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Abstract

Current super-resolution methods rely on the bicubic
down-sampling assumption in order to develop the ill-posed
reconstruction of the low-resolution image. Not surpris-
ingly, these approaches fail when using real-world low-
resolution images due to the presence of artifacts and in-
trinsic noise absent in the bicubic setup. Consequently,
attention is increasingly paid to techniques that alleviate
this problem and super-resolve real-world images. As ac-
quiring paired real-world datasets is a challenging prob-
lem, real-world super-resolution solutions are traditionally
tackled as a blind problem or as an unpaired data-driven
problem. The former makes assumptions about the down-
sampling operations, the latter uses unpaired training to
learn the real distributions. Recently, blind approaches
have dominated this problem by assuming a diverse bank of
degradations, whereas the unpaired solutions have shown
under-performance due to the two-staged training. In this
paper, we propose an unpaired real-world super-resolution
method that performs on par, or even better than blind
paired approaches by introducing a pseudo-controllable
restoration module in a fully end-to-end system.

1. Introduction
Super Resolution (SR) is the task of recovering the sharp

and detailed information of a high-resolution (HR) image
from its low-resolution (LR) counterpart. Although SR is
a very active topic [13–15, 27, 34, 35], its usage in real-
istic applications - Real-World Super Resolution (RWSR)
- is in its infancy. RWSR differs from traditional Super-
Resolution (SR) approaches, also known as Single-Image
Super-Resolution (SISR), in a subtle yet radical way. On
the one hand, SISR methods are trained in a paired fashion
by generating downsampled (typically bicubic interpola-
tion) LR images from their HR counterparts, thus resolving
a simplified version of the challenging ill-posed SR prob-
lem, i.e. increasing the resolution of a noise-free, artifact-
free, and corrupted-free low-resolution image. On the other
hand, RWSR methods aim at super-resolving real-world im-
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Figure 1. PCR-ESRGAN – Our solution first self-estimates a
notion of the type of noise and strength corruptions in the low-
resolution image, so it can be clean by a domain adaptor generator,
which output is subsequently fed to a Super-Resolution backbone
for upsampling.

ages, that is, images with noise, sensor corruptions, and
compression artifacts. Due to the inherent data acquisition,
it is difficult to have LR-HR alignment.

Given the unsupervised nature of this problem, most
RWSR methods [7,17–19,29] rely on a two-stage approach.
Firstly, learning to degrade the HR images in order to re-
semble the noise and corruptions in the LR domain. Sec-
ondly, artificially generate LR-HR pairs in order to learn a
new SR method with such paired supervision. There ex-
ist different alternatives to model the degradation process,
such as using fixed prior assumptions regarding the degra-
dation kernel [11,36], or using Generative Adversarial Net-
works [8] to learn a generator without prior assumption on
the data or the kernel [2, 17]. Nonetheless, two-stage ap-
proaches for real-world super-resolution share an important
issue: as they lack end-to-end training, and given that there
is no LR-HR alignment, learning the degradation model in-
volves heuristic decisions on the model convergence, which
causes discrepancies with the real LR domain. Moreover, as
the super-resolution alignment in the second stage relies on
the degradation procedure, this heuristic decision and do-
main gap dramatically affects the performance at test time.

There has been little attention to one-stage approaches
that aim at jointly learning the degradation and the up-
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sampling operations in an end-to-end manner. Recent ef-
forts [20, 30] in this direction extended the two domain
learning (real-world corrupted domain and high-resolution
domain) by adding a new low-resolution clean domain that
leverages on the downsampling of the high-resolution im-
age, which then uses it to first learn to “clean” the real-world
image before super-resolving it. However, this approach
makes a strong assumption in the new clean domain, namely
that cleaning a corrupted image is a deterministic operation.

Our solution builds on top of the fully end-to-end idea,
yet introduces a notion of stochasticity in the transforma-
tions. As a consequence, it produces a relatively diverse
super-resolved output. Our rationale is that cleaning an im-
age is not a deterministic process, instead depending on the
type and amount of noise. Therefore, we first aim at esti-
mating a pseudo-noise and a pseudo-strength from the low-
resolution image, which act as condition to a clean genera-
tor. Subsequently, we use an off-the-shelf SISR backbone
to upsample our clean image (see Figure 1).

Specifically, we propose a pseudo-controllable restora-
tion (PCR) technique that controls how much of the cor-
rupted image should be restored before passing it to the
SR network. Additionally, both the clean domain and the
corrupted domain are modeled as non-deterministic, which
allows us to perform more accurate cycle-consistency re-
constructions, which are crucial in unpaired settings [37].
Our results suggest that introducing more control in the un-
paired training outperforms the state-of-the-art in RWSR [7,
11, 29], and produces very competitive results with respect
to blind approaches [26, 32].

See a simplified overview of the PCR training system in
Figure 2. Code and pre-trained models will be available.

2. Related Work
SISR techniques where the downsampling operation is

known are the most popular choice in the SR landscape.
However, it lacks generalization due to the domain gap
between real-world LR images and LR images used for
training (typically clean bicubically downsampled images).
There are two alternatives to deal with this mismatch.
Firstly, blind techniques focus on learning a generalized
downsampling representation (i.e. blur kernel) in order to
impose a more realistic downscaling operation, which can
be applied for super-resolution beyond the bicubic degrada-
tion. Secondly, unpaired real-world problems focus on data-
driven solutions, i.e. super-resolving low-resolution images
that lie inside a distribution (typically using a dataset that
comes from a small/corrupted device sensor).

2.1. Blind SR

Despite their success, paired SISR methods [13, 27] fail
when applied to LR images from a source different than that
used for training, which hinders their applicability to more

realistic applications. As a result, trying to model more
realistic downsampling operators, Michaeli and Irani [21]
exploited the internal dependencies within an image to
extract the most optimal non-parametric kernel from the
low-resolution image. This idea is further developed by
Shocher et al. [24] and Bell-Kligler et al. [1], leveraging the
recurrent information within an image to develop an image-
specific network using different blur kernels. While there
exist several methods in blind SR [9,22,25,31], they mostly
focus on learning the blur kernel and do not consider com-
pression artifacts or sensor corruptions. Recently, a new
family of blind approaches [26, 32] focuses on producing a
high variety of random degradations that resemble the ones
present in images in the wild, producing impressive results
for RWSR. Despite their success, they require heavy man-
ual tuning of the degradation parameters.

2.2. Unpaired SR

Unpaired real-world super-resolution has been tradition-
ally tackled by using an ensemble of two approaches: learn
to degrade in order to learn how to upsample, where the
main technical improvements are usually in the degradation
stage. We categorize them into two strands.

The first strand employs end-to-end training schemes.
CinCGAN [30] pioneered this problem by using an end-
to-end approach, which extends the two involved domains
(real-world LR and HR) by adding an additional LR-
clean (cleanLR) domain, where the main purpose is to re-
move the artifacts and noises before super-resolving the
image. Similarly, Maeda [20] further extended this idea
by using a pseudo-supervision HR-cleanLR-LR-cleanLR-
HR that yielded better performance. As these approaches
require learning 3 different generators, i.e. to degrade,
to clean, and to upsample in an unsupervised non-fully
stochastic manner, the framework is very unstable.

The second strand decouples the degradation and the
super-resolution as two independent problems. Bulat et
al. [2] and Lugmayr et al. [17] leveraged on a cycle-
consistency approach [37] to learn the real-world genera-
tor in a fully adversarial way without prior assumptions,
which is consequently used to produce LR-HR pairs to learn
a specialized SR network. As real-world corruptions can be
naively modeled as high-frequency perturbations, the win-
ner of the AIM19 Real-world SR challenge [19], ESRGAN-
FS [7], extended the work in [17] to focus the corrupted
images discriminator on the high-frequency spectrum. Fol-
lowing a different trend, several methods [11, 36] borrowed
insights from blind SR systems to introduce a kernel degra-
dation pooling, which set Ji et al. [11] as the winner of
the NTIRE 2020 - Real-World SR Challenge [18]. How-
ever, this solution employs an empirical and handcrafted
non-parametric kernel pooling which limits its scalability.
Although these two-staged solutions yield impressive re-
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Figure 2. Overview of our training scheme – We introduce a pseudo-controllable restoration scheme, which for the cycle-consistency
of the clean images (left), we sample a random noise and a random strenght for the corrupted generation stage. This fake corrupted
image is subsequently cleaned using the same previously injected noise values. For the corrupted images (right), we resort to a trainable
controllable encoder that extracts the type of corruptions from the low-resolution image, and use it as pseudo-guidance for both generation
and reconstruction. Note that ⇓ refers to detaching the gradients from the graph.

sults and are overall more stable to train than end-to-end
approaches, they rely on several heuristic decisions for the
degradation learning scheme, which harms generalization.
Moreover, using a degradation network to model RWSR
corruptions independently introduces a domain shift [17].
To overcome the domain shift, Wei et al. [29] propose a
domain-gap aware weight to balance this information dur-
ing the SR training.

Both Blind SR and Unpaired SR approaches share a
strong assumption, which is the determinism in the SR
transformation. It is common to assume non-deterministic
transformations for the corrupted domain, yet not so for
the “clean” one. Our solution goes in this direction. We
propose a non-deterministic transformation as an interme-
diate step to pseudo-clean the LR image, before feeding
it to off-the-shelf SR networks, e.g. ESRGAN [27]. Im-
portantly, we produce two different solutions: a fully end-
to-end trainable system PCR-ESRGAN, and a Plug&Play
(PP-ESRGAN) cleaning module that adapts to any existing
bicubic SR network, (e.g. RCAN [35], ESRGAN [27], and
RankSRGAN [34]) for the purpose of real-world unpaired
scenery.

3. Proposed Approach
Our goal is to learn a mapping function G that recon-

structs a HR image Yhr ∈ RH×W×3 by using the real-
world LR counterpart Xlr ∈ Rh×w×3 without having ac-
cess to the joint distribution (Xlr, Xhr), where (h,w) =
(H/n,W/n) and n is a predefined down-scaling factor. Us-
ing real-world LR images implies that traditional SR meth-

ods [27, 34] do not perform well on this task due to the
inherent artifacts and noise absent in such training frame-
works. With this in mind, and in the same vein as recent
works [20, 30], we use an unsupervised generative adver-
sarial approach where we learn to degrade and clean HR
and LR images, respectively. Importantly, we are leverag-
ing off-the-shelf SR techniques to learn a domain adaptor
(clean network) model that produces clean images suitable
for such SR solutions. In addition to the off-the-shelf net-
work, the proposed system is coupled with 2 more genera-
tors, 3 discriminators, and 1 controllable encoder. We depict
a simplified overview of our system in Figure 2, which we
explain in the following section.

3.1. Networks

Generators. In order to create HR images from real-world
LR ones in an unsupervised fashion, we define a domain
adaptation generator Gclean that aims at removing the cor-
ruptions and artifacts present in the LR images (xlr), while
maintaining the same resolution (ylr). As our system is
fully unsupervised, we also employ a corrupted generator
Gcorrupted that transforms from the bicubically downsam-
pled clean image (yhr↓s - s is the downscaling factor) do-
main to the real-world domain.

Additionally, as the generic off-the-shelf network (Gup)
expects clean LR images in order to perform the upsam-
pling, our mapping function G is redefined as G = Gup ◦
Gclean. There are two alternatives to our solution: in the
plug & play version (PP-ESRGAN), Gup is not trained, and

800



instead it uses pretrained SR weights. The second alterna-
tive is the full retraining of Gup, which corresponds to our
main system PCR-ESRGAN.

Moreover, the corrupted generator and the clean genera-
tor are conditioned with a random variable to insert (ẑ) or
remove corruptions (z̃), respectively, in order to produce a
plurality of outputs. In detail, ẑ aims at modeling the re-
sulting type of degradation the corrupted generator should
produce, and z̃ aims at modeling what kind of degradation
the clean generator should remove. Moreover, to also model
a notion of strength, we include a temperature variable that
scales ẑ and z̃, independently. Formally, the output of each
generator is defined as follows:

x̂lr = Gcorrupted(ylr, z), where z = ẑ · τ̂ (1)

ỹlr = Gclean(xlr, z), where z = z̃ · τ̃ (2)

Controllable Encoder. During ẑ and z̃ training, τ̂ and τ̃
are randomly sampled from a normal distribution and a uni-
form distribution, respectively. Therefore, inspired by re-
cent works in general image manipulation [5, 23], the con-
trollable encoder serves as an estimator for both the type (z)
and strength (τ ) of corruptions. In detail, the controllable
encoder has two output branches for type (Sz) and strength
(Sτ ), respectively.

3.2. Loss Functions

At each iteration, we assume we have access to a dis-
joint pair of HR (yhr) and LR images (xlr), and by bicubi-
cally downsampling yhr we obtain ylr. Additionally, fake
images (Equation 1 and 2) are generated at each iteration
using normally distributed noise (ẑ, z̃ ∈ Rw×h) and a uni-
formly sampled strength (τ̂ , τ̃ ∈ {1, 2, . . . , N − 1}, and N
is empirically set to 10).

Noise Loss. As we are interested in estimating the amount
of corruption (either to remove or to inject) present in an
image, from Equation 1, we aim at reconstructing the type
of noise injected to the corrupted generator, as it is more
difficult to estimate the amount of corruptions removed by
Equation 2:

Lnoise = ∥ẑ − Sz(x̂lr)∥1 (3)

Note that z is the same size as the input image, and the
noise is modeled as pixel-independent. This assumption has
a particularity that allows us to introduce our next loss func-
tion.

Strength Loss. The Noise Loss allows the model to learn
a distribution over the possible noises, corruptions, and ar-
tifacts. In order to extend the diversity of the search space,

we use τ different scaled Gaussian distributions (Please re-
fer to the Supplementary Material for a visual description),
where each pixel in z is randomly scaled. While the noise
loss aims at always reconstructing the noise at a unitarian
strength, we define the strength loss as the probability each
pixel has to belong to the scaled distribution.

We use the cross-entropy loss at the pixel level as fol-
lows:

Ltemp = −p(x̂lr) · log Sτ (x̂lr) (4)

Identity Loss. To further guide the clean network, we de-
ploy the identity loss using a zeroed strength component as:

Lidt = ∥ylr −Gclean(ylr, [0]h×w)∥1 (5)

Our rationale is that clean images do not require any further
cleaning.

Reconstruction Loss. To enforce that the networks do not
ignore the noise and strength cues, we enforce the cycle-
consistency reconstruction loss. For the clean image (ylr)
case (Equation 1): as the corrupted generator injects the
resulting type of distribution (ẑ · τ̂ ), and the clean gener-
ator feeds the corrupted distribution to be removed, then the
same distribution (ẑ · τ̂ ) serves in order to reconstruct the
original image.

yrec−lr = Gclean(x̂lr, z), where z = ẑ · τ̂

The treatment for Equation 2 is different. In this case, we
want to fully remove the corruptions in ỹlr, and insert them
again for the cycle-consistency. Yet, we do not have access
to such information. Therefore, we use pseudo ground-truth
that estimates the “real” corruptions in xlr. We redefine
Equation 2 with the following conditions: z̃ = sg(Sz(xlr))
and τ̃ = sg(argmaxτ (Sτ (xlr))), where sg(·) denotes the
stop-gradient operation, so we can pseudo-remove corrup-
tions and pseudo-include them again for the loss function.

xrec−lr = Gcorrupted(ỹlr, z), where z = z̃ · τ̃

The reconstruction loss is defined as:

Lrec−lr = ∥xlr − xrec−lr∥1 + ∥ylr − yrec−lr∥1 (6)

Furthermore, we also use the reconstruction loss for the
high-resolution cycle-reconstructed image.

Lrec−hr = ∥yhr −Gup(yrec−lr)∥1 (7)

In addition to the standard pixel-wise loss and perceptual
VGG19 loss [12] for the high-resolution image, we intro-
duce a novel perceptual loss that uses a stronger prior. We
use VQGAN [6] pretrained with Gumbel Quantization [16]
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on Imagenet, which allows us to apply a general-purpose
feature-based loss function. We refer to it as VQLoss.

Total Loss. In addition to the adversarial losses for each
domain (HR domain, LR clean domain, and LR real-world
domain), our total loss is a weighted linear combination
of the above-mentioned losses, where each loss contributes
equally.

Inference. During inference, we use the controllable en-
coder to self-estimate the type and strength of corruptions
in the low-resolution image: Gup ◦ Gclean(xlr, z), where
z = Sz(xlr) · argmaxτ (Sτ (xlr)).

3.3. VQGAN as Prior

We observed that the VQGAN [6] internal representa-
tion is robust enough to successfully reconstruct an LR
blurry/corrupted/degenerated image as well as a pristine
high-resolution image, which makes the VQGAN encoder
very suitable as a powerful prior for downstream tasks. In
this paper, we confirm this for perceptual SR tasks. In ad-
dition to the standard VGG as de facto perceptual loss, we
use the proposed VQLoss as follows. Similar to a Feature
Matching loss, we use the L1 loss for the deep feature repre-
sentations of a pretrained Gumbel Quantized VQGAN en-
coder (E):

LVQ-FM =

T∑
i=1

1

Ni
[||E(i)(yhr)− E(i)(Gup(yrec−lr))||1],

Where T are the number of layers in the encoder.
Moreover, as each ground-truth image can be quan-

tized q(·) as a discrete vocabulary from a rich codebook
q(E(yhr)), we use the standard cross-entropy loss (LVQ-CE)
to force the generated image E(Gup(yrec−lr)) to also en-
code for the same vocabulary. Therefore, the final LVQ loss
is a weighed sum between LVQ-FM and LVQ-CE.

Note that LVQ is not inherent to unpaired SR tasks, yet it
can be extended for perceptual SISR, Blind SR, Video SR,
and it can be potentially used outside SR problems. Please
refer to the Supplementary Material for more details, and
comprehensive results of LVQ applied to SISR, Blind SR,
and Video SR pre-existing solutions.

4. Experimental Setup
4.1. Datasets

We use the datasets provided in two different chal-
lenges in Real-World Super-Resolution: NTIRE20 [18] and
AIM19 [19]. Additionally, we also use two datasets with
less visual artifacts, yet real-world camera and cellphone
corruptions: RealSR [3] modeling DLSR camera corrup-
tions, and DPED [10] modeling cellphone corruptions. In
all cases we use ×4 upsampling.

4.2. Evaluation Framework

Since AIM19, NTIRE20, and RealSR datasets provide a
paired validation set, we to compute the learned perceptual
image patch similarity (LPIPS) metric, as well as, fidelity
metrics such as the peak signal-to-noise ratio (PSNR), and
the structural similarity index (SSIM) [28].

4.3. Training Details

We train our system during 100,000 iterations with a
constant learning rate of 0.001, batch size 4, and high-
resolution crops of 256×256 pixels. In order to keep our
system easily reproducible and architecture agnostic, we
use pre-existent architectures for all our generators, dis-
criminators, and controllable encoder. For instance, both
the clean and corrupted generator is a light-weighted ver-
sion of an RRDB [27] network with no upsampling layers.
Please refer to the Supplementary Material for more train-
ing and architecture details.

5. Results
5.1. Ablation Study

To validate each section of our system, and consider-
ing that our solution is inspired by the one presented by
Maeda [20], we select Maeda as our baseline. We study our
three main contributions, namely the pseudo-ground-truth
for cycle-consistency, the controllable strength, and the ef-
fect of an additional perceptual loss. By using a generic
pretrained SR network (ESRGAN [34]) as upsampling net-
work, Table 1 shows the quantitative evaluation of each part
of our system over the AIM19 dataset.

Although Maeda source code is not publicly available,
our baseline 0⃝ behaves similarly to the scores reported in
the main paper [20] for AIM19, and it overall has similar
ingredients. 1⃝, Our first experiment (PP-ESRGAN) is to
exploit the unsupervised nature of the problem in order to
force the clean generator to produce bicubically downsam-
pled clean images that can be super-resolved by an off-the-
shelf pretrained yet frozen SR network e.g., RCAN [35],
ESRGAN [27], and RankSRGAN [34]. This model can be
used as a plug & play clean module during inference. In
detail, we train the whole system by leveraging on the gra-
dients of a fixed SR Network, and during inference, we can
test over all possible upsampling networks. Please refer to
the Supplementary Material for more results over different
architectures. Using a P&P approach is actually very bene-
ficial with respect to the baseline.

Different to prior methods, Pseudo-GT 2⃝ assumes that
the clean domain is inherently stochastic due to the multiple
representations for the clean generator. This prevents us to
extend the P&P approach that has a deterministic assump-
tion. By introducing our Pseudo-GT, we get an important
boost over the performance. Moreover, 3⃝, scaling (τ ) the
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Finetuning Pseudo-GT Strength VQLoss PSNR↑ SSIM↑ LPIPS↓

Baseline 0⃝→ ✓ 19.500 0.529 0.442
PP-ESRGAN 1⃝→ 21.029 0.552 0.406

2⃝→ ✓ ✓ 20.213 0.538 0.364
3⃝→ ✓ ✓ ✓ 21.492 0.592 0.334

PCR-ESRGAN 4⃝→ ✓ ✓ ✓ ✓ 21.590 0.610 0.321

Table 1. Ablation study – We validate our system using three different components and compared to our baseline that shares similarities
with Maeda [20]. Finetuning refers to updating the weights of the upsampling network that starts from a pretrained SISR network.

Figure 3. AIM19 [19] Qualitative Results – We compare against unsupervised approaches (ESRGAN-FS [7], Impresionism [11],
DASR [29]), and two blind approaches (BSRGAN [32] and Real-ESRGAN [26]). We compute the averaged PSNR, SSIM, and LPIPS for
the three displayed images. Note that in contrast to blind approaches, our solution produce consistent high-frequency details.

noise distribution allows us to have a notion of controllable
strength that also strengthen our performance.

Finally 4⃝, we observed that using a powerful prior as
a loss can help to yield better perceptual results in the
RWSR task. We further evaluate this observation over dif-
ferent strategies, i.e., retraining ESRGAN [27], RealESR-
GAN [26], and BasicVSR [4] in a GAN setup with VQLoss.
In all cases, there is a consistent improvement in both
pixel-wise metrics (PSNR and SSIM) and perceptual metric
(LPIPS). Please refer to the Supplementary Material for this
evaluation.

Furthermore, we empirically found that the PCR train-
ing scheme does not further contribute to the PP-ESRGAN
scheme.

5.2. Comparison with State-Of-The-Art

We compare our system against the two winners of the
last two editions of the Real-World Super-Resolution Chal-
lenge (ESRGAN-FS [7] for AIM19 [19] and Impression-
ism [11] for Ntire20 [18]), DASR [29], and two [26, 32]
blind approaches.

Table 2 shows quantitative comparison over three dif-

ferent datasets. Our method, PCR-ESRGAN, consistently
outperforms the unpaired solutions in both AIM19 and
NTIRE20 datasets, and it even performs better than blind
approaches on the NTIRE20 dataset. However, for the Re-
alSR dataset, our solution is not champion. In contrast to
AIM19 and NTIRE20, the RealSR dataset is built by using
similar DSLR camera sensors for both LR and HR datasets
with different focal lengths, which leads to very subtle cor-
ruptions on the LR counterpart. We argue that our method is
more suitable for those datasets that visually require a clean
adaptation module before super-resolving, hence failing in
those that do not require it. Additionally, we see the DASR
method as an orthogonal solution to this problem, as they
introduce a domain-gap aware training scheme plus wavelet
bands for the discriminator, which can also be incorporated
in our solution.

Figure 3, 4, and 5 show qualitative results for
AIM19 [19], NTIRE20 [18], RealSR [3], and DPED [10]
datasets. Note that Real-ESRGAN and BSRGAN achieve
impressive performance across the three datasets. How-
ever, their generated images tend to be over-smoothed in
the high-frecuency regions. Our solution, and in general
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Method
AIM19 [19] NTIRE20 [18] RealSR [3]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bicubic 22.360 0.618 0.683 25.520 0.673 0.634 25.620 0.729 0.481

B
lin

d BSRGAN [32] 22.475 0.623 0.299 24.563 0.669 0.265 24.878 0.739 0.268
Real-ESRGAN [26] 22.190 0.624 0.296 24.678 0.687 0.251 24.310 0.737 0.273

U
ns

up
er

vi
se

d

ESRGAN-FS [7] 20.832 0.511 0.390 24.599 0.689 0.253 23.992 0.709 0.295
Impressionism [11] 21.901 0.600 0.411 24.831 0.662 0.228 22.453 0.639 0.309
DASR [29] 21.788 0.573 0.347 - - - 25.786 0.753 0.267
Maeda [20] 19.500 0.529 0.442 21.109 0.596 0.321 21.770 0.637 0.336
PP-ESRGAN (Ours) 21.029 0.552 0.406 23.984 0.662 0.267 21.781 0.667 0.331
PCR-ESRGAN (Ours) 21.590 0.610 0.321 24.970 0.682 0.223 25.174 0.714 0.305

Table 2. Quantitative Comparison –. We compare against recent works using unsupervised training schemes as well as blind approaches.
We compute both fidelity (PSNR and SSIM) and perceptual (LPIPS [33]) metrics for three different datasets AIM19 [19], NTIRE20 [18],
and RealSR [3].

Figure 4. NTIRE20 [18] Qualitative Results – We compare against unsupervised approaches (ESRGAN-FS [7], Impresionism [11],
and two blind approaches (BSRGAN [32] and Real-ESRGAN [26]). We compute the averaged PSNR, SSIM, and LPIPS for the three
displayed images. Similar to the AIM19 case, blind approaches tend to over-smooth high frequency regions.

unpaired solutions, are overall sharper in those regions.

Furthermore, it is important to mention that both
ESRGAN-FS and Impressionism require special hand-
crafted tuning during the first stage of corruption genera-
tion. Visual analysis on the type of noise leads to hard-
coded assumptions, which can be very difficult to scale to
different datasets with different artifacts. Our method has
no assumption about the data and it is trained in an end-to-
end manner.

Although the PP-ESRGAN performance is far from the
PCR-ESRGAN one, it proves, to some extent, that bicubic
SISR networks can be incorporated into both training and
inference stages of real-world super-resolution systems.

Overall, blind approaches do not widely outperform un-
supervised approaches. In detail, for a given LR dataset
built from a particular sensor yet unknown corruptions and
artifacts, results on NTIRE20 suggest that it might be bene-
ficial to use unpaired learning.

5.3. Note on Controllable Restoration

Figure 6 shows results using different values for both
type of noise and strengths, i.e., using different random vec-
tors (z) and varying τ . Note that, as we are using a pseudo-
controllable approach, we are not directly estimating the
real type of noise and the real strength from the LR image,
which result in not having a zero-to-one restoration scheme,
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Figure 5. RealSR [3] (top) and DPED [10] (bottom) Qualitative Results – We compare against unsupervised approaches (ESRGAN-
FS [7], Impresionism [11], DASR [29]), and two blind approaches (BSRGAN [32] and Real-ESRGAN [26]). We compute the averaged
PSNR, SSIM, and LPIPS for RealSR, and NIQE for DPED. For both datasets, unsupervised approaches tend to preserve sharp details.

Figure 6. PCR Diversity – We show that using different values
of strength or type of noise yield different transformations. As
we are using a pseudo-controllable restoration, our strength does
not correlate with the zero-to-one strength removal. Additionally,
self-estimating (auto) the noise and strength does not always lead
to the best performance.

and it can also be seen that sometimes random values can
have better performance than the self-estimated one (third
column).

5.4. Limitations
Although our method produces good performance on

most of the datasets, it is still far from solving the real-world
super-resolution problem, and we argue there are at least
two areas where our method can be improved. (1) We intro-
duced the concept of pseudo-controllable restoration. How-

ever, as Figure 6 shows, our method does not fully restore
the image in a zero to one fashion, and instead, it is a no-
tion of controllable restoration, hence the pseudo. (2) One
strong assumption about our system is the cleaning strategy,
i.e., we require there are visible corruptions or artifacts to
clean before the upsampling layers and it is not always the
case in less corrupted real-world images such as RealSR.

5.5. Potential Negative Societal Impact
As a generative method, our solution is not excepted for

misusing it in low-resolution images in-the-wild such as
face or object hallucination. However, we hope the reader
and final user of our code see our solution as a scientific
research.

6. Conclusions

We have presented a method for Unpaired Real-World
Super Resolution. We introduced a novel framework that
leverages the full cycle-consistency of the corrupted images
by using a pseudo-controllable restoration. The effective-
ness of our framework is validated over the AIM19 dataset
and generalized to NTIRE20, RealSR, and DPED datasets.
Moreover, compared with blind approaches, we show that
in some cases using unpaired learning leads to better per-
formance.
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