

NearestNeighbor

AIIA 25.149 0.283 ± 0.08 26.735 ± 4.683 0.729 ± 0.147
HSSLAB 61.650 0.370 ± 0.156 25.414 ± 5.505 0.640 ± 0.197
KwaiInpainting 47.438 0.397 ± 0.102 23.785 ± 4.051 0.652 ± 0.158
ArtificiallyInspired 31.915 0.284 ± 0.115 28.126 ± 5.519 0.777 ± 0.139
SIGMA 34.588 0.386 ± 0.077 22.878 ± 3.849 0.578 ± 0.144
CoModGan [69] 233.938 0.612 ± 0.177 8.598 ± 1.719 0.128 ± 0.136
LaMa [50] 186.051 0.588 ± 0.113 7.753 ± 3.364 0.046 ± 0.075

ThickStrokes

AIIA 33.619 0.151 ± 0.082 23.887 ± 6.309 0.848 ± 0.095
HSSLAB 31.389 0.155 ± 0.076 23.906 ± 5.940 0.839 ± 0.094
KwaiInpainting 51.022 0.168 ± 0.086 22.993 ± 5.961 0.853 ± 0.092
ArtificiallyInspired 28.795 0.157 ± 0.084 22.401 ± 6.511 0.831 ± 0.103
SIGMA 30.851 0.157 ± 0.083 23.647 ± 6.276 0.837 ± 0.101
CoModGan [69] 132.012 0.285 ± 0.139 13.453 ± 4.767 0.737 ± 0.134
LaMa [50] 138.143 0.327 ± 0.136 13.150 ± 4.358 0.504 ± 0.211

ThinStrokes

AIIA 19.28 0.117 ± 0.061 28.883 ± 5.021 0.893 ± 0.070
HSSLAB 17.773 0.116 ± 0.053 28.862 ± 4.854 0.883 ± 0.071
KwaiInpainting 36.549 0.149 ± 0.075 27.91 ± 4.805 0.897 ± 0.067
ArtificiallyInspired 20.338 0.131 ± 0.065 27.517 ± 5.226 0.879 ± 0.079
SIGMA 27.054 0.146 ± 0.071 27.325 ± 4.836 0.875 ± 0.078
CoModGan [69] 218.699 0.409 ± 0.170 13.510 ± 4.182 0.716 ± 0.138
LaMa [50] 218.117 0.443 ± 0.167 12.897 ± 3.772 0.499 ± 0.208

Table 13. Detailed Test Track 1 - WikiArt dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑
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AIIA 53.329 0.314 ± 0.125 16.821 ± 4.050 0.687 ± 0.151
HSSLAB 50.698 0.306 ± 0.122 16.943 ± 4.173 0.678 ± 0.151
KwaiInpainting 66.676 0.331 ± 0.127 16.111 ± 3.877 0.683 ± 0.152
ArtificiallyInspired 64.265 0.335 ± 0.131 14.528 ± 3.847 0.638 ± 0.159
SIGMA 65.864 0.364 ± 0.118 16.946 ± 3.801 0.663 ± 0.155
CoModGan [69] 68.808 0.492 ± 0.185 10.183 ± 3.247 0.510 ± 0.167
LaMa [50] 60.203 0.533 ± 0.182 11.065 ± 3.246 0.269 ± 0.149

EveryNLines

AIIA 4.358 0.091 ± 0.044 31.922 ± 4.940 0.930 ± 0.046
HSSLAB 6.219 0.105 ± 0.056 30.62 ± 4.634 0.906 ± 0.056
KwaiInpainting 7.734 0.132 ± 0.063 29.767 ± 4.684 0.913 ± 0.055
ArtificiallyInspired 3.528 0.060 ± 0.037 33.457 ± 5.220 0.950 ± 0.036
SIGMA 27.234 0.302 ± 0.102 25.918 ± 3.441 0.808 ± 0.098
CoModGan [69] 85.176 0.537 ± 0.152 13.005 ± 2.707 0.420 ± 0.175
LaMa [50] 113.321 0.700 ± 0.140 10.597 ± 2.512 0.104 ± 0.111

Expand

AIIA 105.253 0.587 ± 0.082 12.958 ± 2.911 0.416 ± 0.166
HSSLAB 91.267 0.571 ± 0.092 12.779 ± 3.181 0.423 ± 0.171
KwaiInpainting 133.868 0.611 ± 0.085 11.859 ± 2.956 0.407 ± 0.160
ArtificiallyInspired 119.22 0.621 ± 0.076 10.370 ± 2.340 0.333 ± 0.136
SIGMA 135.302 0.634 ± 0.069 12.391 ± 2.423 0.380 ± 0.145
CoModGan [69] 191.674 0.843 ± 0.100 7.657 ± 2.288 0.119 ± 0.073
LaMa [50] 175.469 0.863 ± 0.121 9.103 ± 3.201 0.051 ± 0.046

MediumStrokes

AIIA 6.898 0.049 ± 0.035 31.553 ± 7.784 0.948 ± 0.043
HSSLAB 7.594 0.058 ± 0.040 29.857 ± 5.592 0.927 ± 0.050
KwaiInpainting 11.599 0.065 ± 0.045 30.143 ± 8.024 0.947 ± 0.043
ArtificiallyInspired 8.666 0.057 ± 0.040 30.151 ± 7.963 0.942 ± 0.048
SIGMA 14.748 0.123 ± 0.054 28.136 ± 4.072 0.930 ± 0.051
CoModGan [69] 61.314 0.160 ± 0.093 18.017 ± 5.878 0.881 ± 0.077
LaMa [50] 65.721 0.233 ± 0.095 14.851 ± 3.603 0.474 ± 0.196

NearestNeighbor

AIIA 21.180 0.263 ± 0.078 24.735 ± 4.443 0.723 ± 0.144
HSSLAB 63.128 0.391 ± 0.172 23.173 ± 4.880 0.605 ± 0.196
KwaiInpainting 68.085 0.420 ± 0.120 22.301 ± 3.913 0.638 ± 0.158
ArtificiallyInspired 30.663 0.271 ± 0.109 25.729 ± 5.117 0.767 ± 0.144
SIGMA 43.330 0.445 ± 0.078 20.566 ± 3.262 0.524 ± 0.137
CoModGan [69] 190.993 0.612 ± 0.145 8.537 ± 1.455 0.118 ± 0.110
LaMa [50] 158.894 0.572 ± 0.103 7.635 ± 2.709 0.050 ± 0.076

ThickStrokes

AIIA 15.550 0.097 ± 0.066 26.507 ± 7.070 0.896 ± 0.080
HSSLAB 14.551 0.100 ± 0.063 26.049 ± 5.748 0.878 ± 0.081
KwaiInpainting 22.428 0.118 ± 0.077 25.181 ± 6.927 0.895 ± 0.080
ArtificiallyInspired 17.582 0.108 ± 0.073 25.126 ± 7.259 0.884 ± 0.088
SIGMA 23.115 0.170 ± 0.078 24.985 ± 4.831 0.877 ± 0.088
CoModGan [69] 68.053 0.220 ± 0.134 15.157 ± 5.245 0.801 ± 0.127
LaMa [50] 74.014 0.289 ± 0.128 13.325 ± 3.766 0.425 ± 0.193

ThinStrokes

AIIA 5.534 0.050 ± 0.032 32.095 ± 5.683 0.950 ± 0.041
HSSLAB 6.409 0.057 ± 0.037 30.703 ± 5.033 0.928 ± 0.048
KwaiInpainting 9.090 0.067 ± 0.043 31.274 ± 5.369 0.949 ± 0.042
ArtificiallyInspired 7.748 0.065 ± 0.049 30.593 ± 5.868 0.941 ± 0.048
SIGMA 15.803 0.141 ± 0.061 28.242 ± 3.679 0.922 ± 0.055
CoModGan [69] 110.980 0.283 ± 0.138 16.399 ± 4.132 0.832 ± 0.097
LaMa [50] 113.163 0.337 ± 0.132 14.248 ± 3.335 0.447 ± 0.193

Table 14. Detailed Test Track 1 - ImageNet dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑ mIoU↑

F
F
H
Q

Completion

MGTV 22.042 0.208 ± 0.082 17.024 ± 3.660 0.766 ± 0.099 0.955
Baidu 18.479 0.187 ± 0.081 18.114 ± 3.847 0.774 ± 0.097 0.952
HSSLAB 32.675 0.271 ± 0.124 18.412 ± 3.534 0.786 ± 0.097 0.707
ArtificiallyInspired 19.545 0.209 ± 0.085 17.425 ± 3.446 0.756 ± 0.103 0.934

EveryNLines

MGTV 1.785 0.016 ± 0.011 37.133 ± 1.999 0.970 ± 0.018 0.983
Baidu 1.630 0.014 ± 0.008 38.261 ± 2.720 0.967 ± 0.016 0.985
HSSLAB 5.615 0.031 ± 0.038 39.714 ± 4.572 0.959 ± 0.044 0.984
ArtificiallyInspired 1.083 0.011 ± 0.009 41.779 ± 2.975 0.984 ± 0.009 0.987

Expand

MGTV 54.141 0.397 ± 0.081 12.859 ± 2.646 0.567 ± 0.102 0.941
Baidu 32.759 0.399 ± 0.080 12.880 ± 2.558 0.561 ± 0.097 0.928
HSSLAB 101.753 0.513 ± 0.092 13.681 ± 2.321 0.594 ± 0.092 0.563
ArtificiallyInspired 33.632 0.410 ± 0.085 13.318 ± 2.458 0.547 ± 0.096 0.898

MediumStrokes

MGTV 13.758 0.086 ± 0.048 26.513 ± 5.686 0.894 ± 0.060 0.967
Baidu 10.665 0.070 ± 0.042 26.944 ± 6.015 0.897 ± 0.059 0.971
HSSLAB 12.837 0.075 ± 0.051 27.441 ± 6.805 0.921 ± 0.053 0.932
ArtificiallyInspired 12.347 0.080 ± 0.046 26.504 ± 5.963 0.890 ± 0.062 0.961

NearestNeighbor

MGTV 11.264 0.084 ± 0.040 31.285 ± 3.104 0.876 ± 0.054 0.955
Baidu 7.992 0.065 ± 0.029 31.016 ± 2.964 0.863 ± 0.052 0.966
HSSLAB 24.288 0.176 ± 0.176 31.066 ± 6.309 0.843 ± 0.140 0.926
ArtificiallyInspired 14.360 0.110 ± 0.056 33.215 ± 3.485 0.908 ± 0.044 0.942

ThickStrokes

MGTV 12.059 0.092 ± 0.057 24.997 ± 6.217 0.890 ± 0.066 0.969
Baidu 10.142 0.078 ± 0.051 25.837 ± 6.374 0.894 ± 0.065 0.971
HSSLAB 13.883 0.099 ± 0.066 25.191 ± 6.945 0.906 ± 0.062 0.896
ArtificiallyInspired 11.611 0.090 ± 0.056 25.060 ± 6.420 0.886 ± 0.069 0.962

ThinStrokes

MGTV 13.731 0.062 ± 0.034 30.093 ± 4.085 0.913 ± 0.048 0.963
Baidu 9.153 0.051 ± 0.029 30.039 ± 4.285 0.914 ± 0.048 0.969
HSSLAB 9.042 0.039 ± 0.041 32.668 ± 5.754 0.954 ± 0.044 0.966
ArtificiallyInspired 11.096 0.062 ± 0.033 29.811 ± 4.102 0.906 ± 0.052 0.959

Table 15. Detailed Validation Track 2 - FFHQ dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑ mIoU↑
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MGTV 40.974 0.287 ± 0.129 16.847 ± 4.094 0.703 ± 0.144 0.592
Baidu 41.102 0.290 ± 0.135 16.047 ± 4.252 0.687 ± 0.150 0.485
HSSLAB 45.657 0.313 ± 0.152 17.962 ± 4.278 0.735 ± 0.138 0.427
ArtificiallyInspired 39.444 0.283 ± 0.135 16.379 ± 4.275 0.678 ± 0.155 0.556

EveryNLines

MGTV 3.689 0.029 ± 0.026 33.580 ± 3.998 0.958 ± 0.029 0.871
Baidu 3.645 0.027 ± 0.023 33.445 ± 4.748 0.947 ± 0.037 0.892
HSSLAB 3.999 0.027 ± 0.028 36.246 ± 4.628 0.964 ± 0.037 0.879
ArtificiallyInspired 2.413 0.022 ± 0.024 36.504 ± 5.134 0.973 ± 0.024 0.903

Expand

MGTV 75.698 0.537 ± 0.109 13.145 ± 2.791 0.443 ± 0.142 0.369
Baidu 69.913 0.552 ± 0.102 11.828 ± 2.586 0.414 ± 0.141 0.217
HSSLAB 93.050 0.590 ± 0.124 13.968 ± 2.870 0.499 ± 0.150 0.170
ArtificiallyInspired 60.889 0.513 ± 0.115 12.546 ± 3.100 0.401 ± 0.154 0.353

MediumStrokes

MGTV 24.126 0.113 ± 0.068 25.047 ± 6.055 0.874 ± 0.085 0.759
Baidu 18.578 0.091 ± 0.058 24.885 ± 6.144 0.877 ± 0.083 0.789
HSSLAB 17.306 0.075 ± 0.054 26.946 ± 7.173 0.910 ± 0.072 0.805
ArtificiallyInspired 22.390 0.111 ± 0.067 24.330 ± 6.174 0.864 ± 0.090 0.749

NearestNeighbor

MGTV 18.783 0.174 ± 0.096 26.544 ± 4.110 0.805 ± 0.113 0.681
Baidu 15.424 0.127 ± 0.069 26.022 ± 4.517 0.776 ± 0.131 0.728
HSSLAB 25.402 0.182 ± 0.186 29.040 ± 7.111 0.819 ± 0.182 0.550
ArtificiallyInspired 18.713 0.165 ± 0.102 28.046 ± 4.987 0.841 ± 0.109 0.663

ThickStrokes

MGTV 24.911 0.129 ± 0.077 23.489 ± 6.603 0.859 ± 0.092 0.739
Baidu 21.766 0.116 ± 0.072 23.542 ± 6.598 0.865 ± 0.089 0.745
HSSLAB 21.813 0.108 ± 0.073 24.926 ± 7.778 0.888 ± 0.082 0.735
ArtificiallyInspired 24.390 0.128 ± 0.076 22.700 ± 6.843 0.846 ± 0.099 0.730

ThinStrokes

MGTV 18.866 0.084 ± 0.045 27.526 ± 4.947 0.898 ± 0.065 0.762
Baidu 12.920 0.065 ± 0.040 27.543 ± 5.075 0.902 ± 0.064 0.818
HSSLAB 8.536 0.036 ± 0.029 31.088 ± 6.101 0.947 ± 0.053 0.874
ArtificiallyInspired 18.226 0.093 ± 0.048 26.808 ± 4.883 0.885 ± 0.070 0.741

Table 16. Detailed Validation Track 2 - Places dataset

311180



Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑ mIoU↑

F
F
H
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Completion

MGTV 21.300 0.252 ± 0.090 17.094 ± 3.735 0.764 ± 0.096 0.953
Baidu 18.105 0.232 ± 0.089 18.143 ± 4.135 0.771 ± 0.097 0.950
HSSLAB 33.486 0.300 ± 0.121 17.128 ± 3.665 0.757 ± 0.101 0.690
ArtificiallyInspired 19.179 0.260 ± 0.095 17.465 ± 3.751 0.753 ± 0.103 0.932

EveryNLines

MGTV 1.725 0.050 ± 0.019 37.135 ± 2.018 0.970 ± 0.015 0.983
Baidu 1.564 0.056 ± 0.026 38.265 ± 2.734 0.966 ± 0.016 0.985
HSSLAB 6.055 0.087 ± 0.055 37.019 ± 4.068 0.958 ± 0.027 0.976
ArtificiallyInspired 1.011 0.032 ± 0.019 41.778 ± 2.975 0.984 ± 0.009 0.987

Expand

MGTV 51.917 0.460 ± 0.066 12.934 ± 2.715 0.566 ± 0.104 0.942
Baidu 32.220 0.460 ± 0.074 13.145 ± 2.729 0.566 ± 0.098 0.928
HSSLAB 103.304 0.536 ± 0.077 12.750 ± 2.227 0.563 ± 0.093 0.565
ArtificiallyInspired 33.081 0.485 ± 0.073 13.347 ± 2.576 0.545 ± 0.098 0.895

MediumStrokes

MGTV 13.327 0.124 ± 0.065 26.669 ± 5.778 0.893 ± 0.062 0.967
Baidu 10.300 0.107 ± 0.057 27.047 ± 5.885 0.897 ± 0.060 0.970
HSSLAB 17.545 0.137 ± 0.087 26.147 ± 5.730 0.884 ± 0.072 0.916
ArtificiallyInspired 11.690 0.126 ± 0.066 26.724 ± 5.963 0.890 ± 0.064 0.961

NearestNeighbor

MGTV 11.862 0.174 ± 0.058 31.205 ± 3.188 0.874 ± 0.057 0.954
Baidu 8.401 0.161 ± 0.043 30.941 ± 3.039 0.861 ± 0.055 0.965
HSSLAB 39.959 0.335 ± 0.172 29.002 ± 4.705 0.798 ± 0.110 0.876
ArtificiallyInspired 14.966 0.178 ± 0.067 33.159 ± 3.556 0.907 ± 0.046 0.941

ThickStrokes

MGTV 11.898 0.120 ± 0.067 25.164 ± 6.150 0.890 ± 0.067 0.970
Baidu 10.237 0.106 ± 0.061 26.073 ± 6.192 0.895 ± 0.065 0.970
HSSLAB 17.633 0.145 ± 0.086 24.150 ± 5.807 0.878 ± 0.072 0.884
ArtificiallyInspired 11.525 0.123 ± 0.069 25.351 ± 6.321 0.887 ± 0.070 0.962

ThinStrokes

MGTV 13.003 0.124 ± 0.060 30.185 ± 4.245 0.912 ± 0.049 0.964
Baidu 8.541 0.100 ± 0.051 30.166 ± 4.413 0.913 ± 0.049 0.969
HSSLAB 12.709 0.111 ± 0.074 30.113 ± 5.090 0.908 ± 0.059 0.952
ArtificiallyInspired 10.203 0.133 ± 0.061 29.962 ± 4.279 0.905 ± 0.053 0.960

Table 17. Detailed Test Track 2 - FFHQ dataset
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Mask Team FID↓ LPIPS↓ PSNR↑ SSIM↑ mIoU↑

P
la
c
e
s

Completion

MGTV 42.804 0.307 ± 0.119 16.716 ± 3.974 0.689 ± 0.144 0.583
Baidu 43.597 0.31 ± 0.127 15.808 ± 3.991 0.672 ± 0.152 0.460
HSSLAB 46.380 0.316 ± 0.130 16.921 ± 4.244 0.705 ± 0.144 0.420
ArtificiallyInspired 40.911 0.317 ± 0.124 16.011 ± 4.123 0.661 ± 0.156 0.541

EveryNLines

MGTV 3.581 0.061 ± 0.031 33.547 ± 3.927 0.957 ± 0.031 0.873
Baidu 3.613 0.067 ± 0.038 33.442 ± 4.701 0.947 ± 0.041 0.890
HSSLAB 4.772 0.086 ± 0.067 34.130 ± 4.544 0.956 ± 0.038 0.855
ArtificiallyInspired 2.301 0.041 ± 0.031 36.474 ± 5.112 0.973 ± 0.025 0.906

Expand

MGTV 73.709 0.546 ± 0.082 13.237 ± 2.773 0.448 ± 0.148 0.393
Baidu 70.481 0.565 ± 0.089 11.954 ± 2.578 0.420 ± 0.145 0.229
HSSLAB 87.303 0.572 ± 0.092 13.244 ± 2.782 0.483 ± 0.152 0.179
ArtificiallyInspired 60.163 0.557 ± 0.087 12.697 ± 3.027 0.409 ± 0.158 0.372

MediumStrokes

MGTV 22.100 0.132 ± 0.073 25.067 ± 5.820 0.876 ± 0.083 0.760
Baidu 17.331 0.112 ± 0.066 24.923 ± 6.082 0.879 ± 0.082 0.791
HSSLAB 16.746 0.108 ± 0.059 25.878 ± 5.307 0.888 ± 0.075 0.789
ArtificiallyInspired 20.718 0.141 ± 0.078 24.317 ± 6.085 0.865 ± 0.088 0.744

NearestNeighbor

MGTV 18.498 0.225 ± 0.080 26.710 ± 3.953 0.809 ± 0.110 0.673
Baidu 15.086 0.209 ± 0.073 26.187 ± 4.350 0.781 ± 0.128 0.725
HSSLAB 37.341 0.291 ± 0.183 26.998 ± 6.276 0.765 ± 0.184 0.465
ArtificiallyInspired 18.421 0.203 ± 0.092 28.213 ± 4.825 0.845 ± 0.107 0.655

ThickStrokes

MGTV 25.047 0.145 ± 0.079 23.113 ± 5.952 0.856 ± 0.092 0.743
Baidu 21.081 0.131 ± 0.076 22.935 ± 6.050 0.859 ± 0.090 0.751
HSSLAB 22.035 0.132 ± 0.073 23.740 ± 5.687 0.867 ± 0.086 0.724
ArtificiallyInspired 23.802 0.153 ± 0.083 22.279 ± 6.054 0.843 ± 0.098 0.735

ThinStrokes

MGTV 18.180 0.127 ± 0.062 27.775 ± 4.812 0.902 ± 0.064 0.765
Baidu 12.653 0.094 ± 0.051 27.773 ± 5.034 0.906 ± 0.062 0.830
HSSLAB 9.804 0.081 ± 0.040 29.503 ± 4.723 0.920 ± 0.054 0.858
ArtificiallyInspired 18.322 0.148 ± 0.070 27.088 ± 4.826 0.890 ± 0.069 0.743

Table 18. Detailed Test Track 2 - Places dataset
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