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Abstract

With the recently massive development in convolution
neural networks, numerous lightweight CNN-based image
super-resolution methods have been proposed for practi-
cal deployments on edge devices. However, most existing
methods focus on one specific aspect: network or loss de-
sign, which leads to the difficulty of minimizing the model
size. To address the issue, we conclude block devising, ar-
chitecture searching, and loss design to obtain a more ef-
ficient SR structure. In this paper, we proposed an edge-
enhanced feature distillation network, named EFDN, to pre-
serve the high-frequency information under constrained re-
sources. In detail, we build an edge-enhanced convolu-
tion block based on the existing reparameterization meth-
ods. Meanwhile, we propose edge-enhanced gradient loss
to calibrate the reparameterized path training. Experi-
mental results show that our edge-enhanced strategies pre-
serve the edge and significantly improve the final restora-
tion quality. Code is available at https://github.
com/icandle/EFDN.

1. Introduction

Image super-resolution (SR) is a widely concerning
low-level computer vision task that aims to build miss-
ing high-frequency information in degraded low-quality im-
ages. However, it is challenging to predict the appropriate
images due to the ill-posed nature since one high-resolution
(HR) image corresponds to plenty of low-resolution im-
ages. Many classical methods [30, 31, 36] have been pro-
posed to address this problem, but their reconstruction qual-
ity under large magnification is often unsatisfactory. Re-
cently, many convolution neural network (CNN) based ap-
proaches [9, 10, 16, 19,23,26,38] were introduced to obtain
realistic super-resolution images. Notwithstanding, most of
them focus on improving restoration quality while invol-
untarily increasing the model scale, resulting in difficulty
for mobile devices deployment. In this paper, we mainly
concentrate on deploying SR models under resource-limited
conditions.
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Figure 1. Visual results on DIV2K [2]. The lower right parts
are ground truth gradient maps processed by the Sobel-(x,y) and
Laplacian filters. The upper left part are results for EFDN.

In order to design a qualified lightweight neural network,
researchers cut into this problem from the perspective of pa-
rameter reduction and calculation reduction. Sticking to re-
ducing the size of convolution and features, FSRCNN [10]
first employed the post upscaling module, which removed
both calculations and parameters. For more significant pa-
rameter reduction, the recurrent learning is leveraged in
many works, including DRCN [17] and DRRN [29]. How-
ever, these recursive approaches cost more computation re-
sources due to their limited representation capability. For
instance, 17.9T multiply-add operations (MAdds) are spent
in DRCN and 6.8T in DRRN, which are unbearable for mo-
bile devices. Therefore, the researchers have shifted the
critical point of efficient SR to designing effective modules
and dedicated networks.
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To this end, networks [3, 14, 15] and blocks [6,7,37,40]
were proposed to improve efficiency. In RFDN [24], the
shallow residual block and dedicated distillation procedure
are introduced to achieve superior performance under con-
strained conditions. However, its parameters and opera-
tions are still unaffordable for part of edge devices due to
the dense connections. Zhang et al. [37] utilized a plain
network with a re-parameterizable convolution block to ac-
complish real-time application on commodity mobile de-
vices. But they suffer from PSNR drop like other sim-
ple networks. In addition to these manually designed net-
works and blocks, many methods based on neural architec-
ture search (NAS) [5, 28, 33] and model pruning [20, 21]
are proposed to obtain more flexible and lightweight net-
works. DLSR [12] introduced a differentiable NAS method
to find a more flexible typology based on RFDN, which de-
signs cell-level and network-level with meager cost. Nev-
ertheless, DLSR overuses depth-wise convolution, bring-
ing a large amount of activation and memory consumption.
Hence, there is still room for improvementin designing an
efficient SR model.

In order to address the above issues, we propose an effi-
cient Edge-enhanced Feature Distillation Network (EFDN),
which combines block composing, architecture searching,
and loss designing to obtain a trade-off between the per-
formance and light-weighting. For block composing, we
sum up the re-parameterization methods [6—8, 37] and de-
sign a more effective and complex edge-enhanced diverse
branch block. In detail, we employ several reasonable
re-parameterizable branches to enhance the structural in-
formation extraction, and then we integrate them into a
vanilla convolution to maintain the inference performance.
To ensure the effective optimization of parallel branches in
EDBB, we design an edge-enhanced gradient-variance loss
(EG) based on gradient-variance loss [ ]. The proposed loss
enforces minimizing the difference between the computed
variance maps, which is helpful to restore sharper edges.
As shown in Fig. 1, we present the gradient maps calcu-
lated by different filters and the corresponding EG loss. In
addition, the NAS strategy of DLSR is adopted to search a
robust backbone.

Overall, our main contributions can be summarized as
follows:

1) We propose a plug-in edge-enhanced diverse branch
block by revisiting existing re-parameterization tech-
nologies. The block can improve the SR performance
without extra cost for inference.

2) We design a novel gradient-variance loss function for
edge information preserve. The loss can work with the
proposed EDBB to achieve higher restoration quality.

3) We include block composing, NAS, and loss design into
our EFDN framework. And our model achieves a com-

petitive performance while maintaining an extremely
lightweight inference.

2. Related Work
2.1. Efficient image super-resolution

In recent years, convolutional neural networks (CNNs)
have greatly promoted the development of low-level com-
puter vision tasks [11]. In the super-resolution field, Dong
et al. [9] proposed SRCNN, the earliest CNN-based work
which outperforms the traditional methods. However, SR-
CNN adopts post-upscaling architecture and large convolu-
tion layers, which would result in reduced operating effi-
ciency. To remove the unnecessary computational cost, the
authors re-implemented the upscaling module by a decon-
volution layer and moved it to the tail part in [10]. Since
then, plenty of CNN-based SR networks [23, 26, 38, 39]
has been introduced to improve the reconstruction results.
Nevertheless, most approaches leverage hundreds of con-
volution layers and attention mechanisms for higher quality
while ignoring the applications under restricted resources.

To develop the efficient super-resolution in edge de-
vices, Ahn et al. [3] proposed CARN-M, a residual net-
work with a cascading mechanism, which can reduce pa-
rameters and computations at the expense of quality reduc-
tion. Hui et al. proposed an information distillation net-
work [15] to explicitly split the intermediate feature to dis-
till and compress the local long and short-path features.
Based on IDN, IMDN [14] is introduced with a more rea-
sonable feature distillation mechanism and effective adap-
tive cropping strategy. Enlightened by revisiting these dis-
tillation mechanisms, Liu et al. [24] proposed a novel chan-
nel splitting strategy that utilizes the convolution layer to
implement dimensional change. Furthermore, they devise
shallow residual blocks to improve the construction perfor-
mance while maintaining the parameter scale. With these
improvements, they won first place in the AIM 2020 effi-
cient super-resolution challenge [35].

2.2. Re-parameterization

Re-parameterization has become an effective technique
for efficient neural network design. Lei et al. [6] proposed
an asymmetric convolution block (ACB) to strengthen the
vanilla convolution by merging three different convolutions.
Then in the AIM 2020 [35], FIMDN adopted the block
into the super-resolution field and outperformed IMDN with
fewer parameters. RepVGG [8] first added identity map-
ping and 1 x 1 convolution into the re-parameterizable struc-
ture family, and DBB [7] further enriched the family with
sequential convolutions like expanding-and-squeezing con-
volution. Based on these works, Zhang et al. [37] proposed
an edge-oriented convolution block (ECB) to improve the
performance of the real-time SR network in mobile devices.
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Figure 2. Illustration of re-parameterization method.

3. Proposed Method
3.1. Edge-enhanced diverse branch block

First, we revisit the existing re-parameterizable topol-
ogy [7,8,37]. As shown in Fig. 2a, we present the de-
tail of RepVGG Block, DBB, and ECB. A total of eight
different structures have been designed to improve the fea-
ture extraction ability of the vanilla convolution in different
scenarios. Although the performance may be higher with
more re-parameterizable branches, the expensive training
cost is unaffordable for straightly integrating these paths.
Meanwhile, another problem is that edge and structure in-
formation may be attenuated during the merging of parallel
branches.

To address the above concerns, we build a more deli-
cate and effective reparameterization block, namely Edge-
enhanced Diverse Branch Block (EDBB), which can extract
and preserve high-level structural information for the low-
level task. As illustrated in Fig. 2b, the EDBB consists of
seven branches, summarized in following two categories.

Category I: a single convolution. A normal single con-
volution operator can be given as:

o(x) =W xx+b, (1)

Given the convolution operator (W, b) with a hxw kernel

and the target convolution (W, b') with the kernel shape

of HxW (h < H,w < W), the process of assigning repa-
rameterized kernel from zero matrix can be given as:

W.arlitzh g ey = Wi 2a)

b' = b, (2b)

While for shortcut operator, it can be treated as a special
1x1 convolution, where W. . ¢ o is an identity matrix.

Category II: sequential convolutions. Sequential con-
volutions are widely applied to further extract the hidden
information from the feature maps. In the EDBB, we intro-
duce expanding-and-squeezing convolution and scaled filter
convolution to enhance the edge and structure signals. Gen-
erally, these re-parameterizable convolution sequences can
be expressed by:

oa(o1(x)) = W x (Wi xx + by) + b, 3)

where the o is the first D x C' x 1 x 1 convolution (W7, by),
and o9 is the second C' x D x K x K convolution (W5,
bs). To merge them into a C' x C' x K x K convolution
(W b, we transform the formula as the form of Eq. (1).
According to [7,37], we can obtain the target kernel in the
following manner:

W = perm(Wy) « Wa, (4a)
bl = W, x rep(by) + bo, (4b)

where perm and rep are permuting and broadcasting oper-
ations to align weights correspondingly. For W7, the first
two dimensions are exchanged to maintain the same size as
Ws. For by, it is replicated to share the same shape as bs.

In the training stage, we train the model with EDBB to
obtain more reasonable intermediate features. And then,
we transfer EDBB into a vanilla convolution by calculat-
ing the sum of re-parameterized parameters. In general, the
EDBB leads to quality promotion by utilizing more diverse
re-parameterizable branches, and it maintains the running-
time inference of vanilla convolution.

3.2. Network architecture

Following IMDN [14] and RFDN [24], we devise an
edge-enhanced information distillation network (EFDN) to
reconstruct high-quality SR images with sharp edges and
clear structure under restricted resources. As illustrated in
Fig. 3, our EFDN consists of a shallow feature extraction
module, multiple edge-enhanced feature distillation blocks
(EFDBSs), and upscaling module. Specifically, we leverage
a single vanilla convolution to generate the initial feature
maps. Given the input LR image I*%, this information ex-
traction process can be encapsulated as:

Fy = E(I"R), )

where the F denotes the feature extraction function by a
33 convolution, and Fj, is the extracted feature maps. This
coarse feature is then sent to stacked EFDBs for further in-
formation refining. In detail, we replace the shallow resid-
ual block in [24] with the proposed EDBB to construct our
EFDB. Different from IMDN and RFDN utilizing dense
distillation connections to process input features progres-
sively, we adopt network-level NAS strategy proposed in
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Figure 3. Network architecture of the proposed EFDN.

DLSR! [12] to decide the feature connection paths. The
searched structure is shown in the orange dashed box. We
denote the proposed EFDB as H,,, the information distilla-
tion procedure can be described as:

F, = Hl(FO),

Fy = Hy(Fy), ©)
F5; = H3(Cy(Fy, F»)),

Fy = C3(F2, Hy(Co(F, F3))) + Fo,

where C), is n-th fusion operator consisting of concatena-
tion and 1x1 convolution. Fj, is the n-th output feature.
Finally, the SR images are generated by upscaling module:

157 = R(Fy), (7)

where R consists of a 3x3 convolution and sub-pixel oper-
ation to convert feature maps to images.

3.3. Edge-enhanced gradient-variance loss

In previous work [23], £1 and L5 loss have been in com-
mon usage to obtain higher evaluation indicators. The net-
work trained with these loss functions often leads to the loss
of structural information. Although the edge-oriented com-
ponents are added to the EDBB, it is hard to ensure their ef-
fectiveness during the complex training procedure of seven
parallel branches. Inspired by the gradient variance (GV)
loss [1], we proposed an edge-enhanced gradient-variance
(EG) loss, which utilizes the filters of the EDBB to moni-
tor the optimization of the model. In detail, the HR image
IR and SR image I°% are transferred to gray-scale im-
ages G'® and G5 We leverage the Sobel and Laplacian

'https://github.com/DawnHH/DLSR-PyTorch

filters to compute the gradient maps and then unfold gra-

dient maps into Iizv x n? patches G, Gy, G;. The i-th

variance maps can be formulated as:

>i-1(Gij — Gy)

n? —1

v = (®)
where G, is the mean value of the i-th patch. Thus, we
can calculate the variance metrics v;,vy,v; of HR and SR
images, respectively. Referring to GV-loss, we can obtain
the gradient variance loss of different filter by:

Lo =Eysr|vlF — o7,
Ly = Epselfo[/f — 58|, 9)
L= Epsrllof — v B,

Besides, we add £; to accelerate convergence and im-
prove the restoration performance. In order to better op-
timize the edge-oriented branches of EDBBs and preserve
sharp edges for visual effects, we set trade-off coefficients
Az, Ay, and A;, which are related to the scaled parameters of
corresponding branches. In detail, we replace the last con-
volution layer with EDBB during the pre-training process
to obtain the reasonable scaled parameters s, s,, and s; of
different branches. Then, we determine the A by calculat-
ing the normalized weights of s, and we transfer the EDBB
back into a vanilla convolution for more accessible training.
The summative loss function can be expressed by:

L = L1+ ML+ ALy + ML (10)
4. Experiments
4.1. Datasets and metrics

In the training stage, we use DIV2K [2] and Flick2K [23]
(DF2K) to train our models. A total of 3450 images
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are included to produce high-resolution and bicubic down-
sampled image pairs. In the evaluation stage, we utilize four
commonly used benchmark datasets: Set5 [4], Setl4 [34],
BSD100 [25], and Urban100 [13]. In terms of evaluation
metrics, peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [32] are calculated in the Y channel of
Y CbC'r form to validate the quality of generated images.

4.2. Implementation details

To obtain the LR-HR images pairs, we leverage bicubic
interpolation to downscale the 2K resolution images. We
augment the training datasets by horizontal flips and 90°
rotations. The HR path size and mini-batch size are deter-
mined by the training step. The training procedure can be
summarized as follows.

1) Pre-training the x2 model on DIV2K. The LR patch size
is set to 64 x 64, and the mini-batch size is 64. £ loss
and Adam optimizer [|8] are utilized in optimization.
The initial learning rate is defined as 1 x 10~3. Referring
to [40], we employ the cosine annealing learning scheme
to accelerate convergence.

2) Training models on DF2K. In this step, The LR patch
size is 64x64, and the mini-batch size is 32. We use
Lpc in Eq. (10) to provide a better visual effect. The
initial learning rate is set to 5 x 1074,

3) Fine-tuning on DF2K. The LR patch size and mini-batch
size are 120x 120 and 32, respectively. The L5 loss is
chosen to promote the PSNR value. The learning rate is
initialized to 1 x 107°.

4) Reparameterizing and fine-tuning on DIV2K. The LR
patch size and mini-batch size are 160x 160 and 8, re-
spectively. The Lo loss is used, and the learning rate
starts from 1 x 1076,

The proposed method is implemented under the PyTorch
framework [27] with an NVIDIA RTX 3090 GPU.

4.3. Model analysis

In this subsection, we investigate model complexity in-
cluding model size and running-time, and the effectiveness
of EDBB and EG loss.

Method PSNR Paras. FLOPs Act. Mem.
IMDN [14] 29.13/28.78 893K 58.53 154.14 120
RFDN [24]  29.04/28.75 433K 27.10 112.03 200
PAN [40] 29.01/28.70 272K 32.19 270.53 311

EFDN (Ours) 29.00/28.66 276K 16.73 111.12 168

Table 1. Results on method complexity (number of parameters,
FLOPs, GPU memory consumption, number of activations).
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Figure 4. Trade-off between performance and model complexity
on Setl4 [34] x4 dataset. The multi-adds operation is calculated
with 320 180 input.

4.3.1 Model compexity

In Fig. 4, we provide an overview of our Network’s deploy-
ment performance. We can find that our EFDN obtains a
better trade-off between the SR quality and model size. To
evaluate the method complexity of our EFDN precisely, we
compare several lightweight networks in Tab. 1. For fair-
ness, the benchmark in AIM 2020 [35] is leveraged to eval-
uate the inference performance. The table shows that our
EFDN achieves comparable PSNR on validation and test
datasets while consuming fewer resources. In detail, only
16.73G FLOPs are spent during the reconstruction, which is
about half of PAN [40] and 29% of IMDN [14]. Moreover,
the EFDN also has the minimum activation operations and
the second least parameters and memory-consuming among
these models. In terms of running time, we compare our ap-
proach with IMDN on an NVIDIA RTX 3090 and an RTX
2070-maxQ to evaluate the efficiency in Tab. 2. Our EFDN
is significantly faster than IMDN on different GPUs.

Method Time on 2070-maxQ  Time on 3090
IMDN [14] 0.158s 0.092s
EFDN (Ours) 0.089s 0.019s

Table 2. Results on running-time.

4.3.2 Ablation studies of EDBB and EG loss

To evaluate the effectiveness of the proposed EDBB, we
first compare it to other re-parameterization approaches on
FSRCNN [10] in Tab. 3. We can observe that all four
blocks can improve the PSNR/SSIM values, while our
EDBB leads to higher performance improvement (PSNR:
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Table 3. Ablation study of re-parameterizable typology and loss function on Set5 [4], Set14 [

1, B100 [

], Urban100 [

1 (x2). We

compare the our EDBB to existing blocks on FSRCNN and test different designs on VDSR. The overall improvement by EDBB and Lg¢
are valided in FSRCNN, VDSR, and *EFDN. The best/second-best results are highlighted and underlined. (FSRCNN and VDSR are
re-implemented, and BN layers are discarded during experiments.)

Block 333 Xl pentiy BXPA g ed Filter Sets Set14 B100 Urban100
Conv Conv Squeeze
Baseline-£4 v 37.09/0.9569 32.75/0.9098 31.56/0.8913 30.00/0.9037
= Baseline-Lgg v 37.14/0.9571 32.77/0.9103 31.58/0.8917 30.00/0.9040
E RepVGG [8] v v v 37.15/0.9571 32.78/0.9102 31.59/0.8916 30.06/0.9045
(Z) DBB [7] v v v Avgpool 37.18/0.9572 32.77/0.9103 31.60/0.8918 30.11/0.9050
& ECB [37] v v Laplacian & Sobel 37.17/0.9572 32.80/0.9103 31.59/0.8915 30.09/0.9044
£ EDBB-L; v v v v Laplacian & Sobel 37.19/0.9573 32.80/0.9104 31.61/0.8919 30.14/0.9052
EDBB-LErc v v v v Laplacian & Sobel 37.27/0.9576 32.86/0.9109 31.65/0.8926 30.25/0.9069
Baseline-£4 v 37.69/0.9593 33.24/0.9142 31.99/0.8970 31.30/0.9198
— Baseline-Lga Vv 37.72/0.9595 33.30/0.9147 32.02/0.8978 31.40/0.9215
— EDBB-£; v v v Laplacian & Sobel 37.73/0.9594 33.26/0.9143 31.99/0.8968 31.32/0.9205
& EDBB-L; v v v Laplacian & Sobel 37.73/0.9596 33.33/0.9145 32.02/0.8973 31.38/0.9205
g EDBB-L; v v v v Avgpool 37.68/0.9593 33.28/0.9142 32.00/0.8971 31.27/0.9190
EDBB-£; v v v v Laplacian & Sobel 37.76/0.9595 33.33/0.9147 32.03/0.8975 31.41/0.9207
EDBB-LEec v v v v Laplacian & Sobel 37.85/0.9600 33.41/0.9158 32.10/0.8987 31.65/0.9237
. Baseline-£4 v 37.91/0.9601 33.44/0.9168 32.12/0.8990 31.82/0.9253
EDBB-LEc v v v v Laplacian & Sobel 38.00/0.9604 33.57/0.9179 32.18/0.8998 32.05/0.9275
Table 4. Average PSNR/SSIM for scale X2 and x4 on datasets Set5 [4], Set14 [34], B100 [25], Urban100 [13] with bicubic degradation.

The parameters and multi-adds are calculated with 1280720 shape output.The best/second-best results are highlighted and underlined.

Dataset Scale _ Bicubic  FSRCNN[10] VDSR[I6] IDN[I5] ~ CARN[3] IMDN[i4] PAN[0] EFDN (Ours)
Para/MAdds  12K/4.6G  665K/612.6G 553K/31.1G 1592K/90.9G 715K/41.0G 272K/28.2G 276K/14.7G

s X2 33.66/0.9299 37.00/0.9558 37.53/0.9587 37.83/0.9600 37.76/0.9590 38.00/0.9605 38.00/0.9605 38.00/0.9604
x4 28.42/0.8104 31.35/0.8838 31.82/0.8903 32.13/0.8937 32.21/0.8948 32.13/0.8948 32.13/0.8948 32.08/0.8931

Serlq X2 30.24/0.8688 32.63/0.9088 33.03/0.9124 33.30/0.9148 33.52/0.9166 33.63/0.9177 33.59/0.9181 33.57/0.9179
x4 26.00/0.7027 27.61/0.7550 28.01/0.7674 28.25/0.7730 28.60/0.7806 28.58/0.7811 28.60/0.7822 28.58/0.7809

Bloo X2 29.56/0.8403 31.53/0.8920 31.90/0.8960 32.08/0.8985 32.09/0.8978 32.19/0.8996 32.18/0.8997 32.18/0.8998
x4 25.96/0.6675 26.98/0.7150 27.29/0.7251 27.41/0.7297 27.58/0.7349 27.56/0.7353 27.59/0.7363 27.56/0.7354

Urbanlop X2 20:88/0.8403 29.88/0.9020 30.76/0.9140 31.27/0.9196 31.92/0.9256 32.17/0.9283 32.01/0.9273 32.05/0.9275
a x4 23.14/0.6577 24.62/0.7280 25.18/0.7524 25.41/0.7632 26.07/0.7837 26.04/0.7838 26.11/0.7854 26.00/0.7815

+0.05~0.14dB, SSIM: +0.0004~0.0015 on FSRCNN). We
also examine the EDBB on the deeper VDSR [16] frame-
work by removing or replacing re-parameterizable compo-
nents. The results in Tab. 3 suggest that any branch change
may lead to a quality drop. Overall, we employ EDBB as
the core feature extractor in the EFDN backbone to improve
the SR performance.

Additionally, we assess the impact of loss functions on
the final resolving quality. In detail, we leverage £; and
L g onto the baseline and EDBB model, respectively. As
listed in Tab. 3, the baseline trained by £ ¢ brings a slight
improvement on PSNR but a performance boost on SSIM.
For instance, the PSNR and SSIM of Urban100 are devel-
oped by 0.03dB and 0.0008 on VDSR, respectively. For

models equipping EDBB, the benefits of using EG-loss are
more significant. The combination method of EDBB and
L surpasses baseline by a large margin with 0.2dB im-
provement on three frameworks. Specifically, PSNR/SSIM
results of our EFDN increased by 0.23dB/0.002 on the Ur-
ban100 testset. Moreover, we can infer from the advance
of the SSIM index that the proposed Lg¢ helps the struc-
ture reconstruction by introducing edge-enhanced filters to
calibrate EDBB training.

4.4. Comparison with state-of-the-arts

We compare our EFDN with several state-of-the-arts
lightweight SR methods [3,9, 10, 14-16,40] on x2 and x4
tasks in Tab. 4. We use PSNR/SSIM as well as the numbers
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Figure 5. Qualitative results of lightweight SR models with an upscaling factor x4.

of parameters and Multi-adds to show model efficiency. It
can be found that our method achieves comparable perfor-
mance to the IMDN and CARN while using fewer param-
eters and computations. Specifically, the parameter num-
ber of EFDN is only 17% of CARN, and 38% of IMDN.
For x4 task, the muti-adds operands used in our EFDN are
far less than these methods, which is 14.7G, about 53% in
PAN and 16% in CARN. In general, our EFDN is the most
lightweight model to maintain the fidelity performance.

Apart from numerical results, we also show the visual
comparison in Fig. 5. From the patch of 291000, we can
observe that our EFDN achieves similar reconstruction re-
sults with these high consumption models. In img_093 and

img_099 from Urban100 [13], EFDN surpasses other meth-
ods by better quality and less deformation on structural de-
tails such as shadows and windows.

4.5. Challenge results

We have participated in NTIRE 2022 Efficient Super-
Resolution Challenge [22]. This competition aims to devise
a practical SR method that can maintain the PSNR value
of IMDN [14] on DIV2K [2] validation with less resource
consumption. Among the final 35 valid submissions, our
EFDN ranks 9th in the running time track, 5th in the model
complexity track, and 7th in the overall performance track.
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5. Conclusion

In this paper, we propose an edge-enhanced feature
distillation network for lightweight and accurate super-

resolution.

We devise an edge-enhanced diverse branch

block, which employs more effective re-parameterizable
paths to achieve better extraction capability. Furthermore,
we design an edge-enhancing loss to maximize the effec-
tiveness of the EDBB. By introducing these strategies, the
model size is significantly and steadily reduced while main-
taining a commendable SR performance. Numerous exper-
iments have shown the efficiency of the proposed strength-
ening approaches.
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