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Abstract

We propose a high dynamic range (HDR) imaging algo-
rithm based on bidirectional motion estimation. First, we
develop a motion estimation network with the cyclic cost
volume and spatial attention maps to estimate accurate op-
tical flows between input low dynamic range (LDR) images.
Then, we develop the dynamic local fusion network that
combines the warped and reference inputs to generate a
synthesized image by exploiting local information. Finally,
to further improve the synthesis performance, we develop
the global refinement network that generates a residual im-
age by exploiting global information. Experimental results
on the dataset from the NTIRE 2022 HDR Challenge Track
1 (Low-complexity constrain) demonstrate the effectiveness
of the proposed HDR image synthesis algorithm.

1. Introduction

Despite recent advances in digital imaging technologies,
the dynamic ranges of cameras are still limited compared
with those of natural scenes. A common approach to cap-
ture scenes with a wide range of illuminance is to synthe-
size high dynamic range (HDR) images by merging multi-
ple low dynamic range (LDR) images captured with varying
exposure times [25]. However, camera or object motions
across the LDR images may cause misalignments among
the images, thereby causing ghosting artifacts in the syn-
thesized HDR images and degrading image quality. To mit-
igate the impact of motions on HDR image quality, vari-
ous approaches have been developed to handle misalign-
ments [26].

Early attempts of HDR imaging exploited the properties
of motions to establish mathematical models, which are cat-
egorized into three groups based on how they handle mo-
tions. The first category of algorithms computes the corre-
spondences between the input LDR images and merges the
aligned images [1, 2, 24]; however, these algorithms may
fail to estimate accurate correspondences for large under-
/over-exposed regions, producing ghosting artifacts. The

second category of algorithms attempts to determine ob-
ject movement regions [9, 10, 30]; despite their capability
for handling motions in poorly exposed regions, these al-
gorithms may fail when the scenes contain complex mo-
tions. The algorithms of the third category attempt to detect
ghost regions and estimate correspondences simultaneously
by solving joint optimization problems [5,15,21]; however,
they require high computational costs for correspondence
estimation and numerical optimization.

Recently, deep learning-based algorithms have been ac-
tively developed for HDR imaging [6, 11–14, 20, 27, 28].
They have shown superior performance against model-
based algorithms thanks to the capabilities of convolutional
neural networks (CNNs) in restoring complex textures and
details by learning abstract visual features from large data.
The deep learning-based algorithms are constructed on the
basis of a common principle: the input LDR images are
transformed to the feature domain by CNNs; then, the fea-
ture maps are merged and transformed back to the image do-
main by another CNN. Despite their superior performance,
deep learning-based algorithms often require large compu-
tational resources because of their large numbers of com-
puting operations, thus limiting their versatility. Therefore,
developing computationally efficient algorithms while re-
taining the synthesis performance is essential.

In this work, we develop a lightweight deep network
for HDR imaging based on bidirectional motion estimation
consisting of the motion estimation network (MENet), dy-
namic local fusion network (DLFNet), and global refine-
ment network (GRNet). First, MENet predicts optical flows
between the reference and target LDR images. To enhance
the accuracy of optical flows, we develop the cyclic cost vol-
ume with spatial attention maps. Second, we extract mul-
tiscale feature maps to exploit contextual information and
then warp the target images and their corresponding feature
maps to those of the reference image using the estimated op-
tical flows. Next, DLFNet combines the warped results with
the reference image and its feature maps to obtain synthe-
sized outputs by exploiting local neighboring information.
Finally, GRNet refines the outputs of DLFNet by exploit-
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Figure 1. Overview of the proposed algorithm. MENet, DLFNet, and GRNet are detailed in Figures 2, 3, and 4, respectively.

ing global information. We demonstrate the effectiveness
of the proposed algorithm on the NTIRE 2022 HDR Imag-
ing Challenge dataset [19].

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 describes the
proposed algorithm. Section 4 discusses the experimental
results. Finally, Section 5 concludes the paper.

2. Related Work

Model-based HDR imaging algorithms formulate multi-
exposure fusion problems as mathematical models that are
categorized into three subgroups based on how they handle
motions. The first category of algorithms computes corre-
spondences between the input LDR images and merges the
aligned images. For example, Bogoni [1] employed optical
flows estimated from the input images. Tomaszewska and
Mantiuk [24] searched for feature points in the LDR im-
ages and used them for global alignment. Instead of com-
puting correspondences between individual images, Gupta
et al. [2] estimated them between two synthesized images
obtained by summing successive LDR images. Algorithms
in this category may fail to estimate correspondences accu-
rately when the reference image has large poorly exposed
regions. The second category of algorithms attempts to de-
termine the object movement regions to alleviate their con-
tributions. Zimmer et al. [30] integrated optical flow esti-
mation into the energy minimization model for image fu-
sion. Lee et al. [10] incorporated constraints of sparsity
and connectivity across exposures on moving objects into
the rank minimization model. Lee and Lam [9] formulated
HDR imaging as an optimization problem by exploiting the
low-rankness of irradiance maps from LDR images and the

sparseness of moving objects. Despite specifically address-
ing movement regions, these algorithms may fail when the
scene contains complex motions. The algorithms of the
third category simultaneously detect ghost regions and esti-
mate correspondences via joint optimization. For example,
Sen et al. [21] integrated alignment and reconstruction into
patch-based energy minimization. Hu et al. [5] exploited ra-
diance and texture consistencies to align LDR images. Oh
et al. [15] also exploited the low-rankness of LDR images
by integrating alignment with the robust principal compo-
nent analysis model. These algorithms often require high
computational resources for correspondence estimation and
numerical optimization.

Deep learning-based HDR imaging algorithms have
been developed actively and show superior performances
against model-based algorithms. Kalantari and Ramamoor-
thi [6] aligned target images using optical flows and de-
veloped two networks—one for refining the aligned images
and the other for merging. Lee et al. [11] employed differ-
ent encoder-decoder architectures for alignment and merge.
Yan et al. [28] developed a joint alignment-fusion network
that can suppress undesired information by exploiting hi-
erarchical features. Prabhakar et al. [20] proposed an ef-
ficient algorithm that synthesizes an HDR image in a low
resolution then restores the full resolution. To avoid pre-
alignment, Wu et al. [27] performed LDR image alignment
and HDR image synthesis via a single encoder-decoder net-
work. Niu et al. [14] employed a generative adversarial net-
work to synthesize missing regions caused by occlusions.
Mai et al. [13] formulated the HDR imaging problem as
a rank minimization model and developed an unrolling ap-
proach to leverage the strength of deep learning. In [12], Liu
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Figure 2. Architecture of MENet and illustration of the cyclic cost volume layer.

et al. aligned the input images in the feature domain then
determined the best regions for fusion. Despite their supe-
rior performances, deep learning-based algorithms gener-
ally demand high computational resources because of their
significant numbers of operations. In this work, we develop
a lightweight yet effective joint alignment-fusion network
for HDR imaging based on bidirectional motion estimation
with cyclic cost volume.

3. Proposed Algorithm
Given three input LDR images {I1, I2, I3} of H×W×3,

where H and W are the height and width of the images, re-
spectively, captured with three different exposures, we re-
cover an HDR image aligned to a reference image I2. First,
the input LDR images {I1, I2, I3} are linearized to obtain
images {E1, E2, E3} using the gamma function as the cam-
era response function

Ei =
(Ii)

γ

∆ti
, (1)

where i ∈ {1, 2, 3} denotes the exposure index, ∆ti is the
exposure time for Ii, and γ = 2.24 is the gamma parameter.

Figure 1 shows an overview of the proposed algorithm,
which takes the linearized images {E1, E2, E3} as input
and reconstructs an HDR image Ĥ . The proposed algorithm
is composed of three subnetworks: MENet, DLFNet, and
GRNet. MENet estimates two motion fields between E2

and E1 and between E2 and E3. Then, the target images E1

and E3 are warped using the estimated motion fields to the
reference image E2. Next, DLFNet merges these warped
images and reference image by learning the dynamic local
filters. Finally, GRNet improves the synthesis performance
by learning a residual image to refine the filtered image.

3.1. Motion Estimation with Cyclic Cost Volume

MENet: We estimate two motion vectors v2→1(x) and
v2→3(x) between E2 and E1 and between E2 and E3, re-
spectively, at each pixel location x in E2. Assuming linear

motion between the exposures, we have

v2→1(x) = −v2→3(x). (2)

However, since the input images contain poorly exposed re-
gions, the linear constraint is invalid in these regions. To
address this issue, we develop MENet, which estimates
v2→1(x) and v2→3(x), and cyclic cost volume to handle
poorly exposed regions. Figure 2 shows the architecture of
MENet employing PWC-Net [23] as the baseline with mod-
ification for bidirectional motion estimation using the pro-
posed cyclic cost volume. Specifically, multiscale feature
maps f l

i are first generated from each input image Ei via a
feature pyramid extractor, where i and l denote the exposure
and pyramid level indices, respectively. At each level l, at-
tention maps Al

1 and Al
3 are estimated for the target images,

which identify motion and poorly exposed regions, using
the spatial attention module (SAM) [28]. The estimated at-
tention maps are multiplied with the corresponding target
images to enhance the useful features and exclude motion
and poorly exposed regions. Next, we use three feature
maps extracted from the three input images with their cor-
responding attention maps to build a cyclic cost volume that
stores two bidirectional costs and a cyclic matching cost to
handle occlusions or poorly exposed regions. Finally, mo-
tion vector fields at level l are estimated using an optical
flow estimator. Each component of MENet is described in
detail below.
Feature extractor: We employ a feature extractor in PWC-
Net [23] for each input image to extract 3-level feature pyra-
mids f l

i , where i ∈ {1, 2, 3} and l ∈ {1, 2, 3}. Specifically,
the numbers of feature channels are 16, 32, and 64 from the
first to third levels, respectively. Further, we use a convolu-
tion layer with a 3×3 kernel and a stride of 2 to downsample
f l
i to the (l + 1)th level.

SAM: This generates attention maps to highlight useful in-
formation to the reference image as well as exclude motion
and poorly exposed regions. Specifically, each target fea-
ture map at the lth level is concatenated with the reference
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feature map f l
2 as input to SAM [28], which consists of two

convolution layers and a sigmoid function to generate the
attention map Al

i in the range of [0, 1]. Then, the spatially
attenuated feature map f̃ l

i is computed as

f̃ l
i = f l

i ⊗Al
i, (3)

where ⊗ denotes the element-wise multiplication.
Cyclic cost volume: A cost volume records the matching
costs between a pixel in a reference image with its cor-
responding pixels in a target image [4]. However, unlike
the conventional cost volume [16, 23] that uses two input
images, we compute a cost volume from three input LDR
images—a single reference and two target images. Fur-
thermore, the input images contain invalid pixels caused by
under-/over-exposures as well as occlusions. This is espe-
cially problematic for the reference image, especially align-
ment to invalid pixels. To address this issue, we develop
the cyclic cost volume for bidirectional motion estimation,
where the cyclic matching cost between pixels in the two
target images is useful when a pixel in the reference image
is invalid. In addition, the matching cost in the proposed
cyclic cost volume is computed with the spatial attention
maps, which identify motion and poorly exposed regions.

Figure 2 illustrates the proposed cyclic cost volume gen-
eration that takes feature maps f l

1, f l
2, and f l

3 of the three
input images, upsampled motion fields v̂l2→1 = UP(vl+1

2→1)
and v̂l2→3 = UP(vl+1

2→3) estimated at the (l + 1)th level,
and estimated attention maps Al

1 and Al
3. Here, UP is the

upsampling operator using bilinear interpolation [23]. Let
x be a pixel location in the reference image El

2. Then, we
define the matching costs CV l

21(x,d) and CV l
23(x,d) as

the bidirectional correlation between feature maps {f l
2, f

l
1}

and {f l
2, f

l
3} with their corresponding spatial attention maps

{Al
1, A

l
3} in (4) and (5), respectively, at the bottom of the

page, where d denotes the displacement vector within the
search window D = [−d, d] × [−d, d]. Note that the refer-
ence image I2 may contain occlusions or poorly exposed re-
gions; in such cases, the matching costs are invalid, leading
to inaccurate motion estimation. Therefore, in this work,
in addition to the two bidirectional costs, we further define
the cyclic matching cost between features indexed by the
motion vector that passes through x in E2 and both spa-
tial attention maps {Al

1, A
l
3}, given by (6) at the bottom

of the page. The dimension of the cyclic cost volume at

level l is W l ×H l ×D2 × 3, where W l and H l denote the
width and height, respectively, of the feature maps at level
l, D = 2d+ 1, and 3 is the number of matching costs.

Optical flow estimator: We follow a common ap-
proach [28] to optical flow estimation that refines optical
flows by exploiting contextual information from features.
In particular, the optical flow estimator is implemented
as a multilayer CNN. More specifically, at each level l,
the cyclic cost volume, upsampled motion fields v̂l2→1 and
v̂l2→3, feature map of the reference image f l

2, and two spa-
tially attentive feature maps f̃ l

1 and f̃ l
3 are used as input to

generate vl2→1 and vl2→3.
However, since the optical flow estimator uses the same

network architecture for different levels, it takes up most pa-
rameters and computational costs. To facilitate a computa-
tional complexity versus estimation accuracy trade-off, we
employ a shuffle block decoder (SBD) [8] as an optical flow
estimator. The SBD reforms standard convolutions as group
convolutions by channel shuffle operations [29], which can
effectively reduce computational costs while maintaining
accuracy.

3.2. HDR Image Synthesis

In Figure 1, we synthesize an HDR image by merging
three images, Ê1, E2, and Ê3, two of which are warped by
the warping layers. As the contextual information in the
input images improves synthesis performance, in addition
to the input images, we exploit contextual information as
in [16]. Specifically, we extract multiscale feature maps cli
as contextual information in the input images using the fea-
ture extractor in Figure 1, which has the same architecture
as that of the feature pyramid extractor in MENet. Further-
more, to reduce computational complexity, we only use the
features at levels l ∈ {1, 3}. The feature extraction from the
input frames is performed with shared parameters. Then,
the inputs E1 and E3 are warped using v2→1 and v2→3

to generate the estimates Ê1 and Ê3, respectively. Simi-
larly, the feature maps cl1 and cl3 are warped to generate ĉl1
and ĉl3 for l ∈ {1, 3}, respectively. These warped images
and feature maps are merged to synthesize the HDR image.
In this work, we develop two subnetworks—DLFNet and
GRNet—to exploit local and global information, respec-
tively.

Warping layer: Note that the HDR image is synthesized

CV l
21(x,d) = f l

2(x)
T
[
f l
1 (x+ v̂2→1(x)− d)×Al

1 (x+ v̂2→1(x)− d)
]

(4)

CV l
23(x,d) = f l

2(x)
T
[
f l
3 (x+ v̂2→3(x) + d)×Al

3 (x+ v̂2→3(x) + d)
]

(5)

CV l
31(x,d) =

[
f l
3 (x+ v̂2→3(x) + d)×Al

3 (x+ v̂2→3(x) + d)
]T [

f l
1 (x+ v̂2→1(x)− d)×Al

1 (x+ v̂2→1(x)− d)
]
(6)
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Figure 3. Architecture of DLFNet.

by merging the warped frames obtained by the estimated
motion vector fields. In this work, we warp both the in-
put images E1 and E3 and their multiscale features cl1 and
cl3 toward the reference image using the upsampled motion
fields from the previous level. Specifically, the warped fea-
ture ĉli(x) at x is given by

ĉli(x) = cli
(
x+UP(vl+1

2→i)(x)
)
, (7)

where i ∈ {1, 3}.
DLFNet: This takes the warped and reference images as
well as their corresponding feature maps and learns to
generate dynamic local filters for merging three images
{Ê1, E2, Ê3}. Figure 3 shows the architecture of DLFNet.
We first 4× upsample the coarsest feature maps {ĉ31, c32, ĉ33}
via a single convolution layer with a pixel shuffle opera-
tion [22] and then concatenate the upsampled feature maps
with the inputs {Ê1, E2, Ê3} and their corresponding fea-
ture maps {ĉ11, c12, ĉ13}. To effectively learn dynamic fil-
ters from multiple inputs, we modify GridNet in [17] us-
ing only 10 convolution layers. In addition, to reduce the
computational complexity, based on [3], we replace each
convolution layer with a sequence of three convolutions
with filters of sizes 1 × 1, 3 × 3, and 1 × 1. For the
first and last two convolution layers in DLFNet, we use a
single convolution layer with a filter of 3 × 3. For each
pixel (x, y), the last convolution layer of DLFNet gener-
ates three local filter coefficients Kx,y(i, j, k), where (i, j)
are local coordinates around (x, y) and k ∈ {1, 2, 3} in-
dexes the input image, to fuse 3 × 3 local neighboring pix-
els in {Ê1, E2, Ê3}. The filter coefficients are normalized
as

∑
i

∑
j

∑
k Kx,y(i, j, k) = 1.

Then, we obtain the synthesized HDR image EM via dy-
namic local convolution (DLC) with the learned filter coef-
ficients Kx,y(i, j, k) as

EM (x, y) =

3∑
k=1

1∑
i=−1

1∑
j=−1

Kx,y(i, j, k)Êk(x+ i, y + j),

(8)
where Ê2 = E2. Similarly, by applying the same filters to
{ĉ11, c12, ĉ13}, we obtain the synthesized feature map cM .

Figure 4. Architecture of GRNet.

GRNet: DLFNet merges multiple inputs by considering
only local neighbors. Thus, if the local neighbors do not
contain valid information due to motion errors or poorly
exposed regions, DLFNet may fail to produce valid infor-
mation in these regions. To improve the synthesis perfor-
mance using global information, we develop GRNet, as
shown in Figure 4, to generate a residual output ER to re-
fine EM . GRNet takes the synthesized feature maps cM
and images EM as input. Two dilated residual dense blocks
(DRDBs) [28] are employed to faithfully exploit global
information and to increase the receptive field. In each
DRDB, instead of convolution layers with a 3 × 3 kernel,
we adopt group-wise convolutions [29] to reduce computa-
tional complexity. Finally, the synthesized HDR image is
given as Ĥ = EM + ER.

3.3. Implementation Details

Loss function: We define the HDR reconstruction loss Lr

as the L2-norm of the difference between the output Ĥ and
ground-truth Hgt. Because of its higher dynamic range, the
HDR reconstruction loss is defined in the tone-mapped do-
main using the µ-law function T [6] as

Lr = ∥T (Ĥ)− T (Hgt)∥22, (9)

with

T (x) =
log(1 + µx)

log(1 + µ)
, (10)

where µ is a parameter to control the amount of compres-
sion. In this work, we set µ = 5000.
Dataset: We use the training dataset provided by the
NTIRE 2022 HDR Imaging Challenge [19]. Because
ground-truth images are not provided for testing, we ran-
domly selected 210 HDR images from the training set for
test. Thus, the new training set contains 1,284 images out of
1,494. We generate training patches by cropping 128× 128
patches with a stride of 128.
Training: We use the Adam optimizer [7] using β1 = 0.9
and β2 = 0.999 for 200 epochs with an initial learning rate
of 10−4 and a decay rate of 0.1. The proposed algorithm
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Table 1. Quantitative comparison of the results on the NTIRE2022 High Dynamic Range Challenge dataset. For each metric, the boldface
value indicates the best result.

PSNR µ-PSNR Runtime (s) # GMACCs # Parameters

ADNet 43.58 36.82 2.34 6238.59 2,808,772
Proposed 39.44 35.39 0.32 199.11 1,300,602

(38.43 dB)

(37.21 dB)

Input I1 Input I2 Input I3
(34.58 dB)

HDR image Ĥ Ground-truth

Figure 5. Qualitative comparison of the synthesized HDR images. (Top) Full-resolution images and (bottom) magnified parts. µ-PSNR
scores are provided below each synthesized image.

is implemented using PyTorch [18]. The training took ap-
proximately three days using a PC with an Intel® Core™
i9-7900X @3.30GHz CPU, 64GB RAM, and four Nvidia
RTX™ 3090 GPUs.

4. Experimental Results

4.1. Quantitative and Qualitative Evaluation

We compare the HDR image synthesis performance of
the proposed algorithm with that of the state-of-the-art AD-
Net [12]. For fair comparison, we retrain ADNet using the
training set with the same settings as the proposed algo-
rithm.

Table 1 compares the synthesis performance quantita-
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Table 2. Impacts of the cyclic cost volume and GRNet on the HDR
image synthesis performance.

Cyclic cost volume GRNet PSNR µ-PSNR

✓ 39.21 35.17
✓ 34.89 31.13
✓ ✓ 39.44 35.39

tively on 210 images in the test set described in Section 3.3
using the PSNR metric and its extension µ-PSNR computed
in the tone-mapped domain. PSNR measures the accuracy
of luminance value reconstruction, whereas µ-PSNR con-
siders the human perception to the luminance values. Ta-
ble 1 also compares the computational complexity in terms
of the average execution times, the number of giga multiply-
accumulate (GMACC) operations to process images of the
resolution 1900× 1060, and the number of network param-
eters. Even though the proposed algorithm yields 1.43 dB
lower µ-PSNR score than ADNet, the proposed algorithm
provides significantly higher computational efficiency than
ADNet. Specifically, the proposed algorithm runs 7× faster
and requires 31× and 2× less GMACCs and parameters,
respectively, than ADNet.

Figure 5 visually compares the synthesized HDR im-
ages. Although there are either camera motions or object
motions across the three inputs, the proposed algorithm pro-
vides high-quality HDR images. For example, two input
images I2 and I3 in the first row contain a large number
of over-exposed pixels in the motion regions. The pro-
posed algorithm restores textures faithfully without ghost-
ing artifacts in these regions. In addition, even when the
input images contain large motions and object deformation,
where the linear motion constraint is invalid, in the last row,
the proposed algorithm recovers the details in these regions
with only a small amount of visible artifacts. This confirms
the effectiveness of the cyclic cost volume with spatial at-
tention maps.

4.2. Model Analysis

We conduct several ablation studies to analyze the con-
tributions of the key components in the proposed algorithm:
cyclic cost volume and GRNet. We also analyze the compu-
tational cost of each component by comparing GMACCs.
Cyclic cost volume: To analyze the effectiveness of the
proposed cyclic cost volume, we train the proposed algo-
rithm with the conventional cost volume [23]. Table 2 com-
pares the average scores of different settings. The proposed
cyclic cost volume provides higher scores than the conven-
tional cost volume. This indicates that the cyclic cost vol-
ume with spatial attention maps is essential to handle mo-
tions in poorly exposed regions.
GRNet: We analyze the effectiveness of GRNet by training
the proposed algorithm with and without GRNet. Table 2

Table 3. Analysis of computational complexity of each component
in the proposed algorithm.

MENet Feature extractor DLFNet GRNet

# GMACCs 49.67 33.68 102.85 12.91

compares the results. Using GRNet increases the scores
with significantly large margins. This is because the output
image is synthesized using only local neighboring informa-
tion, which may contain invalid information from poorly
exposed regions, to degrade the synthesis performance. In
contrast, GRNet exploits global information, thereby im-
proving the synthesis performance.

Computational cost: Finally, to analyze the computational
complexity of each component in the proposed algorithm,
we compare the number of GMACCs for MENet, feature
extractor, DLFNet, and GRNet. Table 3 compares the re-
sults. First, because both MENet and the feature extrac-
tor generate 3-level pyramids of feature maps, they pro-
duce high computational costs. DLFNet combines multiple
images and feature maps by learning local filters for each
pixel; it requires the highest computational resource. Fi-
nally, GRNet processes the inputs without either multiscale
feature representations or local filters; it provides the great-
est efficiency of computational cost.

5. Conclusions

We developed a lightweight joint alignment-fusion algo-
rithm for HDR imaging based on bidirectional motion es-
timation. First, in MENet, we developed the cyclic cost
volume with spatial attention maps to predict optical flows
from the reference image to the target images. Then, we
warped the target images and their corresponding feature
maps using the estimated optical flows and fed them to
DLFNet. Subsequently, DLFNet learns local filter coeffi-
cients to generate a synthesized output. Finally, GRNet re-
fines the synthesized output by exploiting global informa-
tion. The experimental results on the NTIRE 2022 HDR
Imaging Challenge demonstrated that the proposed algo-
rithm can synthesize high-quality HDR images with signif-
icantly less demands on computational resources compared
with the state-of-the-art algorithm.
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