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Abstract

Learning robust and scale-aware monocular depth esti-
mation (MDE) requires expensive data annotation efforts.
Self-supervised approaches use unlabelled videos but, due
to ambiguous photometric reprojection loss and no labelled
supervision, produce inferior quality relative (scale am-
biguous) depth maps with over-smoothed object bound-
aries. Approaches using synthetic training data suffer from
the non-trivial domain adaptation problem; despite compli-
cated unsupervised domain adaptation (UDA) techniques,
these methods still do not generalize well to real datasets.

This work presents a novel and effective training method-
ology to combine self-supervision from unlabelled monocu-
lar videos and dense supervision from the synthetic dataset
synergistically without complicated UDA techniques. With
our method, geometry and semantics are learned from
monocular videos, whereas scale-awareness and qualita-
tive attributes, e.g., sharp and smooth depth variations, that
are crucial for practical use cases are learned from the
synthetic dataset. Our method outperforms self-supervised,
semi-supervised, and all the domain adaptation methods on
standard benchmark datasets while being competitive with
fully supervised methods.

Furthermore, our method leads to qualitatively supe-
rior depth maps, which increases its practical utility com-
pared to existing methods. We demonstrate this by ap-
plying our method to develop an MDE model for a real
life application—DSLR-like shallow depth-of-field effect on
smartphones. The new high quality synthetic depth dataset
that we generate for this task will be available to the com-
munity.

1. Introduction

Depth information is used in 3D reconstruction, aug-
mented reality, autonomous driving [11–13] and compu-
tational photography, such as shallow depth-of-field effect
[43]. Compared to time-of-flight (ToF) and stereo cameras,

(a) Input

(a) Monodepth2 [14] (b) PackNet-SfM [16] (c) Ours

Figure 1. Comparison of our qualitatively superior and scale-
aware depth estimation. The third row shows that the recon-
structed 3D point cloud using our accurate scale-aware depth pre-
serves shapes of objects much better than state-of-the-art methods.

monocular depth estimation (MDE) can enable widespread
vision applications in a low-cost effective manner. MDE
also works with images and videos stored in a media.

With advancements in deep learning, MDE has wit-
nessed significant progress [2, 8–10, 26, 28, 29, 31, 32, 49].
However, majority of earlier works focused on building su-
pervised MDE models which demand immense data collec-
tion and filtering efforts [12,40]. Also, based on the capture
setup, for e.g., LiDAR [12,38], it may not be possible to ac-
quire ground-truth in all desired scenarios due to sensor or
setup limitations. Training data collection is an activity that
is periodically required to maintain and adapt a learning
based model to evolving test scenarios, building real world
RGB-D supervised MDE models needs labor intensive data
creation as well as maintenance costs.

To solve this problem, researchers proposed self-
supervised approaches [11, 13, 14, 16, 54, 57] which use un-
labelled monocular videos [14, 16, 54, 57] to jointly learn
depth and ego-motion. The idea is that a target video frame
can be recreated from temporally adjacent frames using the
estimated depth and ego-motion, and the image (or photo-
metric) reconstruction error between original and recreated
images can be used as supervision. However, this photo-
metric consistency can be easily violated in real world sce-
narios because of occlusions, illumination changes, texture-
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less areas, dynamic and non-rigid objects, which hinder the
optimization process [14, 46]. As a result, self-supervised
approaches produce inferior quality depth maps with blur
and over-smoothed object boundaries and gaps [14,16,46].
Additionally, due to lack of ground-truth supervision these
methods generate relative, i.e., scale ambiguous depth.

Another popular approach is to simulate large-scale
diverse synthetic RGB-D pairs with dense pixel-perfect
ground-truth using computer graphics software [3, 19].
However, due to the domain gap between synthetic and real
world images, which is majorly attributed to differences
in appearance, physics, and rendering styles [19], models
trained on synthetic datasets do not generalize well to real
world images. Recently, it has been found [55] that multiple
networks (e.g., generative models for style transfer) and op-
timization losses (e.g., adversarial losses) used in unsuper-
vised domain adaptation (UDA) methods compete against
each other and do not contribute to the optimization of the
depth estimation task. These methods [6, 35, 53] also use
additional modules, for e.g., real-to-synthetic style transfer,
during inference time. Therefore, not only are these ap-
proaches hard to train, they perform worse than methods
trained on real datasets [55] and also incur additional in-
ference load.

Motivation and Contributions. Self-supervised ap-
proaches require the cheapest and widely available source
of training data, viz., monocular videos. However, their
low quality of output depth makes these approaches prac-
tically less attractive, especially when depth information is
required for image enhancement effects [43]. Whereas syn-
thetic datasets provide dense ground-truth for supervision,
but the performance of domain adaptation methods hardly
matches that of fully supervised methods, mainly because
their UDA techniques do not optimize the depth estimation
task [55]. Motivated by these observations, we wonder if we
can utilize both monocular videos and synthetic datasets to-
gether to train an MDE model that generalizes to real world
data, is scale-aware, and also estimates depth maps with the
following qualitative attributes—sharp edges and smooth
depth variations. At first, it might seem to be a trivial task of
training an MDE model jointly using self-supervised learn-
ing on monocular videos and pixel-wise depth regression
task on the synthetic dataset. However, our experiments find
that the task is not simple and demands a carefully designed
training strategy.

This work presents a novel and effective training
methodology to combine self-supervision from unlabelled
monocular videos and dense supervision from the synthetic
dataset synergistically without complicated domain adapta-
tion techniques. In our method, real world geometry and
semantics are learned from monocular videos through self-
supervision, whereas scale-awareness and qualitative depth
attributes, like sharp and smooth depth variations, that are

crucial for practical applications [43] are acquired from syn-
thetic dataset training. To achieve the best depth estimation
accuracy in our method, we further propose to disentangle
the task of relative depth estimation with qualitative depth
attributes from the scale-aware depth estimation task.

Following are the major contributions of this work:
1. Novel training methodology to learn geometry and se-

mantics from monocular videos and scale-awareness
and qualitative depth attributes, like sharp and smooth
depth variations from the synthetic dataset.

2. In our approach, we disentangle scale, and qualitative
depth attributes from the synthetic dataset to achieve
state-of-the-art results without complicated domain
adaptation techniques.

3. Our method sets a new state-of-the-art among the only
two (to the best of our knowledge) scale-aware self-
supervised, self-supervised, and all domain adaptation
based MDE methods in the literature.

4. We showcase the practical utility of our method by ap-
plying it to develop an MDE model for Portrait Mode
effect on smartphones. The new human-centric syn-
thetic depth dataset that we generate for this task will
be available to the community, which will be helpful
for ongoing human-centric vision research [41].

2. Related Work
Self-Supervised MDE. Garg et al. [11] pioneered this

approach using calibrated stereo image pairs for training,
Zhou et al. [57] generalized this technique for joint depth
and ego-motion estimation with monocular videos. GeoNet
[52] extended this by additionally learning optical flow to
explcitly handle motion by dynamic objects. Several meth-
ods [14,15,45,46,54] have improved upon this approach by
incoporating additional geometric [23] and loss [14] con-
straints to compensate for violations of photometric consis-
tency. However, the structure-from-motion (SfM) [39] con-
straints allow these methods to learn depth and ego-motion
only upto an unknown scale, thus, these method scale their
estimates using ground-truth for evaluation [57] on KITTI
Eigen test split [12, 57]. Recently, Guizilini et al. [16] used
camera velocity and Chawla et al. [4] used GPS informa-
tion to supervise ego-motion, leading to scale-aware depth
estimation. However, velocity or GPS information is not
always available during training [16], it also requires addi-
tional hardware that is often prone to operational noise. In
this work, we extend self-supervised learning techniques to
estimate more accurate scale-aware depth using supervision
from synthetic datasets, which can be generated efficiently.
When compared to these existing methods, our scale-aware
depth is also qualitatively superior.

Synthetic-Real Domain Adaptation. Existing domain
adaptation methods [1, 7, 24, 35, 53, 56] assume that the
synthetic-real domain bias problem can be solved by learn-
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ing domain invariant features [24,35] or using synthetic-to-
real style transfer [1, 53, 56]. Specifically, these methods
perform unsupervised domain adaptation using additional
generative models, such as CycleGAN [59] and adversarial
discriminator networks to judge whether the learned fea-
ture space or style transferred images are indistinguishable
across domains. A recent method [7, 55] shifts away from
this philosophy, it assumes availability of small quantity of
real world RGB-D data, whereas [7] simply fine-tunes a
synthetic dataset pre-trained model on real world data. An-
other recent method [17] adopts a multi-task multi-domain
geometric unsupervised domain adaptation primarily for se-
mantic segmentation. It also improved the depth estima-
tion task; however, it requires a multi-task training setup
and multi-task labels. In contrast, we propose a novel joint
training methodology on monocular videos and synthetic
datasets to learn high quality scale-aware depth estimation
without any complicated domain adaptation technique.

3. Proposed Methodology
A diagram of the proposed training methodology for

MDE is shown in Fig. 2. The proposed method involves
training following networks: a MDE network Φ : I → d,
that takes an input image I and outputs a depth map d; pose
estimation network Ω : {Ia ⊙ Ib} →T̂a→b, that takes a
pair of input images (⊙ denotes channel-wise concatena-
tion) and estimates a 6DOF relative pose T̂ between them;
ScaleNet δ : fΦ → s, that takes coarsest high level feature
maps fΦ of our depth encoder and outputs a global scene
scale estimate s.

The proposed training framework involves three train-
ing stages (see Fig. 2). In Stage 1, we pre-train (follow
red path) the MDE model Φ on monocular videos dataset
using self-supervision. This is to ensure that Φ learns fea-
ture representations that are specific to real world images,
which also constitute our target test dataset. Subsequently,
in Stage 2, we jointly train (follow red and blue path) Φ on
monocular videos and synthetic datasets, the joint training
is important to prevent synthetic dataset domain bias. In
each iteration in Stage 2, we sample separate mini-batches
from both datasets in the ratio 2:1 (real:synthetic) and pass
these batches sequentially (which constitutes our one for-
ward pass) to generate corresponding outputs and losses. In
Stage 3, we train (follow green path) ScaleNet δ, depth and
pose networks (Φ and Ω) are freezed in this stage. ScaleNet
δ is trained only on the synthetic dataset, an input image
Isyn is passed through Φ and the coarsest level feature maps
fΦ are input to δ which estimates a global scene scale. We
freeze Φ in this stage because training only on synthetic data
for scene scale estimation task will make its feature repre-
sentations specific to the synthetic domain.

The self-supervised and synthetic dataset losses are
computed on output batches corresponding to respective

datasets. The overall training loss function L for each it-
eration is computed as follows:

L = α ∗ Lss + β ∗ Lsyn (1)

Here, the parameters α and β are set in such a way that
the losses Lss and Lsyn are comparable in magnitude. In
Stage 1, β is set to 0, whereas in Stage 3, α is set to 0. The
synthetic dataset specific losses that we compute in Stage 2
and Stage 3, which constitute Lsyn are described in subse-
quent subsections.

3.1. Self-supervision from Monocular Videos

The self-supervised approach constrains the MDE model
Φ to reconstruct the view of a target (input) image from the
view of a source (temporally adjacent) image using the es-
timated depth and ego-motion. The view (or photometric)
reconstruction error is used as supervision to train Φ. We
assume that the camera intrinsics (K) are known for all the
videos in the training dataset, K can also be computed (with
decent approximation) using the open-source SfM pipeline
COLMAP [39]. During training, an input image It is sam-
pled along with its two temporally adjacent frames It±1 (see
Fig. 2). It is referred to as target, which is fed to the MDE
model Φ to estimate depth dt, whereas source images It±1

are used to perform view reconstruction based supervision.

3.1.1 Self-supervised Loss

The pose network Ω takes {It⊙It−1} and {It⊙It+1} as in-
put and estimates 6DOF relative poses T̂t→t−1 and T̂t→t+1

respectively. With the camera intrinsics (K), relative poses
(T̂t→t±1) and estimated depth information (dt), a homoge-
neous pixel pt ∈ It can be mapped to a homogeneous pixel
pt±1 ∈ It±1 as follows:

p̂t±1 ∼ KT̂t→t±1dt(pt)K−1pt (2)

Since p̂t±1 are in continuous coordinates, differen-
tiable bilinear image warping [21] is applied to compute
It±1(p̂t±1) which are the reconstructed target images de-
onted by Ît−1→t(pt) and Ît+1→t(pt).

A combination of L1-norm error and SSIM score [14]
is used as photometric reconstruction error (pe) for training
the MDE model Φ as follows:

pe = α
1− SSIM(It − Ît±1→t)

2

+(1− α)|It − Ît±1→t|
(3)

Here, α is set to 0.85. Following [14], auto-masking is
used to minimize the effects of dynamic, non-rigid objects
and occlusions during training. An edge-aware smoothness
term (S) is also added in the loss function to encourage
depth predictions that respect object boundaries.
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Figure 2. Diagram explaining the proposed method to effectively combine real world self-supervision from monocular videos and dense
supervision from synthetic dataset to achieve scale-aware depth estimation with qualitative depth attributes.

S = |∂xd̂t|e−|∂xIt| + |∂yd̂t|e−|∂yIt| (4)

Here, d̂t is the mean-normalized inverse depth to avoid
shrinking of estimated depth [14]. The overall self-
supervised loss Lss is defined as follows:

Lss = pe+ λS (5)

3.1.2 Relative Depth and Ego-motion

The photometric reconstruction loss in Eq. 3 is scale am-
biguous to the joint depth and ego-motion prediction [44].
During training, with any two depth maps which differ only
in scale and with corresponding poses also updated (scaled),
the pixel mapping in Eq. 2 will be the same. Hence, the pho-
tometric reconstruction error will also be the same. Essen-
tially, the depth and pose networks learn to co-adapt their
scales during training to minimize the loss in Eq. 3 There-
fore, the self-supervised training loss is scale-invariant in
this sense. Hence, self-supervised MDE methods rely on
the ground-truth LiDAR depth to artificially scale their
depth estimates for evaluation [57].

3.2. Dense Supervision from Synthetic Dataset

A trivial approach to train the MDE model Φ jointly with
self-supervision is to perform pixel-wise depth regression
using a L1-norm (or L2-norm) loss as follows:

Lsyn = ∥dsyn abs − d̂syn∥ (6)
Here, dsyn abs denotes the estimated scale-aware (abso-

lute) depth for the input image Isyn. However, since the
MDE model, Φ pre-trained using self-supervision outputs
relative depth, jointly training the model using Eq. 6 as
loss function incentivizes the model to estimate absolute

(a) Default synthetic dataset output
and ground-truth distribution

(b) Synthetic dataset output distribu-
tion after scale alignment correction

Figure 3. Scale alignment for synthetic dataset training

depth in the synthetic domain. This deranges the jointly
converged state of depth and pose networks; with the mod-
ified scale of output depth, the photometric loss increases
because the pose network is not adapted to modified scales
of output depth. The magnitude of the scale change required
for our model is graphically shown in Fig. 3(a). This leads
to a training scenario where two losses in Eq. 3 and 6 com-
pete against each other, and the MDE model converges to a
suboptimal state. We show in our experiments that such
trivial approaches and their modifications do not achieve
optimal results, and the model shows inferior performance.

In our training approach, we propose to disentangle
scale-awareness and qualitative depth attributes from syn-
thetic dataset training. We propose that qualitative depth
attributes can be learned without deranging the converged
state of depth and pose networks by applying a scale trans-
formation on output depth to match its distribution with
ground-truth, then computing an appropriate loss function
that captures these attributes. This approach does not pe-
nalize relative depth estimates of the depth network trained
using self-supervision. We show in our experiments that
this approach improves the quality of the estimated relative
depth and makes it more accurate than the baseline MDE
model trained using self-supervision. Next, we propose
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learning a global scene scale estimation network ScaleNet
δ, trained on the synthetic dataset to transform our accurate
relative depth predictions into absolute depth predictions.

3.2.1 Accurate Relative Depth Estimation

We use a scale alignment module (see Fig. 2) in Stage 2
joint training to transform an output depth from a synthetic
image to match its ground-truth distribution. Our scale
alignment module performs a median scaling of the output
depth, which is defined as follows:

d̃syn rel =
median(d̂syn)

median(dsyn)
∗ dsyn (7)

Since we want the self-supervised pre-trained MDE
model to learn qualitative depth attributes, viz. sharp and
smooth depth variations from synthetic dataset ground-
truth, we compute a loss function in the gradient domain
that captures such features in an image. It is shown ablation
study in Section 5.3 that this domain specific loss on syn-
thetic dataset leads to slightly better results compared to the
standard loss function in Eq. 6. The loss function in the gra-
dient domain denoted by Lsyn grad is computed using scale
aligned output depth d̃syn rel:

Lsyn grad = |▽xd̃syn rel−▽xd̂syn|+|▽yd̃syn rel−▽yd̂syn|
(8)

3.2.2 ScaleNet: Global Scene Scale Estimation

In Stage 2 joint training, the MDE model learns to out-
put accurate relative depth dsyn with desired qualitative
depth attributes. However, now it is not trivial to train the
MDE model for scale-aware depth. For this task, we de-
sign a light-weight global scene scale estimation network
ScaleNet δ (see Fig. 2) which takes the coarsest level fea-
ture maps from depth encoder as input and estimates a sin-
gle scale factor s which is multipled with relative depth
dsyn. We then apply a standard pixel-wise depth regression
loss [9] using ground-truth d̂syn to train ScaleNet.

dsyn abs = s ∗ dsyn (9)

Note that in Stage 3, we freeze the MDE model Φ to pre-
vent synthetic dataset domain bias, as ScaleNet is trained
using only synthetic dataset supervision. Our experiments
show that ScaleNet generates accurate scale-aware depth
even on unseen real world testing dataset (see supplemen-
tary).

4. Experimental Setup
4.1. Datasets

KITTI. We use the standard KITTI dataset [12] as our
unlabelled monocular videos dataset for training and test-

ing. More specifically, we use KITTI Eigen split [9] con-
taining 39, 810 training, 4424 validation and 697 test frames
with LiDAR ground-truth used only for evaluation. Follow-
ing the standard practice in literature [14,34,35,52–54,57],
we cap the depth range to 80m during evaluation.

Virtual KITTI 2. We use VKITTI2 [3] as our synthetic
dataset for training. It is the virtual world simulation of sce-
narios in the KITTI dataset. It contains 21, 260 RGB images
with dense and pixel-perfect ground-truth. We use 20, 000
RGB-D pairs for training, while the remaining 1, 260 sam-
ples form our validation dataset. Like existing domain adap-
tation methods [1, 7, 35, 53], our method also requires that
the synthetic dataset with desired depth distribution is cre-
ated by acquiring limited amount of real world sensor data
(seed data) for the purpose of calibration [3].

4.2. Implementation Details

This work uses PyTorch framework for implementation.
For all our experiments, we use Adam optimization [22]
with momentum term 0.9. We set an initial learning rate of
2x10−4 for all pre-trainings and 2x10−5 for all joint train-
ings and fine-tuning. A polynomial learning rate decay pol-
icy was applied with power term set to 0.9. Data augmen-
tation in the form of random crop, brightness, gamma, and
color shift was performed randomly on the fly.

Network Architecture. Since the main focus of this
work is to develop a training methodology, we adopt the
light-weight network architecture from Monodepth2 [14] as
our MDE and pose estimation model. More specifically, we
use ResNet18 [18] as encoder and DispNet [33] as decoder
for our MDE model (Φ).

5. Results and Discussion
We compare the results of our model with MDE meth-

ods that estimate relative depth as well as methods that es-
timate scale-aware depth. For fair comparison against rela-
tive depth estimation methods, we ignore the scale predicted
by our ScaleNet network and scale the estimated relative
depth with median ground-truth LiDAR information during
evaluation [57].

5.1. Relative Depth Estimation

Table 1 shows the detailed quantitative comparison of
our method with the latest state-of-the-art self-supervised,
stereo self-supervised, semi-supervised, fully supervised,
and domain adaptation methods on the KITTI Eigen test
split. Our model outperforms other methods for relative
depth estimation in almost all the metrics. The performance
of our model is best among all self-supervised, monocu-
lar, and stereo self-supervised as well as semi-supervised
methods trained using pseudo depth ground-truth [46]. Our
model has 3% better Abs Rel error, 19% better Sq Rel
error, 7% better RMSE error, 8% better RMSE log error
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Method Year Data Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [14] ICCV’19 M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
PackNet-
SfM [16]

CVPR’20 M 0.107 0.802 4.538 0.186 0.889 0.962 0.981

SCSI [45] ICCV’21 M 0.109 0.779 4.641 0.186 0.883 0.962 0.982

WaveletMonodepth
[36]

CVPR’21 S 0.105 0.797 4.732 0.203 0.869 0.952 0.977

Monodepth2 [14] ICCV’19 M+S 0.106 0.806 4.630 0.193 0.876 0.958 0.980
D3VO [50] CVPR’20 M+S 0.099 0.763 4.485 0.185 0.885 0.958 0.979
R-MSFM6 [58] ICCV’21 M+S 0.108 0.753 4.469 0.185 0.888 0.963 0.982

DVSO [51] ECCV’18 M+D* 0.097 0.734 4.442 0.187 0.888 0.958 0.980
Depth Hints [46] ICCV’19 MS+D* 0.098 0.702 4.398 0.183 0.887 0.963 0.983
pRGBD-
Refined [42]

ECCV’20 M+D* 0.113 0.793 4.655 0.188 0.874 0.960 0.983

Ours (relative) - M+V 0.103 0.654 4.300 0.178 0.891 0.966 0.984

Eigen [9] NeurIPS’14 D 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu [32] CVPR’15 D 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Kuznietsov [25] CVPR’17 S+D 0.113 0.741 4.621 0.189 0.862 0.960 0.986
AdaDepth [24] CVPR’18 M+D+V (DA) 0.167 1.257 5.578 0.237 0.771 0.922 0.971
T 2Net [56] ECCV’18 M+V (DA) 0.174 1.410 6.046 0.253 0.754 0.916 0.966
GASDA [53] CVPR’19 S+V (DA) 0.120 1.022 5.162 0.215 0.848 0.944 0.974
S3Net [7] ECCV’20 M+V (DA) 0.124 0.826 4.981 0.200 0.846 0.955 0.982
ARC [55] CVPR’20 D+V (DA) 0.143 0.927 4.679 0.246 0.798 0.922 0.968
SharinGAN [35] CVPR’20 S+V (DA) 0.116 0.939 5.068 0.203 0.850 0.948 0.978
S2R-DepthNet
[6]

CVPR’21 V (DA) 0.165 1.351 5.695 0.236 0.781 0.931 0.972

GUDA [17] ICCV’21 M+V (DA) 0.114 0.875 4.808 - 0.871 - -

PackNet-
SfM [16]

CVPR’20 M+Vel 0.107 0.803 4.566 0.197 0.876 0.957 0.979

Chawla [4] ICRA’21 M+GPS 0.109 0.844 4.774 0.194 0.869 0.958 0.981

Ours (absolute) - M+V 0.109 0.702 4.409 0.185 0.876 0.962 0.984

Table 1. Quantitative comparison on the KITTI Eigen test split [9]. M: methods trained on monocular videos using self-supervision, S:
methods trained on stereo images using self-supervision, D*: auxiliary depth supervision, D: KITTI ground-truth supervision, V: methods
trained on synthetic dataset, DA: methods which use domain adaptation techniques, Vel: velocity [16] and GPS: GPS [4] based supervision
for scale-aware depth estimation. PackNet-SfM [16] and Chawla [4] are the only two scale-aware self-supervised MDE methods. Above
red line: relative depth comparison, below absolute depth comparison. Bold denotes best and underline denotes second best performance.

Figure 4. KITTI results. Qualitative comparison with state-of-the-art. The proposed method leads to edge-consistent depth estimation,
smooth depth variations, no bleeding object edges and no holes within objects (particularly on reflective surfaces).
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compared to Monodepth2 [14] which is the baseline model
for our method because we use their architecture for our
training.

5.2. Scale-aware (or Absolute) Depth Estimation
In comparison to methods that estimate absolute depth,

our model again performs significantly better than all do-
main adaptation methods, and the velocity supervision
based PackNet-SFM [16]. To ensure a fair comparison of
our method against GUDA [17], we have included results
of the model trained without the partially supervised photo-
metric loss. Also, it must be noted that PackNet-SfM uses
a more complex network with 128 million parameters com-
pared to our ResNet18 based network with 14 million pa-
rameters. Even so, our model outperforms PackNet-SfM on
almost all metrics with 12% better Sq Rel error and 6%
better RMSE log error. Therefore, with improved archi-
tecture, the performance of our method can increase sig-
nificantly. To the best of our knowledge, there are only
two scale-aware self-supervised methods [16], [4] and our
model outperforms both by a significant margin. Our model
also significantly outperforms the semi-supervised method
by Kuznietsov et al. [25] which is trained using ground-
truth depth information.

The quantitative results in Fig. 4 show that the pro-
posed method generates visually more accurate, sharp, and
smooth depth maps compared to other methods, which have
blur boundaries, holes in reflective surfaces, and missing
thin structures (for e.g., the distant pole in first row image).

We also performed an additional evaluation (without re-
training) on the Make3D [38] dataset to check the general-
ization capability of our method, which is included in the
supplementary.

5.3. Ablation Studies

All the experiments were evaluated on the KITTI Eigen
test split. Table 2 shows the result of our ablation study.

For relative depth estimation: Baseline SS denotes the
model trained using self-supervision. Joint (PT SS) de-
notes the model pre-trained using self-supervision and then
jointly trained using standard pixel-wise regression loss
(Eq. 6) on the synthetic dataset. It can be seen that this
model performs inferior compared to baseline, mainly be-
cause of two competing loss functions as explained in Sec-
tion 3.2. It must be noted that this inferior performance is
on relative depth, Ours L1 denotes the model trained using
the proposed method till Stage 2, using a standard L1-norm
loss instead of gradient domain loss in Eq. 8. Ours L1 per-
forms significantly better than baseline, however, the model
trained with gradient domain loss in Eq. 8, i.e., Ours Grad
achieves best performance.

For absolute depth estimation: Baseline Syn denotes
the model trained only on the synthetic dataset; it can be

Experiment Abs Rel Sq Rel RMSE RMSElog δ1.25

Baseline SS 0.115 0.882 4.701 0.190 0.879
Joint (PT SS) 0.430 8.967 12.203 0.462 0.481
Ours (L1) 0.106 0.713 4.369 0.181 0.888
Ours (Grad) 0.103 0.654 4.300 0.178 0.891
Baseline Syn 0.200 1.588 6.853 0.323 0.663
Joint (Naı̈ve) 0.548 5.147 11.391 0.833 0.007
Joint (PT Syn) 0.588 5.820 12.041 0.930 0.005
Joint (PT SS) 0.941 14.147 18.408 3.094 0.001
Ours 0.109 0.702 4.409 0.185 0.876

Table 2. Ablation study results. Quantitative results of our abla-
tion study to demonstrate the efficacy of the proposed method.

seen that it does not generalize well on real world images.
Joint (Naı̈ve) denotes the model jointly trained using self-
supervision and pixel-wise regression loss on the synthetic
dataset from scratch, whereas Joint (PT Syn) and Joint
(PT SS) perform pre-training on synthetic and monocu-
lar videos respectively. Ours denotes Ours Grad model
trained in Stage 3, which is the only model that learns to
estimate scale-aware depth. Due to space limitations, a
comprehensive ablation study with detailed discussion and
ScaleNet analysis is included in the supplementary.

6. Practical Application of Our Method

We additionally demonstrate the practical usefulness of
our method by developing an MDE model for the task of
applying DSLR-like synthetic depth-of-field effect, popular
as Portrait Mode on smartphones. The following paper [43]
serves as an excellent reference to understand the use-case
in general. The use-case requires accurate relative depth
that preserves sharp boundaries and gaps and has smooth
depth variations for a pleasing effect.

In literature, supervised MDE methods that attempt ro-
bust depth estimation, [5, 27, 30, 47, 48] advocate creat-
ing large amounts of RGB-D data by crowd-sourcing web
stereo images or stereo pairs from 3D movies to extract dis-
parity [27]. These approaches require immense data col-
lection and ground-truth depth filtering efforts. Besides,
these datasets have biases and limitations, such as the lim-
ited quality of web images. Most importantly, copyright
or license restrictions prohibit commercial usage of models
developed using such data.

However, with our method, we can collect our own
monocular videos dataset and generate a synthetic depth
dataset (see Fig. 6 and Sec. 6.1) using computer graphics
software [19] with relatively less efforts. We then train a
lightweight MDE model based on MobileNetV2 [37] (due
to our computational requirements, a detailed discussion is
omitted due to space limitations) using our training proce-
dure. Fig. 5 shows the results of our MDE model on some
test images. Our model generates accurate depth maps with
sharp edges and gaps, for e.g., see gaps between leaves in
Fig. 5(b), Fig. 5(h) and gaps between fingers in Fig. 5(d).
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Figure 5. Qualitative results of our custom MDE solution.

Figure 6. Representative input images from our in-house synthetic
depth dataset.

We also analyze Lasinger et al.’s supervised MDE
method on our test dataset. The method is trained on ≈ 2
million RGB-D pairs, most of which are derived from 3D
movies which contain ample human subjects; thus, our test
images are not unfamiliar with their model. Fig. 7 shows
the result of [27] on selected images. It can be seen that the
model has generalization issues in Fig. 7(b) and blur bound-
aries in Fig. 7(d). We do not intend to compare our method
with [27] one-to-one because a fair comparison is not pos-
sible due to differences in training datasets. However, we
want to highlight that our method is practically more rele-
vant. Training data collection is an activity that is required
periodically to adapt models to evolving test scenarios, ex-
tending the training data with our method is more practical
compared to fully supervised methods. Furthermore, while
relaxing training data collection efforts, our method makes
no compromise with the output quality, rather it achieves
high quality depth estimation.

6.1. Human-centric Synthetic Depth Dataset

In the literature, the standard benchmark datasets for
MDE are mainly focused on autonomous driving [12], and
indoor scenarios [40]. In this work, we generate syn-
thetic RGB-D pairs for our work, which will be available
to the community, and we expect it to be helpful in human-
centric vision research, including learning portrait (bokeh)
effect [20], human segmentation, and human depth estima-
tion [41]. In Fig.6, we show representative images from
our in-house synthetic depth dataset that we created using
computer graphics software Blender [19]. Additional rep-
resentative images and corresponding dense depth maps are
provided in the supplementary.

For generating the dataset, a virtual scene was set up in
Blender [19] and to capture semantically correct images, we
manually defined human model positions, pose, gestures,
and camera trajectories in the scene. Each rendering itera-
tion applied one of the predefined valid position, pose, and
gesture settings. As a result, the dataset contains different
human models posing with varying gestures of hand and

(a) Input 1 (b) Output 1 (c) Input 2 (d) Output 2

Figure 7. Assessing performance of Lasinger et al.’s [27] method
trained on ≈ 2 million diversely curated RGB-D pairs

props (e.g., towel, toy, hat, etc.). The human models also
have random poses relative to the camera. The RGB image
rendering also includes natural sunshine and shadow cast
by the light source (primarily the sun) on humans as well
as other objects in the scene (see Fig. 6). The dataset has
images captured in outdoor scenarios, such as roads, parks,
and footpaths, with a high degree of realism.

The final rendered dataset contains 3000 RGB-D pairs
with 832x640 resolution with pixel-perfect dense ground-
truth depth. The ground-truth depth ranges from 0.1 up to
maximum 50 meters.

7. Conclusion

This work proposed a metrically accurate, sharp, and
smoothly varying monocular depth estimation method with-
out using real-world labels. It leverages a novel training
methodology to synergistically combine positive aspects of
two easy to obtain and scalable datasets, viz., monocular
videos and synthetic dataset. The proposed method learns
geometry and semantics from monocular videos, whereas
scale-awareness and qualitative depth attributes, viz., sharp
and smooth depth variations, are acquired from the syn-
thetic dataset. To achieve this, a novel method was pro-
posed that disentangles relative depth estimation with qual-
itative depth attributes from the task of scale-aware depth
estimation. Despite any real world data labels and do-
main adaptation techniques, the proposed approach signif-
icantly outperforms the state-of-the-art on two challeng-
ing benchmark datasets while setting a new state-of-the-art
in self-supervised and domain adaptation based monocular
depth estimation. Further, we show that using the proposed
method, an easily scalable and superior quality monocular
depth estimation solution can be created for real life appli-
cations without real world data labelling efforts. Finally, to
overcome the unavailability of high quality human-centric
depth datasets, we will open our new synthetic depth dataset
to aid ongoing human-centric vision research.
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