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Abstract

In recent years, tremendous studies have been performed
on the image distortion restoration task and deep learning-
based methods have shown prominent performance im-
provement. However, assuming only a single distortion to
an image may not be applicable in many real-world sce-
narios. To mitigate the issue, some studies have proposed
multi-distortion datasets by applying the corruptions se-
quentially or spatially. In this work, we integrate the two
perspectives on the multi-distortion nature and propose a
new dataset that is a holistic multi-distortion dataset. To re-
store the multi-distortion effectively, we introduce a distor-
tion information-guided restoration network, which exploits
the conditional distortion information when reconstructing
a given image. To do that, our framework first predicts the
distortion type and their strength and delivers these to the
restoration module. In our experiments, we show that the
proposed model exceeds the others and we also demonstrate
that any backbone network benefits from receiving the dis-
tortion information as prior knowledge.

1. Introduction

Image restoration has been actively researched in com-
puter vision field for several decades. It aims to reconstruct
the degraded image into a cleaned one. There exist var-
ious sub-problems of the image restoration, such as image
super-resolution [27,34], denoising [1], and deblurring [29].
Because the modeling of these tasks requires a one-to-many
mapping function, it is challenging to develop the optimal
solution. Nevertheless, many studies have been done on im-
age restoration for various real-world applications.

Most of the works on image restoration tasks have been
postulated that an input image is corrupted with a single and
fixed-intensity distortion [8, 14]. However, as various types
of corruption with unknown strength can be applied in real-
world applications, this assumption may not hold in many
cases. Thus, some studies have introduced multiple distor-
tion datasets [21,39] or methods [18,24,32,40] to close the
gap between the simulated and the real environment.

Previous multi-distortion datasets are broadly catego-

rized into two types based on the dataset generation proce-
dure. The first regime is the sequentially-applied (or mixed)
distortion dataset [39] as shown in Figure 1b. This gener-
ates a corrupted image by overlapping the multiple distor-
tions sequentially. However, because the same distortions
are employed to the entire image (globally) this may not
suitable to the case where only a part of an image is cor-
rupted. The second category is the spatially heterogeneous
distortion [21], which corrupts an image with different dis-
tortions to each divided space (Figure 1c). This approach
tackles the side that sequentially-applied distortion is over-
looked, however, the underlying assumption of [21] is lim-
ited since this corrupts each region with a single distortion.

By integrating the idea of two aforementioned multi-
distortion regimes, we introduce a holistic multi-distortion
dataset (HMDD). To jointly implement the sequentially-
and spatially-applied corruptions, we employ randomly se-
lected distortions to the chunked region of a given image
(Figure 1d). By doing so, our dataset can absorb the char-
acteristic of two categories and we argue that HMDD is a
general form of the previous multi-distortion datasets.

To effectively restore the multi-degraded image, we pro-
pose a distortion information-guided network (DIGNet).
This framework first predicts the distortion information via
the recognition module and injects this into the restoration
network (Figure 2). We build the recognition component
based on UNet [31] and train this in a supervised manner
by utilizing the label information from a training dataset.
With this, we can extract the conditional distortion informa-
tion (CDI) that contains useful clues when reconstructing
a corrupted image with spatially-variants multi-distortions.
Then, we encode CDI to a form of restoration network to be
received in a better way via mapping network. The restora-
tion module reconstructs a given image by referring to the
mapped CDI and we use the spatial feature transform (SFT)
layer [38] to inject information. We show that our pro-
posed DIGNet surpasses the other multi-distortion restora-
tion methods. In addition, we also demonstrate the promi-
nent performance gain of using CDI in various backbone
networks. Our contribution can be summarized as follows:

• We introduce a new multi-distortion dataset by fus-
ing the two previous assumptions on generating multi-
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(a) Original (b) Mixed distortion [39] (c) SHDD [21] (d) Ours

Figure 1. Comparison of three different multi-distortion datasets. (a) Original image. (b) Mixed distortions [39]. Multiple distortions
are sequentially applied to an image. (Gaussian blur, Gaussian noise, JPEG in this case). (c) Spatially heterogeneous distortion dataset [21].
Multiple distortions are applied differently for each divided space of the image (left: Gaussian blur, right: Gaussian noise). (d) Our proposed
HMDD. We integrate the idea of mixed-distortions and SHDD (left: Gaussian blur, Gaussian noise, JPEG, right: JPEG).

distortion. Our dataset can cover both sequentially and
spatially corrupted distortion scenarios.

• We propose a restoration method for a multi-distortion
environment. This method profits from utilizing con-
ditional distortion information predicted by the distor-
tion recognition module.

• Our experimental results show that provision of distor-
tion clue as conditional information consistently im-
proves the restoration methods.

2. Related work
Image restoration. The goal of this task is to reconstruct a
corrupted image. Recently, deep learning-based approaches
have shown remarkable performance in most of the sub-
tasks such as image denoising [7, 8, 41, 42, 46], deblur-
ring [23, 28, 33, 43, 45], and super-resolution [6, 14, 20, 25,
47]. The aforementioned studies improve their restoration
ability by increasing the network capacity [20,25], or by the
novel architectural design [5, 41, 47].

Multi-degraded image distortion. In the real-world sce-
nario, an image can be corrupted by the various distortions
so that the model trained on the single-distortion dataset is
possibly not suitable for this harsh environment. To make
the assumption similar to the real-world application, re-
cent studies have proposed datasets [4, 21, 26, 39] or meth-
ods [18,21,24,32,39,40] for the multi-distortion restoration
tasks. In these datasets, distortions are sequentially applied
to the entire image [24, 39] or different corruptions distort
the specific spatial region [4,21]. In this work, we propose a
new multiple distortion dataset by fusing the characteristic
of both assumptions (sequential or spatial existences).

To recover a sequentially-degraded image, Yu et al., [39]
exploited the “model bank” that stores the networks tailored
to the designated corruptions. Subsequently, the restoration
process of the given distorted image is determined through
reinforcement learning. Suganuma et al., [32] utilized the
attention mechanism, which gathers the features from the

Figure 2. Overview of our proposed DIGNet. Our framework
first recognizes the distortion and passes this to the restoration
module as the conditional information.

multi-branch operations by the weighting scheme to guide
the model to manage multiple distortions automatically. For
the spatial-aware multi-distortions, Kim et al., [21] intro-
duced a mixture of experts system in which each expert re-
stores different distortions, and shares the parameters of all
experts for the ease of learning shared representation.

Image restoration in real world. In recent studies, various
real-world distortion datasets have been introduced [2,9,10,
30] to minimize the disparity between the synthetically gen-
erated distortions and the real ones. However, because of
the high burden of collecting high- and low-quality image
pairs, they confined the scope to the single distortion (e.g.
noise [2, 30] or low-resolution [9, 10]). On the other hand,
Real-ESRGAN [37] and BSRGAN [44] have advanced the
generation process of the synthetic distortion to cover the
majority of complex real-world distortions. The core spirit
of our dataset is related to the latter approach, however, we
focus on integrating the spatial axis of the distortion which
may imply a complementary effect to these datasets.

In the blind image restoration, Cornillere et al., [13] tack-
led the spatially-varying degradation on super-resolution
with kernel discriminator and degradation-aware network.
Despite a similar motivation to ours, their approach is lim-
ited to the super-resolution task. From a viewpoint of the
restoration network, controllable or flexible image restora-
tion methods [15, 19, 36] lie in a similar line to ours. They
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(a) k = 2 (b) k = 4 (c) k = 9

Figure 3. Example of the dataset. Here, we vary the dividing
factor k from two to nine.

first receive (or predict in [19]) the control parameter from a
user and restore an input image jointly referring to the con-
ditional information. However, they apply the same infor-
mation to the entire image, unlike our method that employs
the information region-wise manner.

Exploiting conditional information. Recent studies have
revealed that leveraging additional information improves
the performance in many tasks [12,16,35,38]. For example,
SFT [38] employs a segmentation mask as a piece of con-
ditional information for the super-resolution. Through this,
the network can reconstruct the delicate but rich textures of
a given image. In the image enhancement, HDRUNet [12]
utilized the brightness and contrast information obtained by
the external network according to the position of an input
image. Motivated by the previous studies, in this work, we
exploit the additional information to restore a image cor-
rupted with multiple distortions.

3. Holistic multi-distortion dataset
In this section, we introduce a novel Holistic Multi-

distortion Dataset (HMDD). Our proposed dataset inte-
grates both sequential- [39] and spatial-aware [21] distor-
tion natures so that the assumption of HMDD is a general
form of the two regimes. To implement these to a single
dataset, we first divide the image into random chunks as in
below equation by following [21].

Igt −→ {I1gt, . . . , Ikgt}, k ∈ {2, 4, 9}. (1)

Here, Igt is a clean image, k is the number of regions (ran-
domly selected), and I1gt, . . . , I

k
gt are the split chunks. −→

denotes the image split process. As shown in Figure 3, a
given image is divided through horizontal and vertical lines
according to the number of split regions k, and these lines
are randomly arranged so that the model does not memorize
the position of each chunk [21].

With the chunks, we then corrupt these by the random
distortions listed up in Table 1 (upper part). Here, we select
the widely used distortions in image restoration literature.
In addition to this, we make another dataset based on the
(subset of) distortions used in Hendrycks et al., [17] and
we dub this dataset as HMDD-r (below part of Table 1).

Distortion Values
Gaussian blur σb ∈{0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5}
Gaussian noise σn ∈{5, 10, 15, 20, 25, 30, 35, 40, 45}
JPEG quality q ∈{80, 60, 50, 40, 35, 30, 25, 20, 15}

Snow µs ∈ {0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55}
σs ∈ {4, 4, 5, 5, 5, 5, 6, 6, 6}

F-noise αf ∈{500, 250, 150, 100, 80, 60, 40, 25, 15}
Defocused blur σd ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 10}

Table 1. A list of the distortions and their levels in our dataset.

Since overall dataset generation processes are identical to
both HMDD and HMDD-r, here we will explain the proce-
dure based on HMDD. To simulate the sequentially-applied
corruptions [39], we select the distortions and their strength
values by the following policy.

Db(σb) =

{
Gaussian blur(σb) if pb ≥ 0.5

Identity if pb < 0.5
,

Dn(σn) =

{
Gaussian noise(σn) if pn ≥ 0.5

Identity if pn < 0.5
, (2)

Dj(q) =

{
JPEG compression(q) if pj ≥ 0.5

Identity if pj < 0.5
.

Here, pb, pn, pj are the (random) probability values corre-
sponding to Gaussian blur, Gaussian noise, and JPEG com-
pression, respectively. In this policy, if pb, pn, or pj are
greater than 0.5, the corresponding distortions (with their
degradation factors σb, σn, and q) are chosen. In the case
where all the probability values are less than 0.5, no distor-
tion is employed (all identity operations). Finally, we now
corrupt chunks to generate distortion image Id by Eq. 3.

Iid = Di(Iigt); Di = Di
j ◦Di

n ◦Di
b, for i = 1, . . . , k

Id ←− {I1d , . . . , Ikd }. (3)

Here, Di is the composite corruptions corresponding to the
i-th split region, Iigt. We first distort each chunk and pro-
duce Iid then combine these to make the final distorted im-
age Id. Note that we also generate the pixel-wise distor-
tion label M simultaneously for the purpose of training the
recognition network (Section 4.1). The distortion label M
includes the multi-hot embedding for the presence (since
multiple distortions can appear in the same position) of the
distortion along with its strength value.

Following SHDD [21], we use DIV2K [3] as clean im-
ages; 750 images from the training dataset are used to create
the training set of our dataset and 50 images for the valida-
tion set. The detailed distortion strength parameters used in
our dataset are listed in Table 1. For snow corruption, µs de-
termines the amount of snow and σs indicates the standard
deviation of motion blur to simulate the blown snowflake.
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Figure 4. Restoration module. This network is composed of the mapping network and the reconstruction network (ReconNet). Unlike the
plain reconstruction component (such as RCAN [47]), ours contains the spatial feature transform (SFT) layers [38] inside of the residual
blocks to effectively combine the conditional distortion information embedding (fcdi), mapped feature of the predicted distortion by the
recognition component. ⊗ and ⊕ symbols are element-wise multiplication and addition operations, respectively.

4. Method
As shown in Figure 2, our proposed restoration frame-

work, dubbed as Distortion Information-guided Network
(DIGNet), is composed of the distortion recognition mod-
ule (Section 4.1) and the restoration component (Section
4.2), which reconstruct the corrupted image by following
the distortion guidance from the recognition module.

4.1. Recognition Module

The goal of the recognition module is to recognize the
distortion types and intensity from a given corrupted image.
Since we assumed different distortions can be applied for
each region, we formulate this as the segmentation prob-
lem. The reason for using the segmentation framework is
two-fold: 1) distortions may lay pixel-wise and 2) multiple
distortions can be overlapped, which become multi-label
recognition. We will explain how to handle the multi-label
information later in this section. The recognition network
frecog takes the distorted image x and predicts M̂ .

M̂ = frecog(x) (4)

We train the recognition module in a supervised manner by
calculating the mean-squared error between the distortion
label map M and the segmentation prediction M̂ .

We design the recognition module based on UNet [31],
which is the representative semantic segmentation network
widely used in many vision tasks. To manage the multi-
label recognition problem, we utilize distortion-wise de-
coders (upsampling blocks) as shown in Figure 5. We ob-
served that naı̈vely using multiple segmentation networks
cannot properly deal with the sequentially-applied distor-
tions since overlapped corruptions influence each other.

Figure 5. Recognition module. This component is designed based
on UNet [31] with ASPP [11]. Unlike the vanilla segmentation
network, we place multiple decoders (one decoder per distortion)
to deal with the multi-label problem appropriately. The predictions
of each upsampling block are concatenated for final product.

On the other hand, shared encoder (downsampling blocks)
architecture enables the model to learn the interactions
between the distortions, while the decoder outputs the
distortion-specific representations. Consequently, the final
output, M̂ is obtained by concatenating the predicted dis-
tortion information as the following equation.

F0 = fenc(X), M̂k = f t
dec(F0)

M̂ = [M̂ t], for t = 1, ..., T (5)

where T is the number of the distortion. fenc/fdec are
the encoder/decoder of the recognition module and [·] de-
notes the channel-wise concatenation operation. The pre-
dicted output of t-th distortion M̂ t is RN×H×W×S dimen-
sion tensor with N batch size, H,W image resolution and S
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strength intensity, respectively. With this output design, we
can manage the distortion strength apart from the distortion
type. Note that we place the ASPP block [11] at the first
layer of the decoder (upsampling block). ASPP is proposed
to capture the multi-scale contextual information by over-
lapping Atrous pooling layers with different dilation rates.
Because distortion can have different distributions (i.e., dis-
parate scales and shapes), passing the multi-scale features
from ASPP improves the recognition performance.
Discussion. It is known that the deep network easily detects
the distortion type [4] and we also observed a similar per-
formance (Section 5). As a consequence, we believe that
our framework can effectively recognize the distortion pre-
sented in recent synthetic dataset process [37, 44] as well.
Although our method is limited to identifying the discrete
distortion strength because we formulate it as a distortion
segmentation, the recognition module is flexible to increas-
ing the number of the distortion intensity since we separate
the distortion type and intensity in the model output.

4.2. Restoration Module

The restoration module consists of two parts: the map-
ping and the reconstruction network (Figure 4). By using
the conditional distortion information (CDI), M̂ , which is
predicted by the recognition module, the mapping network
Fmap embeds to produce feature fcdi as follows:

fcdi = Fmap(M̂). (6)

Here, we build Fmap to have four convolution layers.
To convey the distortion information effectively, we uti-

lize spatial feature transform (SFT) [38]. In detail, we place
this layer before every convolution located inside of the
residual blocks. With SFT, we modify the intermediate fea-
ture fh ∈ R(C×W×H) as in the equation below.

(α, β) = t(fcdi),

SFT (fh; α, β) = α⊗ fh + β, (7)

where t is the layer outputs a modulation parameter pair
(α, β) and ⊗ denotes element-wise multiplication. The
mapped distortion information is transmitted by scaling and
shifting fh through the modulation parameter pair α ∈
R(C×W×H), β ∈ R(C×W×H), respectively.

The main reconstruction network takes a corrupted im-
age x and generates ŷ, the final clean counterpart. We con-
struct the feature extraction module Fe(·) to have four con-
volutional layers unlike the previous distortion restoration
methods [7, 25, 47] that use very shallow ones. Moreover,
we gradually increase the number of the channels from 3 to
256 for the first three convolution layers and distill this as
a 64-dimension at the last layer of the extraction module.
The reason for such a design choice is because the multi-
distortion circumstance requires more representation power

Method HMDD HMDD-r
PSNR SSIM PSNR SSIM

OWAN [32] 23.52 0.5948 22.25 0.5694
+ CDI 25.96 0.7323 27.13 0.7885
MEPSNet [21] 25.77 0.7257 26.08 0.7757
+ CDI 26.60 0.7606 28.43 0.8270
EDSR [25] 26.25 0.7461 26.70 0.7795
+ CDI 26.63 0.7622 28.56 0.8401
Ours w/o CDI 26.52 0.7528 27.91 0.8177
+ CDI (DIGNet) 26.74 0.7634 28.70 0.8560

Table 2. Quantitative comparison to other methods.

compared to the single distortion. Noe we extract the initial
features f0 with the extraction module Fe as: f0 = Fe(x).

Then, f0 is passed to the feature learning module Ff (·)
that has two residual-in-residual (RIR) blocks [47] each of
which consists of ten residual blocks. However, unlike [47],
we employ the SFT layer to model the conditional distortion
information. We now produce intermediate feature fo as:

ff = Ff (f0; α, β), fo = ff + f0. (8)

Finally, we generate the cleaned image ŷ by using the image
reconstruction module Fr as ŷ = Fr(fo) + x. We train the
entire restoration module with L1 loss between the ground-
truth image y and the reconstructed result ŷ.

5. Experiments
Implementation details. In the training process, we set
(batch size, patch size) = (16, 2242) for the recogni-
tion and (16, 482) for the restoration module. As an
optimizer, Adam [22] with a setting of (β1, β2, ϵ) =
(0.9, 0.999, 108) and weight decay as 10−4 are used. We
train the recognition and restoration components for 200K
and 300K steps respectively. We use the initial learning rate
10−4 and reduce it half at 40K and 80K steps for recogni-
tion, 50K and 100K for the restoration network.

5.1. Comparison to the other methods

Baselines. We compare our method to the following multi-
degraded image restoration methods: OWAN [32], MEP-
SNet [21] and EDSR [25]. EDSR is the method desig-
nated to the super-resolution task, however, we observed
that it also shows prominent performance in other distortion
restoration tasks. We use the official code for OWAN and
MEPSNet with default settings and we decrease the number
of the blocks for EDSR to match the capacity to the others.

Quantitative comparison. Our DIGNet surpasses the other
competitors on both HMDD and HMDD-r (Table 2). Com-
pared to EDSR, which is the second-best method, our model
outperforms with a 0.49dB margin in PSNR on HMDD
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Figure 6. Qualitative comparison to the other methods on HMDD.
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Figure 7. Qualitative comparison to the other methods on HMDD-r.
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# Down. # Up. ASPP Accuracy (HMDD) → DIGNet
G-blur G-noise JPEG Pixel PSNR SSIM

2 2 60.76 79.22 87.39 44.59 26.60 0.7559
4 2 71.72 84.26 94.24 60.29 26.68 0.7594
4 2 ✓ 79.12 87.93 94.01 64.49 26.74 0.7634
4 4 ✓ 78.77 85.38 93.98 63.01 26.71 0.7628

HMDD-r Accuracy

Snow 88.36
f-noise 97.40
D-blur 81.89
Pixel 67.49

Table 3. Model analysis. (Left) Ablation study on the recognition network. We compare the segmentation accuracy and the restoration
performance (via DIGNet) by varying the number of the up- and down-sample layers as well as the existence of the ASPP layer. Here,
G-Blur, G-Noise, and JPEG indicate pixel-wise accuracy for each distortion, and Pixel denotes the percentage of pixels that match the
labels of three distortions exactly. (Right) Prediction accuracy of the best recognition network on HMDD-r.

(26.25 vs. 26.52). The performance gap is more clearly
shown in the HMDD-r results; our method dominants the
others with the gap of 2.00 dB in PSNR (EDSR: 26.70 vs.
28.70) which is the magnificent difference on the restoration
tasks. We would like to emphasize that CDI utilization is
flexible so that any backbone restoration method can adopt
this. Our experiment demonstrates that with CDI adapta-
tion, all the methods earn additional performance leap in
all the datasets and metrics. In these results, one interesting
observation is the small capacity networks (e.g. OWAN) en-
joy more performance gain. We hypothesize that this is be-
cause the distortion information embedded in CDI enables
the model to concentrate on the restoration task alone.

Qualitative comparison. Figures 6 and 7 show the qual-
itative results on HMDD and HMDD-r scenarios, respec-
tively. As in the quantitative analysis, our method produces
the strongest restoration capability regardless of the num-
ber of distortions applied to the image. The performance
improvement of using CDI is valid for the other backbone
networks as well (below rows in each method).

5.2. Model analysis

Recognition network. Here, we compare the performance
of the recognition network by adjusting the number of the
down/up blocks and switching the usage of ASPP [11] layer
(Table 3, left). In most cases, four downsample and two up-
sample blocks with ASSP work best. Interestingly, using
four upsample blocks shows a lower performance. We ob-
served that this is related to the assumption of the distortion
application. Since distortions are applied region-wise, not
pixel-wise, the corruptions are located unitively such as the
cluster form. Therefore, when the output of the recognition
module is finer (large resolution), the hole or ring shape pre-
dictions are also upscaled so as the hole to be bigger, and as
a result, the performance could be degraded. In all our ex-
periments, we use the settings of the third row in Table 3
for the recognition module. We also report the accuracy on
HMDD-r (Table 3, right) using the best model on HMDD.

Effect of CDI. As shown in Table 3 (left), we perform the
experiment on how the recognition performance affects the

restoration quality. As expected, the accuracy on HMDD is
highly related to the performance of DIGNet. For example,
conditional information with a 44.59 pixel accuracy results
in 26.60 dB in PSNR, while DIGNet with a 64.49 pixel ac-
curacy information achieves 26.74 dB.

6. Conclusion

In this study, we propose the holistic multi-distortion
dataset (HMDD) and the distortion information-guided net-
work (DIGNet) for effective multi-degraded image restora-
tion. Our dataset integrates the two multi-distortion scenar-
ios [21, 39] and with this, we argue that HMDD is the gen-
eral form of the previous multi-degraded datasets. The core
spirit of our DIGNet is providing distortion information to
the reconstruction network and we expect that the restora-
tion module is able to focus on “restoring” a given image.
Several experiments show that the DIGNet outperforms the
other multi-distortion image restoration methods.

One limitation is the supervised learning manner when
training the distortion recognition network. Although we
know which distortion may appear in advance many of the
cases, there might exist potential scenarios where out-of-
distribution distortions appear. To increase the generaliza-
tion ability, in the future, we hope to extend our method
by bridging it to the unsupervised training approach. An-
other possible future work is to fuse with the recent prac-
tical image restoration approach [37, 44], which builds a
complex but pure synthetic distortion generation procedure.
Ideally, extending our work to corrupt an image with irregu-
lar spatial patterns would encourage the restoration method
to learn more robust representation in practical scenarios.
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