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Abstract

Deep neural networks have shown promising results in
image super-resolution by learning a complex mapping
from low resolution to high resolution image. However,
most of the approaches learns to upsample by using convo-
lution in spatial domain and are confined to local features.
This results into restricting the receptive field of the network
and therefore deteriorates the overall quality of the high-
resolution image. To alleviate this issue, we propose an ar-
chitecture that learns both local and global features, and
fuses them together to generate high quality images. The
network uses a non-local attention aided Fast Fourier Con-
volutions (NL-FFC) to widen the receptive field and learn
long-range dependencies. The analyses further show that
these Fourier features implicitly provide faster convergence
on low frequency components only to learn prior for un-
observed high frequency components. The model general-
izes well to different datasets. We further investigate the
role of non-local attention, and the ratio of local and global
features to maximize the performance gain in the ablation
study.

1. Introduction

Deep learning has been a major player in the domain
of computer vision and image processing for solving many
real world problems, including classification [9, 18], object
detection [0, 23], in-painting [31], and so on. The image
super-resolution is a crucial task in image processing. The
recent growth in image super resolution (SR) can signifi-
cantly improve the digital media content for quality experi-
ence. While the conventional interpolation algorithms, such
as nearest neighbour, bilinear upsampling, bicubic upsam-
pling, are capable of solving the challenge to some extent,
deep learning approaches outperform them by huge margin.

Image super-resolution is an ill posed problem since the
Low Resolution (LR) image can be mapped to many dif-
ferent High Resolution (HR) images. Various architectures
and improved training strategies have been proposed to con-

tinuously improve the SR images. Initial pioneer works in
deep image-super resolution are based on the application of
convolutional neural networks such as SRCNN [5] and Lap-
SRN [12]. Subsequently, Generative Adversarial Networks
(GAN) inspired architectures, including SRGAN [13] and
ESRGAN [29], replaced the conventional CNN to produce
the realistic textures in the high resolution images. Other
way to improve the performance is to use very deep archi-
tecture to increase the capacity for high more complex non-
linear mapping. Lim et al. [17] used the residual blocks in
EDSR to form a very wide model and a very deep model
(MDSR). DBPN [&] uses a deep projection network that ex-
ploits the iterative sampling mechanism providing an error
feedback mechanism.

Although deep Single Image Super-Resolution (SISR)
methods have been contributing to prosperous develop-
ments, they still ignore the global and long-range features
to improve the quality of the images. The convolution lay-
ers locally derive the features to generate high frequency
components that may not suitably fit in terms of global per-
spectives. As a result, these methods perform well in terms
of Peak Signal-to-Noise Ratio (PSNR) but miserably fail
to satisfy the human perceptual quality. To explore be-
yond the localised vision, non-local mean filtering based
method [22, 32] globally searches for the similar patches
in the LR image. Other methods include non-local atten-
tion based approaches. Mei et al. [20] proposed the cross
scale non local attention module to exploit pixel-to-patch
and patch-to-patch based image similarity and a Self Ex-
emplar Mining cell to fuse all the information recurrently.
Subsequently, Mei et al. [19] suggests to enforce sparsity on
the non-local attention module by adopting Locality Sensi-
tive Hashing (LSH) for grouping and assign each group a
Hash code.

Another way to widen the receptive field or capture the
global features is to process the image features in frequency
domain. Spectral networks gained lots of attention to pro-
cess the features in frequency domain. For example, Rippel
et al. [24] proposed spectral pooling to perform dimension-
ality reduction in frequency domain and Zhong et al. [36]
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Figure 1. Illustration of Non Local-Fast Fourier Convolution (NL-FFC) layer. The image also shows the exploded view of spectral

transformer in fy;— 4 branch.

utilizes wavelet transform for restoration of high resolution
images. The Fourier Transform is known to project the fea-
tures of same frequency along the same basis vector. Fast
Fourier Convolutions [3] (FFC) used the concept of FFT
based feature learning for global to global feature mapping.
Although this approach shows promising results, a major
drawback can be derived from its local to global feature
projection. The theory of effective receptive field says that
convolutions tend to shrink to the central regions. FFC sim-
ply convolves the local features to learn the corresponding
global mapping ignoring the limited receptive field of the
convolution layer.

Following the success of FFC, we seek to further im-
prove the local to global mapping for Single Image Super
Resolution task. Specifically, we incorporate the idea of
non-local attention networks [2] to learn the long-range de-
pendencies of the local features. After that, we integrate the
NL-FFC blocks in the network. The major contributions of
this work are summarized as follows:

1. We propose a SISR network based on the idea of Non-
local Fast Fourier Convolutions (NL-FFC). We further
present mathematical arguments to show that learning
in frequency domain converges faster for lower fre-
quency components, which then implicitly acts as prior
for unobserved high frequency components.

2. To overcome the limitation of local to global feature
mapping in FFC, we incorporate the non-local atten-
tion module to learn the long-range dependencies of
query pixels in the local feature and investigate the per-
formance gain in the network with improvement in lo-
cal to global mapping.

3. The model is trained separately for evaluation in terms
of both distortion and perceptual quality. The distor-
tion based model is trained using reconstruction loss
whereas the perceptual quality based model is trained
using VGG based perceptual loss and adversarial loss.

4. The proposed method outperforms on multiple bench-
mark datasets. We further ablate the model to explore
the effectiveness and contribution of different mod-
ules.

2. Related Works
2.1. Non-local attention

Non-local networks have set a milestone in capturing
long-range dependency. Initial prior work is reported by
Wang et al. [28] in non-local neural networks that performs
non-local operation by computing the position specific re-
sponse as a weighted sum of features at all features. This
work further proposed different functional embeddings for
the position and the feature to perform non-local operation.
Zhang et al. [34] studied residual non-local attention model
for image restoration that uses local and non-local mask
branches to extract local and non-local features respectively
by adaptively rescaling the hierarchical features with mixed
attention. Cross scale non-local attention [20] combines
CS-NL prior with local and in-scale non-local priors in a
powerful recurrent fusion cell to find more cross-scale fea-
ture correlations within a single low-resolution (LR) image.

2.2. Deep super resolution

Application of Convolutional Neural Networks (CNN5s)
in super-resolution is now a well-established approach. Af-
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Figure 3. Non-local attention network

ter Dong et al. [5], several works have advanced the accu-
racy and shown promising results. Following [5], Kim et
al. [10] increased the number of layers with small filters
and high learning rate to improve the accuracy. In the fol-
lowing work, Kim ef al. [1 1] used a deep recursive network
with skip connections. Lim et al. [17] proposed a carefully
designed ResNet by removing unnecessary modules and ex-
panding the model size. Tai et al. [26] presented a very
deep memory persistent network (MemNet) that introduced
a memory block to mine the persistent memory through
adaptive learning process. Several works [4,8,35] continued
to marginally improve the image quality. While all of these
approaches may appear to move forward in terms of PSNR,
they could not further improve the visual quality beyond a
certain threshold.

The adversarial learning in the super resolution paved
a new way to learn synthetic and realistic features for HR
image, and therefore significantly improves the visual qual-
ity. The works of SRGAN [13] and ESRGAN [29] made
pioneering attempts to apply GAN for super resolution. Be-
sides, ESRGAN employed the idea of relativistic GAN that
not only increases the probability that fake data is real but
also decreases the probability that real data is real. This
helps the discriminator to realise the probability that how
real images are relatively realistic than fake images. Al-
though GANS help to generate visually appealing results,
their performance drop in terms of distortion. In our work,
we study the performance of the model in both regimes by
training the network with and without adversarial loss.

2.3. Fourier features

Recently, Fourier features have gained a lot of attention
to improve the performance of deep networks and its appli-
cation has been reported in various domains of image pro-
cessing. Tanick ef al. [27] showed that the Fourier features
are capable of learning high frequency features in lower di-
mensions. Using Neural Tangent Kernel, they showed that
the Fourier feature mapping turns the NTK into a stationary
kernel with tunable bandwidth. A recent work by Suvorov
et al. [25] applied the idea of FFC in image inpainting for
larger missing areas. FFC widens the receptive field, and
therefore draws inference for very large patches from the
neighbouring pixels. FALCON [15] showed the utility of
Fourier Transform to perform secured CNN based predic-
tions. The CNN is secured using homomorphic encryption
and uses FFT based cipher text encryption for efficiency.

3. Methodology

In this section, we describe the Non local Fast Fourier
Convolution layer and the non-local attention model that we
use to perform image super resolution. The overall architec-
ture of the network is also presented in this section.

Figures and | and 2 show the NL-FFC and the network
architecture to perform image super resolution respectively.
The model takes the bicubic upsampled image and gener-
ates the corresponding HR image. It primarily consists of
alternating convolution and NL-FFC blocks. As the net-
work grows deeper, skip connections are used to mitigate
the vanishing gradient problems. The super resolution net-
work acts a generator in GAN based training setup. The
discriminator used for adversarial regularization is same as
SRGAN’s discriminator [13].

3.1. Non-Local Fast Fourier Convolution

The Figure 1 presents the architecture of NL-FFC. The
input features are split into the set of local and global fea-
tures to learn local-to-local (f;—;), local-to-global (f;— ),
global-to-local (fy;—s), and global-to-global (f;—s4) map-
pings. Since the local features do not require long-range
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dependency, they are directly mapped to new local features
using a vanilla convolution layer. For local-to-global map-
ping, it explores the global dependency for each query pixel
using non-local attention model [2]. The input global fea-
tures are mapped to the local features by applying simple
3 x 3 convolution operation since a convolution kernel es-
timates the local feature of each pixel by using neighbour
pixels in 3 x 3 window. The global-to-global mapping re-
quires that the features are first transformed to frequency
domain to widen the receptive field, and then transforma-
tion is applied to generate new global features. The new
learnt features are mapped back to spatial domain to gener-
ate new set of global features. A major advantage of using
FFT comes in the form of prior for unobserved high fre-
quency components. Since super resolution is an one to
many mapping, learning features in frequency domain con-
verges faster for low frequency components, which later act
as the prior information to learn the unobserved features for
high frequency, and therefore reduces the size of possible
mappings. The relevant analytical details are provided in
the next section.

For update procedure formulation, the input image X
e RIXWxC g divided into local and global features, X'
and XY, in the ratio of (1 — a))/a. The local and global
transformations are computed as,

fi—s1(XY) = Convl 3 (XY (1
fimrg(X') = G(Convy 77 (X)) )
fo—s1(X9) = Convd, 3 (X9) 3)
fo—(X7) = T(X9) S

Y = fimi(X) + fy—i(X9) ®)
Y7 = fiosg(X') + fy—g(X9) ©)

Here, G and T denote non-local attention model and spec-
tral transformation, respectively.

3.2. Non-Local Attention Model

Non-local attention model involves residual transform
learning approach accompanied by a context mechanism as
shown in Figure 3. The non-local attention module gener-
ates a spatial map for different query positions by aggre-
gating the features from different positions. The attention
coefficients are multiplied to the input features and passed
to a transformation module to learn the residual features for
each spatial location. Figure 4 compares the non local atten-
tion maps generated for different query positions. Though
all these maps look very similar, they are slightly different
due to difference in the global context of query pixels.

Figure 4. The figures show the non-local attention map generated
for different query pixels (shown in blue). Based on the pixel de-
pendencies, there are slight variations in all the maps.

3.3. Loss Function

There are three loss functions in the proposed approach.
The overall loss is computed by,

Eoverall = Arecﬁrec + )‘advﬁadv + Apercep[:percep (7)

Reconstruction loss: The reconstruction error is com-
puted using Mean Absolute Error (MAE) since it has shown
sharper performance and converges faster compared to the
blurry results of Mean Squared Error. The reconstruction
loss is given by,

Lyec [ lar — Isgr||1, (8

- HWC
where (H,W,C) are the height, width and the number of
channels in the image.
Perceptual loss: Reconstruction loss does not account for
the loss in perceptual quality of the reconstructed image.
For this purpose, the perceptual loss is described using fea-
ture loss from pre-trained VGG-19 network. The perceptual
loss is computed by,

1
»Cpe'r‘cep = Z WHQSZ(ISR) - ¢1(IHR)||§7 (9)

where ¢; indicates the i** feature layer of VGG-19 net-
work.
Adversarial loss: Generative adversarial nets [7] have al-
ready shown superior performance in terms of visually clear
and perceptually enhanced image. Therefore, we employ
adversarial loss to perform min-max optimization and is
given by,
Lo = —Einxsrllog(D(2))] (10)

Lp=—E; x ,[log(l = D(2)] = Eonxyyp[log(D(2))]
D)
The performance is evaluated in two tracks, one in terms
of PSNR, and other using perceptual quality.Blau et al. [1]
showed that the improvement in perceptual quality induces
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Figure 5. Qualitative comparison of super resolved images for different models.

the distortion in the image. For distortion based evaluation
(PSNR), we set Ayec, Apercep and Agdy as 1, 0 and 0.0001
respectively. A very small weight is assigned to the adver-
sarial loss so that it does not add significant distortion, and
enhances the sharpness of image. For perceptual quality as-
sessment, Arcc, Apercep and Aqqy are set to 0.007, 1, and
0.01 respectively.

4. Indirect Prior for High Frequency features

Based on the idea of Neural Tangent Kernel (NTK) and
approach used in Lee et al. [14], we attempt to show that the
features learned in Fourier domain helps to learn the prior
for unobserved high frequency components of HR image.
While the neural networks are known to perform worse in
NTK regime, it is worth studying the training and conver-
gence of over-parameterized system using simplified NTK
based linear model. For simplicity, we assume a L + 1-
layered network F'(.) such that,

F(x) = hpy1 = f(A™ g(AhL(x))), (12)

where A and A~! are DFT and inverse DFT matrices re-
spectively, and f(.) and g(.) are leaky ReLU layers and are
mathematically expressed as,

f(x) = LReLU(x) =I'Tx (13)
g(x) = LReLU(x) = I'¥x, (14)

where I'j; and T'y; are equal to 1 for x; > 0, else 0 <
T'y;,T9; < 1 for x; < 0. Equation 12 can be rewritten as,

F=hp =TTWA'TTW, AR, (15)

Further derivation closely follows Lee et al. [14] and pro-
ceeds by replacing hy, with its linearization around the ini-
tial parameters 6y:

ht =A% + Voh' |g—g, (6: — 60), (16)

where ¢ denotes time in continuous-time gradient flow dy-
namics. Following [14], the gradient flow is given by,

ht, = —1O0(x,X)V}, x)L(hL), (17)

where O4(.,.) = Vhr(.)Vhr(.)T is the NTK matrix at
time t. For convenience, we rewrite the loss function in
terms of hy, instead of hy i as L = %||hL+1 -yl =
LITTW;A™'TTW, ARy —y||3. The gradient of the loss is
further given by,

Vi L= Q" (Qhy —y), (18)

where @ = TTW,;A"'TTW,A. Substituting and solving
the equation 17, we get,

Bto— 971(1 _ efn@(]nTm)y + h%efn@onTm (19)
Substituting equation 19 in equation 15, we get,

Ft— hi:+1 _ (I _ e—n@oﬂTﬂt)y + QTh%e—neonTm
(20)
Following again [14], decomposing F* and substituting the
initialization h% = 0, we finally get,

F' =Ry = 00(x,X)07 ! (X, X)(I — e K2y
20
Here, K is the kernel to estimate ©y. The weight ma-
trices Wy and W, in €2 represent the neurons in the neural
network. If € is unitary, the training is alone governed by
K that is equivalent to learning only direct measurements.
For an infinite width network, these weights are never full
rank due to redundant neurons. These weights become non-
full rank matrices with finite probability in the finite width
over-parameterized neural network. This potentially leads
to the finite probability that €2 becomes non-full rank ma-
trix. However, if € is not a full rank matrix, the train-
ing only affects the features with non-zero eigenvalues in
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Set-5 Urban100 Set-14 B100

Method Scale | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
LapSRN[I12] | x2 | 37.50 | 0.9590 | 30.41 0.9101 33.08 | 09130 | 31.08 | 0.8950
MemNet [26] | x2 | 37.78 | 0.9542 | 31.31 09115 | 33.28 | 0.9142 | 32.08 | 0.8978
EDSR [17] x2 | 3811 | 0.9584 | 32.93 | 09353 | 33.92 | 09195 | 32.32 | 0.9013
DBPN [8] x2 | 38.04 | 09610 | 32.56 | 09342 | 33.85 | 0.9190 | 32.27 | 0.9000
RDN [35] x2 | 3821 | 09612 | 32.87 | 09355 | 34.01 | 0.9212 | 32.34 | 0.9017
SAN [4] x2 | 3831 | 09621 | 33.10 | 09360 | 34.07 | 0.9213 | 32.42 | 0.9028
CSNLN[20] | x2 | 3828 | 09616 | 33.25 | 0.9386 | 34.12 | 0.9223 | 32.40 | 0.9024
SwinIR [16] x2 | 3814 | 09611 | 32.76 | 0.9340 | 33.86 | 0.9206 | 32.31 | 0.9012
NLSN [19] x2 | 3834 | 09618 | 3342 | 09394 | 34.08 | 0.9231 | 32.43 | 0.9027
Ours x2 | 3821 | 09622 | 33.21 0.9366 | 34.09 | 0.9218 | 32.44 | 0.9019
LapSRN[12] | x3 | 33.82 | 09227 | 27.07 | 0.8280 | 29.87 | 0.8320 | 28.82 | 0.7980
MemNet [26] | x3 | 32.09 | 0.9249 | 27.54 | 0.8375 | 30.00 | 0.8350 | 28.96 | 0.8001
EDSR [17] x3 | 34.58 | 0.9282 | 28.84 | 0.8641 30.52 | 0.8462 | 29.25 | 0.8093
RDN [35] x3 | 34.71 | 0.9296 | 28.80 | 0.8655 | 30.57 | 0.8468 | 29.26 | 0.8093
SAN [4] x3 | 34.75 | 09300 | 28.93 | 0.8671 30.59 | 0.8476 | 29.33 | 0.8112
CSNLN[20] | x3 | 34.74 | 09300 | 29.13 0.8712 30.66 | 0.8482 | 29.33 | 0.8105
SwinIR [16] x3 | 34.62 | 0.9289 | 28.66 | 0.8624 | 30.54 | 0.8463 | 29.20 | 0.8082
NLSN [19] x3 | 34.85 | 0.9306 | 29.25 0.8726 | 30.70 | 0.8485 | 29.34 | 0.8117
Ours x3 | 34.86 | 09356 | 29.11 0.8655 | 30.63 | 0.8478 | 29.34 | 0.8116
LapSRN[12] | x4 | 31.41 | 0.8839 | 25.25 | 0.7549 | 28.19 | 0.7720 | 27.32 | 0.7270
MemNet [26] | x4 | 31.62 | 0.8887 | 25.11 0.7618 28.26 | 0.7723 | 27.40 | 0.7281
EDSR [17] x4 | 3222 | 0.8892 | 26.54 | 0.7994 | 28.80 | 0.7876 | 27.71 | 0.7420
DBPN [5] x4 | 3241 | 0.8975 | 26.37 | 0.7942 | 28.82 | 0.7860 | 27.72 | 0.7400
RDN [35] x4 | 32.48 | 0.8987 | 26.66 | 0.8032 | 28.81 | 0.7871 | 27.72 | 0.7419
SAN [4] x4 | 32.64 | 0.9003 | 26.79 | 0.8068 | 28.95 | 0.7888 | 27.80 | 0.7436
CSNLN [20] | x4 | 32.68 | 0.9004 | 27.22 | 0.8168 | 28.95 | 0.7888 | 27.80 | 0.7439
SwinIR [16] x4 | 32.44 | 0.8976 | 26.47 | 0.7980 | 28.77 | 0.7858 | 27.69 | 0.7406
NLSN [19] x4 | 3259 | 0.9000 | 26.69 | 0.8109 | 28.87 | 0.7891 | 27.78 | 0.7444
Ours x4 | 3276 | 09018 | 27.04 | 0.8081 28.96 | 0.7888 | 27.80 | 0.7438

Table 1. Performance comparison of deep super resolution models on Set-5, Set-14 Urban-100 and BSD-100 datasets. The results are

presented in terms of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [

ones are shown in bold and second best ones are underlined.

KQTQ. In that case, the composed kernel provides large
eigenvalues to the features that {2 can represent (these rep-
resentative features are low frequency components of HR
image), so that the network converges quickly on these ob-
servable low frequency features and acts as a prior for the
unobserved high frequency components.

5. Experiments

5.1. Datasets and Study area

We train the model using DIV-2K dataset. The trained
network is then evaluated using Set-5, Set-14, Urban-100,
and BSD-100 datasets. In this study, the resolution between

] for x2, x3, and x4 scales. The best

LR image and HR image is set to x2, x 3, and x4. Follow-
ing Dong et al. [5], the corresponding LR images are ob-
tained by downsampling the HR image using bicubic ker-
nel. However, we upsample the LR image to the original
size before feeding into the model.

5.2. Training and Evaluation strategy

The results are evaluated using Peak Signal-to-Noise Ra-
tio and SSIM using the model trained with reconstruction
loss oriented loss function. For fair comparison, the PSNR
and SSIM are evaluated on Y-channel of the images. Fur-
thermore, adversarially trained model is used to compare
the performance in terms of perceptual quality. Regarding
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training details, the cropped patches of size 256 x 256 are
fed into to the network in the batch size of 16. The Adam
optimizer is used to update the parameters with 5; = 0.5
and 2 = 0.5. The learning rate is initially set to 0.001
and gradually reduced to 10~ as the training reaches sub-
optimality. All the experiments are performed using Py-
Torch library and trained using Nvidia Quadro P4000 GPU.

5.3. Results

DBPN EDSR  RDN SAN  CSNLN Ours

Param. 10M 43M  223M 16M 3M 0.423M
FLOPS (G) 5209.4 1338.8 801.1 38359 22452 423.2
PSNR 38.09 38.11 3824 3831 38.28 38.21

Table 2. Model size and performance comparison on Set-5 (x2).

SR ESR  RankSR NLFFC(D) NLFFC(P)

Set-14 NIQE 3.82 3.28 3.28 4.65 3.28
PSNR 26.68 28.99  26.57 28.96 26.61

NIQE 643  3.29 3.21 5.21 3.16

BSD100 PSNR 25.67 25.85 2557 27.80 25.26

Table 3. Perceptual quality comparison for x4 super-resolution.
The proposed method is compared for both NLFFC(D) (PSNR
oriented) and NLFFC(P) (perceptual quality oriented) models. In
the Table, SR, ESR, and RankSR stand for SRGAN [13], ESR-
GAN [29], and RankSRGAN [33].

A comprehensive analysis is performed to observe the
performance of the proposed method. The model is com-
pared with LapSRN [12], MemNet [26], EDSR [17], DBPN
[8], RDN [35], ESRGAN [29], RankSRGAN [33], SAN
[4], CSNLN [20], SwinIR [16], and NLSN [19] in Table
1. Based on the comparative results, it is worth mention-
ing that the proposed method has relatively comparable per-
formance on the benchmark datasets. Moreover, it even
outperforms these methods on few datasets. Furthermore,
Table 2 compares the sizes of multiple benchmark mod-
els, corresponding FLOPS and the achieved PSNR on Set-5
dataset. FLOPS is computed for 256 x 256 sized images
for x2 scale. The proposed approach shows reasonable
performance even with fewer parameters when compared
to other very deep models. Table 3 compares the trade-off
in terms of NIQE score [21] and PSNR. It is observed that
NL-FFC at least shows comparable performance for rela-
tively same distortion. Figure 5 qualitatively compares the
super resolved images on different class of images.

6. Ablation Study

In this section, we study the roles played by different of
the proposed non-local FFT module. We ablate two funda-
mental properties of the non-local Fast Fourier Convolution,
including the ratio of global-to-local features and non-local

network. The detailed analysis are presented in the subse-
quent sub-sections.

Figure 6. Qualitative results for different fractions of global fea-
tures () for x4 resolution. The best results are attained for
o = 0.5. Excessive local features create staggered edges whereas
dominance of global features cause over-smoothing.

6.1. Effect of Global-to-Local features ratio

To this end, we have observed the performance of the
network with equal split-up between global and local fea-
tures. While both of these features have their own role to
play, the overall performance has straight relation to the ra-
tio of the split-up. To realize the outcome, we perform an
experiment by varying the ratio of these two features. We
utilize the same network architecture trained under same
settings to maintain consistency in the observation. As
per the visual analysis in Figure 6, one can conclude that
the dominance of local features is biased towards the local
frequency components, and therefore leads to pronounced
staggered or zigzag like pattern in the super resolved im-
ages. At the same time, additional global features may miss
the finer details of the image due to wider receptive field
and cause over-smoothing.

Table 4 even provides some interesting insights through
quantitative analysis of images. As the contributions from
both the sides approach equality, overall performance of the
network boosts up. In addition to distortion measures, we
also include a no reference image quality measure, called
Naturalness in Image Quality Evaluator (NIQE), to observe
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« PSNR SSIM NIQE
0.2 28.21 0.8676 6.14
0.3 28.97 0.8719 5.88
04 29.68 0.8801 5.04
0.5 32.76 0.9018 4.89
0.6 31.60 0.8961 5.01
0.7 30.16 0.8921 5.69
Table 4. Quantitative analysis for different values of a on

Set-5 dataset. PSNR is compared using the distortion oriented
model whereas NIQE score is evaluated using adversarially trained
model.

the changes in the natural quality of the image which shows
that the best quality is observed for av = 0.5.

6.2. Effect of Non-Local Attention

Learning local to global feature mapping is one of the
key ingredients of this study. To gain further insight into the
role of non-local attention block, we train a similar network
with vanilla convolution for local to global feature mapping.
In addition, we also evaluate the merits of generative mod-
elling over supervised learning by training the model with-
out adversarial regularization.

Model NL Adv. Train PSNR (dB) SSIM NIQE

NL-FFC v v 26.814  0.8651 4.89
FFC  x v 25.890 0.8524 5.10
NL-FFC v X 3276 09018 5.97
FFC  x X 30.41  0.8876 6.14

Table 5. Ablation study to compare the performance with/without
non-local attention and adversarial learning on Set-5 dataset. Here,
NL stands for non-local attention , and third column checks
whether model is trained using adversarial learning or supervised
learning.

Table 5 shows the quantitative analysis to study the effect
of non-local attention and adversarial learning. It can be
seen that the NL-FFC with adversarial learning have better
perceptual quality than other ablated architectures. Further-
more, the model trained without adversarial loss achieves
the best PSNR in the case of non-local attention added to it.

Figure 7 compares the visual quality for images trained
with and without Non-local attention (NL) module. In the
case of no NL attention module, the image has discontinu-
ous and rough edges. A plausible reason is that the network
ignores the contextual relation of a query pixel to the sur-
rounding pixels due to limited receptive field of convolution
layer, and therefore the super-resolved pixel does not fit lo-
cally to the surrounding information. However, NL module

>

HR patch Bicubic With NL Without NL

Figure 7. Qualitative results to observe the effects of non-local at-
tention in x4 super resolution. First and second row demonstrates
the visual quality for Urban100-0004 image patch and RS-2A FCC
patch.

extracts the necessary information for a given location that
results into a continuous and visually pleasant quality in the
resolved image.

7. Conclusion

In this work, we proposed an improved version of Fast
Fourier Convolution by incorporating the idea of non-local
attention in local to global feature mapping, and theoret-
ically investigated the merits of learning features in the
Fourier space. The proposed super resolution approach is
studied for multiple benchmark datasets. The ablation study
further sheds more light on the importance of different com-
ponents of the proposed NL-FFC layer. Moreover, our ap-
proach outperforms or at least shows comparable perfor-
mance with respect to a good number of existing state-of-
the-art methods.
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