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Abstract

In this paper, we propose a simple but effective archi-
tecture for fast and accurate single image super-resolution.
Unlike other compact image super-resolution methods
based on hand-crafted designs, we first apply coarse-
grained pruning for network acceleration, and then intro-
duce collapsible linear blocks to recover the representative
ability of the pruned network. Specifically, each collapsible
linear block has a multi-branch topology during training,
and can be equivalently replaced with a single convolution
in the inference stage. Such decoupling of the training-time
and inference-time architecture is implemented via a struc-
tural re-parameterization technique, leading to improved
representation without introducing extra computation costs.
Additionally, we adopt a two-stage training mechanism with
progressively larger patch sizes to facilitate the optimiza-
tion procedure. We evaluate the proposed method on the
NTIRE 2022 Efficient Image Super-Resolution Challenge
and achieve a good trade-off between latency and accuracy.
Particularly, under the condition of limited inference time
(≤ 49.42ms) and parameter amount (≤ 0.894M ), our so-
lution obtains the best fidelity results in terms of PSNR, i.e.,
29.05dB and 28.75dB on the DIV2K validation and test sets,
respectively.

1. Introduction
Single Image Super-Resolution (SISR), which refers to

the task of enhancing the resolution of an image from low-
resolution (LR) to high (HR), has been studied in computer
vision for a long time and has a growing range of applica-
tions in fields such as surveillance, the automotive industry,
or medical image analysis, etc.

Since the dawn of deep learning, CNN-based methods
have made further progress in SISR. [8] innovatively em-
ployed a three-layer CNN to directly learn the mapping
function and led to significant improvements compared with
conventional methods. More follow-up creative ideas are
introduced, such as residual learning [29], feature fusion,
and attention mechanism [28] [5] [18], advancing the per-

formance of SISR. However, most prior methods use heavy
context modeling modules and limit their real-world appli-
cations. Thus, research along the line of designing effi-
cient solutions gains increasing attention. Recently, var-
ious light-weight CNN-based SISR solutions show great
progress with promising results. Many works mainly focus
on designing compact networks with efficient techniques.
[2] exploits collapsible linear blocks to create an efficient
model architecture. [12] adopts channel split to reduce the
convolution computation cost. Some others adopt distilla-
tion [27] or compression techniques (e.g., pruning [10] and
kernel decomposition [20]) for acceleration. Apart from
hand-designed architecture, [1] adopts neural architecture
search to achieve an excellent balance among the number
of parameters and performance.

In this paper, we introduce a simple but effective archi-
tecture for fast and accurate single image super-resolution.
Firstly, We choose IMDN [12] as our baseline model for
its simplicity and effectiveness, and adopt a coarse-grained
pruning strategy to get a more shallow network. However,
the model performance will often degrade after pruning. To
improve the accuracy while maintaining the same inference
latency, we introduce collapsible linear blocks to recover
the representative ability of the pruned super-resolution net-
work. Specifically, the training-time model has a multi-
branch topology, and each branch is a single convolutional
layer with different kernel sizes. During inference, these
parallel branches can be equivalently converted to a sin-
gle convolution. Such decoupling of the training-time and
inference-time architecture is implemented by a structural
re-parameterization technique, and leads to strong repre-
sentation without introducing extra inference computation
cost. Additionally, we apply a two-stage training strategy,
which progressively larger the training patch sizes from
64×64 to 160×160, to facilitate the optimization proce-
dure. The proposed method achieves a good trade-off be-
tween latency and accuracy. We evaluate the proposed algo-
rithm on the NTIRE 2022 Efficient Image Super-Resolution
Challenge [17], and achieve the best fidelity results un-
der the condition of limited inference time (≤ 49.42ms)
and parameter amount (≤ 0.894M ). Specifically, our solu-
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tion achieves PSNR scores of 29.05dB and 28.75dB on the
DIV2K validation and test sets, respectively.

2. Related Work
2.1. Overview of Image Super-Resolution

Driven by the rapid development of deep learning, CNN-
based SISR methods have been widely proposed and have
achieved state-of-the-art performance on various bench-
marks. Usually, the SISR network can be decomposed
into feature extraction and upsampling modules. Accord-
ing to the position of the upsampling module in the net-
work, supervised image super-resolution methods can be
categorized as Pre-upsampling SR, Post-upsampling SR,
Progressive-upsampling SR [13, 14, 24] and Iterative up-
and-down SR [9,11,22]. Pre-upsampling SR methods [7,8]
often employ an upsampling operation (e.g. bicubic) to first
enlarge the size of the low-resolution image, and then use
a network to extract the image features. Such framework
needs high computation cost since most CNN operations are
performed in the high-dimensional space. To achieve a bet-
ter balance between performance and efficiency, [14,21,23]
replace the predefined upsampling operations with end-to-
end upsampling layers (e.g., transposed convolution or sub-
pixel convolution) which are integrated at the end of the
models. Such post-upsampling design can greatly reduce
the computational complexity. [13, 14, 24] propose a pro-
gressive upsampling mechanism to reduce the learning dif-
ficulty by gradually reconstructing high-resolution images,
and can cope with the need for multi-scale SISR. In addi-
tion, [9, 11, 22] exploit iterative upsampling and downsam-
pling layers to generate intermediate images, and then fuse
them to reconstruct final high-resolution images.

Considering high-quality results and low computational
cost, post-sampling SR is currently the most widely used
pipeline. Based on post-sampling SR, follow-up creative
ideas are introduced to improve the fidelity. For exam-
ple, [15, 29, 29] introduced residual blocks to maximize
the power of residual learning. [4, 28] integrated chan-
nel or spatial attention mechanism into residual blocks and
adopted residual-in-residual structure to form a very deep
network. Furthermore, transformer-based solutions, such
as [5, 18] have attracted much attention and show impres-
sive performance on SISR.

2.2. Efficient Image Super-Resolution

Most prior methods use heavy context modeling mod-
ules, and the huge amount of parameters and the expensive
computational cost limit their real-world applications. De-
signing efficient SISR models attracts much attention from
the community and shows great progress with promising
results. Many works mainly focus on designing compact
networks with efficient techniques. [2] exploits collapsi-

ble linear blocks to create an efficient model architecture.
[12] adopts channel split to reduce the convolution compu-
tation cost. Some others adopt distillation [27] or compres-
sion techniques (e.g., pruning [10], quantization and ker-
nel decomposition [20]) for acceleration. Apart from hand-
designed architecture, [1, 16, 25] adopt neural architecture
search to achieve an excellent balance among the number of
parameters and performance. However, their performance
is far inferior to the state-of-the-art models. Simple and use-
ful technology remains to be explored.

3. Proposed Method

The overall network architecture is depicted in Figure 1.
We introduce more details of our baseline model and opti-
mization strategy in the following sections.

3.1. Baseline Model

We begin by briefly reviewing our baseline architecture,
Information Multi-distillation Network (IMDN) [12]. It is
a simple but effective method for efficient SISR. As visual-
ized in Figure 1 (a), we first conduct LR feature extraction
implemented by one 3×3 convolution with 64 output chan-
nels. Then, the key component of the network utilizes mul-
tiple stacked information multi-distillation blocks (IMDB)
and assembles all intermediate features to fuse by residual
connection. The details of IMDB block are illustrated in
Figure 1 (b), from which we can see that IMDB contains
a distillation branch and a fusion branch. The distillation
branch extracts hierarchical features step-by-step, and the
fusion branch aggregates them by simply using a 1×1 con-
volution. Specifically, the distillation branch cascades a se-
ries of 3×3 convolution layer and channel split operations.
The convolution layers are responsible to extract hierarchi-
cal representations. The split operations enable an excellent
balance among the number of parameters, inference speed
and PSNR performance by reducing the input channels. The
final upsampler only consists of one learnable layer and a
non-parametric operation (Pixel-shuffle) for saving param-
eters.

3.2. Optimization Strategy

Network Pruning. Pruning is an effective neural net-
work compression technique, and can be categorized into
fine-grained and coarse-grained pruning currently. (1) Fine-
grained pruning aims to set individual parameters to zero
and make the network sparse. This would lower the number
of parameters in the model while keeping the architecture
the same. This pruning method requires special hardware
optimization (e.g., sparse convolution support) to speed up
the inference process. (2) Coarse-grained pruning aims to
reduce the model size by directly removing an entire node
from the network. It would make the network architecture

818



Figure 1. Overview of the proposed architecture. (a) IMDN structure. (b) IMDB block. (c) Collapsible linear block. B denotes the number
of IMDB block (B = 8 for the baseline model). S denotes the upsampling scale (S = 4).

itself smaller. Considering that Titan Xp GPU does not sup-
port sparse operations, we apply coarse-grained pruning to
compress the network in this work. Specifically, we man-
ually reduce the amount of IMDB modules in IMDN and
retrain the pruned network. In our experiments, we finally
set B = 7 to achieve a good trade-off between model accu-
racy and efficiency.

Collapsible Linear Block. Network pruning without
other optimization may result in degraded accuracy. To
improve the representative ability of the pruned network,
we are inspired by [2, 6] and introduce a collapsible lin-
ear block to replace the general single convolution layer in
each IMDB. The structure of the collapsible linear block
is shown in Figure 1 (c). Typically, each IMDB module
is stacked with several 3×3 convolutions followed by a
non-linearity layer. To widen the network, we add a 1×1
branch in parallel with 3×3 convolution before the non-
linear layer, so that the training-time information flow of a
building block is y = Conv-3×3(x) + Conv-1×1(x), they can
be equivalently folded to a single narrow convolution layer
at inference time. Such mechanism is hence named Col-
lapsible Linear Block. The final collapsed convolution has
3×3 kernel size. In summary, we train a large and wide net-
work at training time and it gets analytically collapsed into
a highly efficient network at inference time. This simple
yet powerful re-parameterization method shows significant
benefits in image quality without introducing extra compu-
tation costs.

Two-Stage Training. We employ a two-stage train-

ing strategy that gradually increases the training patch size.
Specifically, in the first stage, we take 10 random crops of
size 64×64 from each image. In the second stage, we in-
crease the patch size to 160×160 for training. Empirically,
we find such two-stage training pipeline can not only speed
up the training process, but also improve the accuracy. For
both training stages, we use L1 loss which can be formu-
lated as follows:

L =
1

N

N∑
i=1

∥fθ(IiLR)− IiHR∥ (1)

where θ denotes the parameters of the proposed network f ,
and N is the total number of training samples. IiLR and IiHR
denote the i-th LR patch and the corresponding HR ground
truth.

4. Experiments
4.1. Experimental Settings

Datasets. The NTIRE 2022 Efficient Super-Resolution
Challenge proposed to work with the popular DIV2K [22]
dataset. It consists from 1000 divers 2K resolution RGB
images: 800 are used for training, 100 for validation and
100 for testing purposes. We also use Flick2K [19] as the
extra dataset. The total training set contains 3450 pairs of
low-resolution and high-resolution RGB images.

Implementation details. We conduct our experiments
on PyTorch. For training, we use Adam optimizer with be-
tas = (0.9, 0.999), learning is scheduled via multistep decay
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Team Val PSNR [dB] Test PSNR [dB] Avg. PSNR [dB] Val Time [ms] Test Time [ms]
Target ≥ 29.00 - - ≤ 49.42 ≤ 52.3

Ours 29.05 28.75 28.90 48.86 47.55
imglhl 29.03 28.75 28.89 57.65 56.11
IMGWLH 29.01 28.72 28.87 56.14 56.53
Dragon 29.01. 28.69 28.85 42.40 41.2
VMCL-Taobao 29.01 28.68 28.85 34.70 33.79
XPixel 29.01 28.69 28.85 142.58 138.37
Alpan Team. 29.01 28.75 28.88 40.17 39.08
NEESR 29.01 28.71 28.86 30.37 29.58
rainbow 29.01 28.74 28.88 34.69 33.52
ByteESR 29.00 28.72 28.86 27.46 26.76
IPCV-IITM† 29.10 28.68 28.89 64.00 -
AiriA-CG† 29.00 28.70 28.85 37.00 -

Table 1. Ranking results by Val PSNR in the NTIRE 2022 Efficient SISR Challenge. All results are evaluated on the online test server. Our
method achieves the best fidelity results under the condition of limited inference time (≤ 49.42ms) and parameter amount (≤ 0.894M ).
† denotes the results in AIM 2020 [26] challenge.

Model Val PSNR [dB] Parameters [M] Val Time [ms]
Target ≥ 29.00 ≤ 0.8939 ≤ 49.42

IMDN Baseline 29.13 0.8939 49.42
+ Network Pruning 28.97 0.7905 48.86
++ Collapsible Linear Blocks 29.00 0.7905 48.86
+++ Two-Stage Training 29.05 0.7905 48.86

Table 2. Effect of our each algorithmic component.

Method B Parameters [M] PSNR [dB]
Target ≤ 0.8939 ≥ 29.00

IMDN 8 0.8939 29.13
IMDN 7 0.7905 28.97
IMDN 6 0.6871 28.93
IMDN 5 0.5836 28.91
IMDN 4 0.4802 28.85

Table 3. Comparison of different numbers of IMDB in terms of
parameters and PSNR scores on the DIV2K validation set.

from base learning rate 2e-4 with decay steps = [200, 400,
450, 475] epochs. The total number of epochs is 500 with
a batch size of 32. All LR RGB patches are augmented by
random flipping and rotation and sent to the network for
training. We follow the NTIRE challenge [17] to measure
the SR results.

4.2. Results of Efficient SISR Challenge

As shown in Table 1, our proposed method achieves
the best PSNR scores under the condition of limited infer-
ence time and parameter amount. Specifically, we achieve
29.05dB and 28.75dB on the DIV2K validation and test

sets, respectively. Regarding runtime on the GPU server,
our method is still comparable with other teams. For ex-
ample, compared with the imglhl team, we achieve 0.02dB
higher Val PSNR with 8.8ms less latency, which demon-
strated the superiority of our method.

Table 1 also provides the comparison with AIM
2020 [26] participant teams. Compared with IPCV-IITM
with a higher Val PSNR, we achieved the best average
PSNR (28.90dB vs 28.89dB) which demonstrated the ro-
bustness of the proposed method. Besides, our solution also
performs better than AiriA CG, which shared a similar idea
with ours by decoupling training time and inference time
with Asymmetric Convolution layers.

4.3. Ablation Study

Effect of algorithmic components To study the effect
of each component of the proposed method, we show quan-
titative results of ablation experiments in Table 3 and Ta-
ble 2. The PSNR is measured on the validation set. The
runtime is measured on the online server by the organizers.
Table 3 shows that PSNR scores increase and network pa-
rameters also increase with the increasing amount of IMDB
modules. Considering the trade-off between accuracy and
latency, we choose B=7 IMDB modules with 0.7905M pa-
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Method Val PSNR [dB] Parameters [M] FLOPs [G] #Conv Val Time [ms]
Target ≥ 29.00 ≤ 0.8939 58.53 43 ≤ 49.42

OFA-based 28.84 0.3915 33.71 42 42.72
Pruning-based 28.97 0.7905 51.76 37 48.86

Table 4. Performance comparison between our pruning-based and OFA-based methods.

Model Patch size Val PSNR [dB] Training Time / Epoch [s] GPU Memory [M]
Stage 1 64×64 29.00 63 3358
Stage 2 160×160 29.05 342 1,4747
Stage 2 256×256 29.02 796 2,8991

Table 5. Performance comparisons using different patch sizes for two-stage training.

Figure 2. Examples of the image super-resolution results obtained by our method on the DIV2K validation set.

rameters. To further improve the representative ability of
the network, we introduce collapsible linear blocks to keep
the high efficiency of the network at inference time. In Ta-
ble 2, the model IMDN (B = 7) with collapsible linear
blocks achieves 0.03dB PSNR improvement on DIV2K val-
idation without introducing extra computation. Moreover,
the two-stage training strategy further improves PSNR to
29.05dB. These results demonstrate the effectiveness of the
proposed method.

Effect of Network Pruning To verify the effectiveness

of the pruning method, We also do a comparison with other
advanced pruning methods. One-for-all (OFA) [3] is a gen-
eralized pruning method that can fit different hardware plat-
forms and constraints like latency, FLOPS and parameters.
Table 4 presents the SISR accuracy under constrained la-
tency and parameters between our method and OFA-based
method, and we can conclude that although OFA-based
pruning method has fewer parameters and FLOPs than our
method, PSNR is far inferior to ours (28.97dB vs 28.97dB)
with comparable GPU latency (42.72ms vs 48.86ms). The
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results highlight that our method can provide a good trade-
off between accuracy and latency.

Effect of Two-Stage Training Strategy We also con-
duct experiments using different patch sizes for two-stage
training. From Table 5 shows that increasing the patch
size from 160×160 to 256×256 in the second stage drops
0.03dB of PSNR. This is because some training images
have a resolution smaller than 256×256 and they need zero
padding during the training process, which will affect the
accuracy. In addition, training with 256×256 requires more
training resources and training time. Considering the train-
ing efficiency, we adopt 160×160 as the second stage train-
ing patch size.

4.4. Visualization

We visualize the image super-resolution results obtained
by the proposed method in Figure 2. The qualitative re-
sults show that our method can reconstruct more textures
and edges, and obtain high-fidelity super-resolution effect.

5. Conclusion

In this paper, we propose a simple but effective method
for single image super-resolution. We first adopt coarse-
grained pruning for network slimming. We then introduce
collapsible linear blocks to improve the performance of
the pruned network while maintaining the same inference
speed. We also use a two-stage training strategy to fur-
ther improve the results. The proposed method achieves
a good trade-off between latency and accuracy and obtains
PSNR scores of 29.05dB and 28.75dB on the benchmark of
NTIRE 2022 Efficient SISR Challenge.
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