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Abstract

Super-resolution suffers from an innate ill-posed prob-
lem that a single low-resolution (LR) image can be from
multiple high-resolution (HR) images. Recent studies on
the flow-based algorithm solve this ill-posedness by learn-
ing the super-resolution space and predicting diverse HR
outputs. Unfortunately, the diversity of the super-resolution
outputs is still unsatisfactory, and the outputs from the
flow-based model usually suffer from undesired artifacts
which causes low-quality outputs. In this paper, we pro-
pose FS-NCSR which produces diverse and high-quality
super-resolution outputs using frequency separation and
noise conditioning compared to the existing flow-based ap-
proaches. As the sharpness and high-quality detail of the
image rely on its high-frequency information, FS-NCSR
only estimates the high-frequency information of the high-
resolution outputs without redundant low-frequency compo-
nents. Through this, FS-NCSR significantly improves the di-
versity score without significant image quality degradation
compared to the NCSR, the winner of the previous NTIRE
2021 challenge.

1. Introduction

Single image super-resolution (SISR), the task that re-
stores low-resolution (LR) images to high-resolution (HR)
images, is an active research topic that can be utilized in
several applications such as surveillance [4 1], medical and
astronomical image processing [2, 18, 26].

Early SISR approaches [7, 2,20, 39,40] focus on gen-
erating a single high-quality output for a given input LR
image by improving Peak Signal-to-Noise Ratio (PSNR)
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ratio between the input LR images and predicted HR out-
puts. Since those studies utilize L, or Lo loss between the
generated and ground-truth HR images, they suffer from
an over-smoothing problem. Alternative to PSNR-oriented
models, GAN-based methods [17, 33] are proposed to gen-
erate photo-realistic super-resolved images.

Unfortunately, multiple possible HR images exist for
a single LR image and the aforementioned deterministic
models which improve the image quality of a single out-
put cannot solve this ill-posed nature of the super resolu-
tion. SRFlow [23] learns the distribution of the HR image
consistent for the given LR images and predicts diverse HR
images to improve the high photo-realism, diversity, and
the LR consistency at once. Following, NCSR [13] adopts
noise-conditioned layers suggested in SoftFlow [11] and
HCFlow [19] proposes hierarchical conditional flow for the
diversity and the higher image quality. However, flow-based
models usually generate undesired artifacts in HR outputs
which leads to lower image quality and the diversity of the
outputs are not improved significantly compared to SRFlow.

We observe that the super-resolution models predict the
missing high-frequency information of the HR images from
the given LR image which takes part in generating the di-
verse details of the HR images such as the shape of the fo-
liage and the direction of the fur. Previous super-resolution
models [13, 23] predict not only high-frequency informa-
tion, but also low-frequency information of the HR images.
It leads to inefficient training and these models have diffi-
culty in increasing the diversity and the image quality of the
super-resolution outputs.

In this paper, we propose FS-NCSR (Frequency-
Separated Noise-Conditioned Normalizing Flow for Super-
Resolution) which applies frequency separation to NCSR.
We reconstruct the low-frequency information of the HR
outputs by upsampling LR images in bicubic without any
learnable parameters and predict the high-frequency infor-



mation by training flow-based model. By doing so, we
increase the diversity of learned super-resolution space in
both x4 and x8 settings and improve the super-resolution
quality by reducing the number of the artifact. Our contri-
butions can be summarized as follows:

* We propose a flow-based algorithm for high-quality di-
verse super-resolution output using noise-conditioned
affine coupling and frequency separation.

* By filtering low-resolution information of the target
image, the generative model focuses on producing
high-frequency outputs and improves super-resolution
quality.

* We expand the filtered input data distribution by
adding noise to the sparse high-frequency image for
the output diversity.

2. Related Works
2.1. Single Image Super Resolution

Super-resolution has been studied long in computer vi-
sion fields. Before deep learning-based methods have been
applied, sparsed coding [4, 29, 36, 37] and local linear re-
gression [31,32,35] have been highly applied. Many deep
learning-based methods have been approached for SISR,
since SRCNN [7] which exploited CNN layers and L1 Loss.
After SRCNN was proposed, many variations have been
suggested including [33]. But as CNN-based methods have
relied on L1 or L2 loss, they have generated blurry images.
GAN-based methods, which were first suggested by SR-
GAN [17], have shown improvements by employing adver-
sarial loss and perceptual loss. Although GAN-based meth-
ods have generated images with good quality [17,33], their
diversities were so limited, thereby generating only one im-
age.

2.2. Normalizing Flow

Flow-based models have been first proposed by [5] for
modeling complex high dimensional density. As flow-based
models learn the whole distribution, they have been widely
used for mapping complex distributions given simple dis-
tribution, including Gaussian distribution. Invertible neural
networks have been adopted to map complex distributions
from simple distributions [5, 6, 15]. Flow-based models in
the early days have not shown great improvements rela-
tive to GAN-based models. However, SRFlow [23], which
adopts negative log-likelihood loss, showed improvements
in image quality and diversities simultaneously. As SRFlow
used negative log-likelihood loss, it could learn the whole
distribution, which leads to generating much more diverse
images than GAN-based methods. NCSR [13] has shown
further improvements in terms of image quality and diver-
sity, by providing networks with noises. [13] has proposed
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adding a conditional noise layer, which essentially resolves
distribution discrepancy between simple data and complex
data.

2.3. Frequency Separation

The study of frequency domain based on Fast Fourier
Transform (FFT) algorithm [3] played a crucial role in tra-
ditional signal processing. In this perspective, before the era
of deep learning, studying the frequency information was
important in image restoration research. In this light, it is
readily known that high-frequency information of the given
image contributes greatly to its sharpness and high-quality
detail. Therefore, we can say that a recent huge success of
deep learning-based approaches in realistic images gener-
ation is due to the success of synthesizing high-frequency
information of the desired images.

Therefore, in recent image restoration research including
super-resolution, there exist approaches [34] in which low-
frequency and high-frequency are separated and treated by
a separate neural network, and approaches [30] in which an
FFT-based layer is designed to better process information
of the frequency domain. We observed that when the for-
mer approaches were combined with NCSR, instability of
the NLL training of the flow-based model occurred. And
in the case of the latter approaches, the existing FFT-based
layers are not suitable for the flow-based approach due to
their non-invertible nature.

3. Methods

Given a LR image, our goal is to learn a diverse super-
resolution space corresponding to that image. From the per-
spective of the frequency domain, we propose a more effi-
cient method to increase the diversity of learned space. In
this section, we introduce our point of view and proposed
method. We begin with a brief background related to our
work.

3.1. Background

Various model frameworks (e.g. Generative Adversarial
Networks [8], Normalizing Flow [25], and Diffusion prob-
abilistic models [10]) have been proposed in recent deep
learning-based generative model research. And they show
their respective strengths and weaknesses along with excel-
lent performance. Among them, the flow-based model con-
figures a mapping fp : X — Z between the desired data
distribution X and latent space distribution Z (e.g. Gaus-
sian) through a series of invertible transformations. Such
an invertible mapping architecture enables an explicit com-
putation of negative log-likelihood (NLL) by the change of
variable formula as:

9fo
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Figure 1. Algorithm overview. We propose a frequency separation on the target image and applies noise on high-frequency input with

noise-conditioned coupling layers for diverse super-resolution outputs.

By minimizing NLL directly, it is widely known that the
flow-based models show decent performance in mode cov-
erage of the desired data distribution.

Based on this advantage of the flow-based approach, SR-
Flow [23] first showed that the flow-based modeling of the
conditional distribution of the HR image can successfully
learn super-resolution space corresponding to the given LR
input. And one of its variants model, NCSR [13], proposed
an additional noise-conditional layer to SRFlow to generate
more diverse super-resolution outputs. Results of the pre-
vious works show that the ill-posedness of super-resolution
can be solved from the perspective of super-resolution space
learning. To take advantage of the flow-based model’s good
mode coverage performance, we propose a method to learn
more diverse super-resolution space with NCSR architec-
ture.

3.2. High-Frequency Information

There are various ways to configure a High-pass filter
and Low-pass filter to separate high-frequency and low-
frequency information. Without affecting the stability of
NLL training of the flow-based model, we utilize the bicu-
bic downsampling-upsampling process as the Low-pass fil-
ter, L, with a specific scale factor s. And the corresponding
High-pass filter, H, computes the high-frequency informa-
tion xpy of the given input by subtracting low-frequency
information from the HR target x:

Ls(z) = ((%)sy)st,  Hs(®) =2 =2 — Ls(z). (2)

There are also other frequency separation methods.
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Some can configure Ls and H, based on FFT and others
can utilize the known 3x3 (or 5x5) kernel. In the former
case, the filtering threshold level is an additional hyperpa-
rameter that is heavily dependent on an individual image.
And in both cases, to match the low-frequency information
of the LR input y and L (), additional process such as the
usage of a neural network is required leading to instability
of NLL training.

By using this simple kind of High-pass filter, sparse
high-frequency information can be efficiently obtained
since we have the LR inputas y = (x),,. And it leads to our
proposed method which achieves efficient training without
the need for additional memory or network compared to the
previous flow-based approaches.

3.3. Overall Method

We propose FS-NCSR (Frequency Separating Noise-
Conditioned Normalizing Flow for Super-Resolution), the
generative model for super-resolution only produces the
high-frequency information of the target HR image = with-
out redundant low-frequency information readily available
from y = (x),). Our overall model architecture is shown in
Figure 1.

In the training process of the flow-based models, dequan-
tization processes exist [9, 15] for better performance. As
can be readily checked in Figure 2 and Table 3, the high-
frequency information is relatively sparse compared to HR
images. And training the model with this kind of informa-
tion is difficult. In the previous work of NCSR, the idea of
Softflow [11] was used by adding a different level of noise



to the input instead of the dequantization process. This can
be interpreted as an attempt to expand the modality of the
desired data distribution’s sparse region in the perspective
of score matching [27, 28] which is in the spotlight of the
generative model today. Therefore, we applied the same
idea of Softflow [ 1] to deal with sparse information, and it
was crucial in the training stability of the proposed method.

Now, with the same analog to the work of [13,23], we
can formulate the training process of our method as follows:

Ty =wnp +v, v~ N(O,D),
yt=y+w, w~N(03),

2= folzj;ly",v).

3

where w indicates noise resized to the same size as the LR

input y. And also similar to [13,23], we formulate the loss

function only NLL L,,;; as below,

L = —logpx (z|y™,v)
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“

The model trained in proposed method does not require

additional cost in the inference stage compared to the pre-

vious approaches. Since the low-frequency information

Ls(z) is readily given by the LR input y = (x)s;. The

super-resolution output Z is obtained by:

—logpz(fo(z;y™,v)) — log|det

&= fy (z9.0) + (¥)st

5
= fy Yz (@), 0) + La(a). -

where v is the random noise from the latent space Z.

In this perspective of frequency domain, super-resolution
is the process of generating the corresponding high-
frequency information since we have f,'(+;(z)s)) ~
Hy(z).

4. Experiments
4.1. Datasets

We utilize DF2K dataset, a merged dataset of DIV2K
[1] and Flickr2K', for training and evaluation. DIV2K
dataset consists of 800, 100, and 100 high-resolution images
of train, validation, and test split, respectively. Flickr2K
dataset comprises 2560 high-resolution images. The train
split from the DIV2K dataset and the whole Flickr2K
dataset are merged and used for training. We evaluate our
model with the validation split of DIV2K dataset.

We try to increase the amount of training dataset by in-
cluding crawled images from Unsplash website?, but there

https://github.com/limbee/NTIRE2017
2https://unsplash.com
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Figure 2. Full RGB vs. High-frequency information. High-
frequency information is relatively sparse compared to its original
RGB images. The high-frequency information was obtained based
on x 128 scale for clear visual confirmation. For x4 and x 8 cases,
the high-frequency information is much sparser, making it difficult
to see.

are no performance improvements in the diversity and vi-
sual quality of super-resolved images. Thus, we do not in-
clude our crawled dataset in this research.

During training, we randomly crop 160x160 patches
from original HR images and use them as HR samples. We
obtain LR samples by downsampling HR patches and uti-
lizing HR and LR patches as HR-LR pairs for training. The
LR samples are downsampled via bicubic kernel. We train
our model in RGB channels, and randomly apply horizontal
flips and 90-degree rotation for data augmentation.

4.2. Training

We use the Adam optimizer [14] with 5; = 0.9, s =
0.99, e = 10~8, and set the initial learning rate as 2 X 104,
Following [13], the learning rate is halved at 50%, 75%,
90%, and 95% of the total training steps. We train our net-
work with a batch size of 16 on a V100 GPU. The x4 net-
work was trained at 180k steps and the x 8 network at 220k
steps.

4.3. Evaluation

We evaluate our model and other baselines based on
three criteria: photo-realism, diversity of super-resolution
space, and image consistency on LR. We adopt LPIPS [38]
to evaluate photo-realism, diversity score to evaluate diver-
sity, and LR PSNR to evaluate LR consistency.

LPIPS. LPIPS is the distance between the super-resolved
and the ground-truth HR image. The distance is measured
on the feature space of AlexNet [16].

Diversity Score. To obtain meaningful diversity of models,
Lugmayr et al. [21] proposed the diversity score. Let the
ground-truth HR image y and g, be the k-th patch of .
Generating M samples from the super-resolution models,
the i-th super-resolved images from the model is yAZ and its
k-th patchis yi, where i € {1,2, ..., M }. Than the diversity



Model Diversity? LPIPS| LR PSNR?t
RRDB [33] 0 0253  49.20
ESRGAN [33] 0 0.124  39.03
ESRGAN+[24]  22.13 0279 3545
SRFlow [23] 25.26 0.120  49.97
HCFlow [19] 22.73 0.116  49.46
NCSR [13] 26.72 0.119  50.75
FS-NCSR (Ours) 29.44 0.127 4931

Table 1. General image x4 super-resolution results on the
DIV2K validation set. We measure all the metrics with M = 10
samples for each HR image.

score S, can be computed as follows:

Sy = ﬁ (dRJ - %imin {d (yk,, uA}c) }j\:) , (6

where minimum distance on a global sample, d;\/[, defined
as follows:

_ 1 & g
d min{K;d(ykayi)}

We use LPIPS as distance function d, and set M = 10.

LR PSNR. In LR, the super-resolved output of the model
must be consistent with the original LR input. Thus,
we measure PSNR (Peak Signal-to-Noise Ratio) between
downsampled super-resolved image and given input LR im-
age.

M

(N

i=1

4.4. Quantitative Results

We compare our model, FS-NCSR, with diverse base-
line models: RRDB [33], ESRGAN [33], ESRGAN+ [24],
SRFlow [21], HCFlow [19], and NCSR [13]. RRDB is
the model trained with Ly loss with ground-truth HR im-
age, consequently oriented to minimizing PSNR. ESRGAN
and ESRGAN+ are GAN-based methods that are the com-
mon baselines for photo-realistic super-resolution. RRDB
and ESRGAN are deterministic models, so their diversity
scores are zero. SRFlow, HCFlow, and NCSR are stochas-
tic super-resolution models that can super-resolve diverse
photo-realistic images from the given input LR image. For
all the flow-based super-resolution models, the temperature
is set to 0.9. However, the temperature is 0.85 for NCSR
x 8 model.

We measure the diversity score, LPIPS, LR PSNR of
our model and compare them with the reported results of
other baselines. We evaluate all the models in x4 super-
resolution setting. As shown in Table 1, our proposed
model, FS-NCSR, achieves the highest diversity score in
x4 setting. The diversity score of FS-NCSR is significantly
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Model Diversity? LPIPS] LR PSNR?t
RRDB [33] 0 0419 4543
ESRGAN [33] 0 0277  31.35
SRFlow [23] 25.31 0272 50.00
NCSR [13] 26.8 0278  44.55
FS-NCSR (Ours) 26.9 0.257  48.90

Table 2. General image x 8 super-resolution results on the
DIV2K validation set. We measure all the metrics with M = 10
samples for each HR image.

higher than NCSR [13], which indicates frequency separa-
tion plays a key role to improve diversity. Although FS-
NCSR achieves the lower LR PSNR and higher LPIPS than
SRFlow [23], HCFlow [19] and NCSR, diversity increase
is significant compared to such performance degradation so
can be compensated. In addition, we observe that the num-
ber of artifacts and failure cases in the generated samples of
FS-NCSR is less than that of NCSR. We will discuss this
qualitative comparison in 4.5.

We also evaluate all the models except ESRGAN+ [24]
in x 8 super-resolution setting. As presented in Table 2, FS-
NCSR outperforms all the other methods in terms of diver-
sity score and LPIPS. Also, FS-NCSR achieves comparable
LR PSNR with SRFlow [23], the model which achieved the
highest LR PSNR. These results show that FS-NCSR out-
performs all the other methods in terms of photo-realism
and diversity, and frequency separation is a decisive factor.

To clearly demonstrate the effect of frequency separa-
tion, we additionally report the metric trajectories during
the training process of FS-NCSR and NCSR [13]. We mea-
sure LPIPS and diversity score in 150k, 160k, 170k, 180k
steps for each model. The results of such models during
the training process are presented in Figure 6. For trained
weights of FS-NCSR, higher diversity and lower LPIPS
than NCSR weights of the same iteration are measured.
These results show that frequency separation consistently
improves the diversity and photo-realism of the model out-
put during the training process.

4.5. Qualitative Results

The qualitative result in Figure 4 shows that the direction
and the degree of density of the leaves are slightly different
for every S outputs. Thus, we can say that the proposed
method not only shows a higher diversity score than previ-
ous approaches but also can generate outputs with diverse
details that are distinguishable visually. It means that the
frequency separation can enhance the high mode coverage
performance of the flow-based model.

We now qualitatively compare our result with the output
of NCSR to verify the effect of the frequency separation.
As discussed in 4.4, the FS-NCSR’s LPIPS was lower than
the existing approaches. But Figure 3 shows that FS-NCSR



(a) x4 LR (b) NCSR [13] (c) FS-NCSR (Ours) (d) Ground Truth
Figure 3. Qualitative results with comparison to NCSR on the DIV2K validation set for SR x4 results. The cropped part of the ground
truth is from 0850 from DIV2K. Each output of NCSR and FS-NCSR was chosen randomly from 10 generated outputs respectively.

(a) Output 1 (b) Output 2 - (c) Output 3 (d) Output 4 (e) Output 5 (f)- Ground Truth
Figure 4. Qualitative result to check the FS-NCSR’s diversity of generated details on the DIV2K validation set for x4 super-resolved
results. The ground truth is a cropped part of 0875 from DIV2K. 5 outputs were chosen from 10 generated FS-NCSR outputs.

can reproduce the characters more clearly than NCSR. This method, we investigated how the proposed method affects
qualitatively confirmed that although the training focused the sparsity of the generated high-frequency information.
on high-frequency information performs slightly lower on For this purpose, the generated high-frequency information
LPIPS, actual outputs do not suffer a degradation of image in [0, 1] range is first quantized to the uint8 [0, 255] range.
quality than the existing methodologies. And then Sparsity and Relative Sparsity (RS) is computed
The existing SRFlow and NCSR models show repeated as follows:

failure cases where artifacts appear in a specific image (e.g. . Number of non-zero pixels

0807, 0828 from DIV2K validation set). In the case of Sparsity =1 — HxW <C

0807 from DIV2K, for instance, when both SRFlow and ®)

Number of non-zero pixels
Number of non-zero gt pixels

NCSR generated the corresponding x4 super-resolved out- RS=1-
puts, all outputs were failure cases since some artifacts ap-
peared. On the other hand, when FS-NCSR generate the x4 where (H, W, C) is the shape of a given image. Since the

super-resolved outputs of the given image, 4 out of 10 out- ground truth high-frequency information is already sparse,
puts were made without any artifact, and even for 6 failure the RS reflects the sparsity of each ground truth image for a
cases, the degree of the artifact was relatively less than that more fair comparison.
of NCSR. Figure 5 presents the degree of the artifact differs
between NCSR and FS-NCSR output and the FS-NCSR’s Model Average Sparsity ~ Average RS
artifact-free results compared to the ground truth image. NCSR [13] 66.2% 1123
4.6. Ablation: Comparison of Generated High- FS-NCSR (Ours) 66.0% 1.120
Frequency Information Table 3. As a x4 super-resolution results on DIV2K validation
set, Average Sparsity of GT high frequency information is
So far, we have discussed the results both quantitatively 59.0%.
and qualitatively with the super-resolved outputs only. But
we tried to compare the results from the perspective of fre- See Table 3. Although our proposed method shows less
quency information additionally. Since the sparse high- average sparsity and average RS slightly, the average spar-
frequency information plays a key role in the proposed sity of the ground truth high-frequency information and the
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(h) Ground Truth: 0828 from DIV2K

(g) FS-NCSR Ouput without any artifact

\

Figure 5. Visual comparison of failure cases on SR x4 results from NCSR and FS-NCSR. The degree of the artifact is relatively less in
the result of FS-NCSR than that of NCSR. And FS-NCSR could generate clear SR output without any artifact while NCSR couldn’t. Each
output was chosen randomly.
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Training Trajectories of FS-NCSR and Baseline

29.75 ® FS-NCSR (Ours)
® NCSR
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Figure 6. LPIPS and diversity scores of multiple checkpoints of
FS-NCSR and NCSR [13]. The super-resolution ratio is x4 set-
ting. We measure LPIPS and diversity at 150k, 160k, 170k, 180k
steps of training procedures. The arrows in the figure indicate the
change in both metrics as the iteration increases by 10k.

Team LPIPS LR PSNR Div. Score MOR
IMAG_ZW 0.171 48.14 21.938 3.57
FS-NCSR (Ours) 0.126  50.13 28.853 3.67
IMAG_WZ 0.169 45.20 27.320 3.34
SSS 0.110  44.70 13.285 _
NCSR 0.117  50.54 26.041 _
SRFlow 0.122  49.86 25.008 3.62
ESRGAN 0.124  38.74 0.000 3.52

Table 4. Quantitative results for NTIRE 2022 Challenge on
”Learning Super Resolution Space” on x4 track. The results were
taken from [22]. The top block of the table is this year’s result.

Team LPIPS LR PSNR Div. Score MOR
FS-NCSR (Ours) 0.257  50.37 26.539 4.510
SSS 0.237 3743 13.548 4.850
NCSR 0.259 48.64 26.941 4.503
SRFlow 0.282  47.72 25.582 4.775
ESRGAN 0.284  30.65 0.000 4.452

Table 5. Quantitative results for NTIRE 2022 Challenge on
”Learning Super Resolution Space” on x 8 track. The results were
taken from [22]. The top block of the table is this year’s result.

that of generated output from both NCSR and FS-NCSR
was about 10% more sparse, resulting in a lack of infor-
mation compared to the ground truth. This margin of dif-
ference with the ground truth verifies that a significant loss
of information still exists from the perspective of the fre-
quency domain. Therefore, it seems that it needs to be ad-
dressed in future studies.
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5. NTIRE 2022 Challenge

Our proposed method, FS-NCSR, achieved competitive
results in both tracks of NTIRE 2022 ”Learning Super Res-
olution Space Challenge” [22]. See table 4 and 5 for the
challenge result of x4 and X8 tracks respectively. In the
x4 track, FS-NCSR obtained the highest diversity score
among the existing and newly proposed methods by a rel-
atively large margin. Also, it obtained the best LPIPS and
LR-PSNR results among this year’s participants, although
it did not lead to the best MOR. In the x8 track, FS-
NCSR was this year’s only method that achieved compara-
ble results compared to the last year’s approaches. Through
the improvement of LR-PSNR, it seems that the frequency
separation affected improving the consistency with low-
resolution.

6. Conclusion

We propose a flow-based algorithm, FC-NCSR, to
learn high-frequency information of super-resolution space.
Based on the relation between the high-frequency informa-
tion and the high-quality details of the given image, we
train the generative model for super-resolution to produce
the high-frequency information corresponding to the low-
resolution input. With a simple high-pass filter using the
low-frequency information of the low-resolution input, we
successfully increase the super-resolution diversity without
any influence on the stability of the flow-based NLL train-
ing and visual quality degradation. We also confirm that
the frequency separation of FS-NCSR reduces the failure
cases due to artifacts, and therefore, significantly improves
the quality of the super-resolution output.
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