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Abstract

Generative models have been shown to provide a power-
ful mechanism for anomaly detection by learning to model
healthy or normal reference data which can subsequently
be used as a baseline for scoring anomalies. In this
work we consider denoising diffusion probabilistic mod-
els (DDPMs) for unsupervised anomaly detection. DDPMs
have superior mode coverage over generative adversarial
networks (GANs) and higher sample quality than varia-
tional autoencoders (VAEs). However, this comes at the
expense of poor scalability and increased sampling times
due to the long Markov chain sequences required. We ob-
serve that within reconstruction-based anomaly detection
a full-length Markov chain diffusion is not required. This
leads us to develop a novel partial diffusion anomaly detec-
tion strategy that scales to high-resolution imagery, named
AnoDDPM. A secondary problem is that Gaussian diffu-
sion fails to capture larger anomalies; therefore we develop
a multi-scale simplex noise diffusion process that gives con-
trol over the target anomaly size. AnoDDPM with simplex
noise is shown to significantly outperform both f-AnoGAN
and Gaussian diffusion for the tumorous dataset of 22 T1-
weighted MRI scans (CCBS Edinburgh) qualitatively and
quantitatively (improvement of +25.5% Sørensen–Dice co-
efficient, +17.6% IoU and +7.4% AUC).

1. Introduction

Denoising diffusion probabilistic models (DDPMs) [7]
are capable of generating samples from complex data dis-
tributions, with superior mode coverage [27] over genera-
tive adversarial networks (GANs) and variational autoen-
coders (VAEs) [4] (a desirable property for anomaly detec-
tion and small datasets). The denoising process takes sam-
ples from a N (0, I) distribution and stochastically trans-
forms them onto a learned data distribution. We leverage
this ability and construct a model, AnoDDPM, trained on
purely healthy patient data that maps potentially anoma-
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Figure 1. The forward-backward diffusion process where λ = 250
for simplex noise (rows 1-2) and Gaussian noise (rows 3-4) trained
on healthy data. Unlike simplex noise (row 5), Gaussian diffusion
fails to repair (row 6) unhealthy anomalous test data.

lous query data onto the healthy distribution through a par-
tial diffusion process. We can then highlight anomalies by
comparing with the original image. Partial diffusion allows
for better reconstruction of samples from the data distribu-
tion and scales to high resolution images well. The shorter
Markov chain compared to a full diffusion results in faster
inference and training.

Several methods for unsupervised anomaly detection us-
ing generative models such as GANs [6] and VAEs [15, 24]
have been previously explored. Typically, models learn to
generate non-anomalous (healthy) images or regions of in-
terest from anomalous data. Abnormalities are then de-
tected by determining if they lie outside the manifold of the
learned representation, or by comparing the generated and
original images in pixel space. AnoGAN [21], one of the
first GANs used for anomaly detection, scores images based
on both the differences in pixel-space and discriminator fea-

650



tures between a test image and an iteratively refined genera-
tor approximation. The refinement process requires several
hundred backpropagation iterations, resulting in slow infer-
ence. Variations to AnoGAN have been proposed, such as
f-AnoGAN [20] and P-AnoGAN [3]. f-AnoGAN utilises
a Wasserstein GAN [1] and an encoder to map the query
into the latent space to speed up the model. Whereas P-
AnoGAN uses a progressive GAN [8] to improve the res-
olution at which anomalies can be detected. Other ap-
proaches such as Zimmerer et al. [29] utilise context en-
coders to inpaint reconstructions of the image and Nguyen
et al. [10] use super-pixel networks to detect anomalies af-
ter the reconstruction as training and image generation can
become unstable on larger samples.

This paper proposes a novel anomaly detection approach
which utilises DDPMs to corrupt the image and reconstruct
a healthy approximation. This provides several advantages
over adversarial training as it can better capture smaller
datasets with improved sample quality and stable training.
However, this approach also comes with unique challenges.
As we will demonstrate, simple Gaussian corruption can be
inadequate for anomaly detection. As a remedy, we investi-
gate the utility of simplex noise [13]—a popular method in
computer graphics—instead of Gaussian noise.

In summary, the main contributions of this paper are:

• A partial diffusion strategy which noises the anoma-
lous image to some parameterised timestep λ, which is
reconstructed from the corruption, as seen in Fig. 1.

• Utilising multi-scale (multi-octave) simplex noise to
allow larger anomalous regions to become recon-
structed as healthy regions.

2. Denoising Diffusion Probabilistic Models

DDPMs [5] have become the state-of-the-art approach
for generative modelling with respect to sample quality and
mode coverage [27]. DDPMs consist of a forward diffusion
process q(xt|xt−1) gradually corrupting data from some
target distribution q(x0) into a normal distribution, and a
learned reverse process pθ(xt−1|xt) that generates samples
by turning noise into samples from q(x0).

The forward process is a non-homogenous Markov chain
meaning that the dynamics of the process can be described
by the one-step transition density,

q(xt|xt−1) = N (xt|xt−1

√
1− βt, βtI) (1)

for t = 1, . . . , T . The quantity of noise added at each step
is defined by a variance schedule βt ∈ (0, 1), t = 1, . . . , T .
This can be defined as a small linear schedule [23], and was
updated by Ho et al. [7] to increase linearly from β1 = 10−4

to βT = 0.02. Alternatively Dhariwal and Nichol [11]

found a cosine schedule to also perform well. The gener-
ative model, parameterised by θ, is the learned reverse pro-
cess starting with xT ∼ N (0, I) and sampling according to

pθ(xt−1|xt) = N (xt−1|µθ(xt, t), β̃tI) (2)

for t = T, . . . , 1, and β̃t =
1−ᾱt−1

1−ᾱt
βt. µθ can, for example,

be implemented with U-Net like architectures [17].
The loss function to train pθ(xt−1|xt) can then be taken

to be the variational lower bound Lvlb on the marginal like-
lihood pθ(x0)

Lvlb = L0 + L1 + . . .+ LT−1 + LT , (3)
L0 = − log pθ(x0|x1), (4)

Lt−1 = DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)), (5)
LT = DKL(q(xT |x0) || p(xT )), (6)

where DKL denotes the Kullback-Leibler divergence. The
above loss is indeed tractable, since q(xt−1 | xt, x0) has a
closed form expression.

In this work, we will consider a modification due to Ho
et al. [7]: writing αt = 1− βt, and ᾱt =

∏T
i=0 αi we have

q(xt|x0) = N (xt|x0

√
ᾱt, (1− ᾱt)I), (7)

xt = x0

√
ᾱt+ ϵt

√
1− ᾱt, ϵt ∼ N (0, I). (8)

This allows fast sampling of xt for arbitrary t, without
having to find intermediate steps xt−1, . . . , x1.

Setting

µθ(xt, t) =
1

αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(9)

we can learn ϵθ, for example, using a neural network as
before. It turns out that Ho et al. [7] discovered that the fol-
lowing simplified objective results in better sample quality
over Lvlb:

Ls = Et∼[1−T ],x0∼q(x0),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t)||2]. (10)

To be more concise, Ls refers to Lsimple from Ho et al. [7].

3. Methodology
Natural images have been shown to have a power law

distribution of frequencies [18, 25], where lower frequency
components contribute more to the image. Due to Gaus-
sian white noise having a uniform spectral density, low fre-
quency components of partially diffused images do not be-
come corrupted to the same extent as high frequency terms.
This is readily apparent in Figure 1 where partial Gaus-
sian diffusion leaves an easily identifiable view of the initial
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(a) Structures of simplex noise
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(b) Histograms of simplex noise

Figure 2. Simplex noise comparing the affect of the octave N (y-
axis) and the initial starting frequency ν (x-axis) on the distribution
and structure.

image. This limits the discriminatory power of an AnoD-
DPM model as low frequency components are inferred to
be relatively corruption free, resulting in large anomalous
regions being reconstructed in the reverse process. Working
under the assumption that anomalous and non-anomalous
images both follow power laws, we are motivated to mod-
ify the diffusion process so that the applied noise follows
a similar power law, affecting low frequency components
strongly. We wish to sample from a distribution which fol-
lows a power law. While these can be calculated through
2-dimensional Gaussian random fields or processes, or by
careful construction of a co-variance matrix, we instead ap-
proximate it with simplex noise [13]. Simplex noise al-
lows us to precisely control the distribution of frequencies
present in the image. In contrast to classical white noise,
simplex noise and related concepts produce smooth or struc-
tured randomness making them popular in computer graph-
ics, for instance, for auto-generated structures such as land-
scapes.

3.1. Simplex Noise

For the 2-dimensional case, for example, Perlin noise is
generated as follows: first, random gradients are sampled
on a lattice. For any candidate point we then compute the
inner product between the gradient and the offset of the can-
didate from the nearest 4 lattice points. The resulting val-
ues are subsequently interpolated, producing smooth noise.
The more advanced simplex noise replaces the lattice with
a simplex grid of equilateral triangles. This reduces the
complexity with respect to the dimension and reduces direc-
tional artefacts over the typical gradient based Perlin noise.
An example of simplex noise can be seen in Fig. 2. The
structural difference is visually immediate and the potential
benefit of such noise over the standard Gaussian perturba-
tions is intuitive: the corruption is more structured and the
denoising process will be able to “repair” those structured
anomalies.

3.2. AnoDDPM

Our anomaly detection segmentation approach explores
the use of DDPMs with either Gaussian or simplex noise.
Initially, the query image x0 is corrupted for t timesteps xt

which is then denoised back to x̂0. As the anomaly can be
of varying size, we parameterise xt to xλ, where larger λ
values can remove larger anomalies.

Additionally, simplex noise has a set frequency, which
we can adjust to allow a greater area of the image to become
corrupted and reconstructed as healthy from the denoising
process.

Instead of using the default simplex noise function, we
can apply a number of octaves of noise (also known as frac-
tal noise). This involves combining N frequencies of noise
together, where the next frequency’s amplitude reduces by
some decay rate γ. Figure 2b shows that low frequency
noise cannot be well approximated with a Gaussian distri-
bution; however, by applying an increasing number of oc-
taves of noise, the distribution becomes closer to a Gaussian
distribution. This is paramount for our DDPM model as we
assume our noising function is sampling from a Gaussian
distribution. Therefore, unless stated otherwise, we use a
starting frequency of ν = 2−6, octave of N = 6 and a de-
cay of γ = 0.8. Furthermore, when generating the simplex
noise, we shuffle the seed before every noise calculation,
and take a slice t from the 3-dimensional noise function,
as we found that artefacts were introduced when sampling
from the 2-dimensional noise function.

3.3. Training

We train our model only on healthy samples using the
following training procedure:

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, 2, . . . , T − 1, T})
4: Randomly generate simplex seed
5: ϵ ∼ Simplex(ν = 2−6, N = 6, γ = 0.8)
6: Take gradient descent step on:

∇θ[||ϵ− ϵθ(x0
√
ᾱt +

√
1− ᾱtϵ, t)||2]

7: until converged

3.4. Inference

At inference, we take a query from our anomalous
dataset A, then noise it to some timestep x0 → xλ where
it is then denoised back to xλ → x0. This can be seen as
a conditional DDPM model on the input query (see Fig. 1).
Unless stated otherwise, we use λ = 250 for our exper-
iments. Therefore, the inference-time efficiency is O(λ).
Following this reconstruction, we find the square error be-
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tween the reconstruction and the initial image: (x0 − x̂0)
2,

which is shown as a heatmap throughout this paper. Then,
to segment the tumour, we take a naı̈ve threshold such that
any error larger than 0.5 will be highlighted. For evaluation,
we can then compare the prediction to the ground truth.

Algorithm 2 Segmentation

1: x0 ∼ A(x0)
2: xλ = x0

√
ᾱλ + ϵ

√
1− ᾱλ

3: for t = λ, . . . , 1 do
4: Randomly generate simplex seed
5: z ∼ Simplex(2−6, 6, 0.8) if t > 0 else z = 0
6: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + β̃tz

7: end for
8: Esq = (x0 − x̂0)

2

9: Eseg = Esq > 0.5
10: return Eseg

3.5. Implementation and Availability

For all our DDPM experiments, we use the same U-
Net [17] architecture from Dhariwal and Nichol [5] for our
ϵθ approximation. This is based on PixelCNN [19] and
Wide ResNet [28], with transformer sinusoidal positional
embedding [26] to encode the timestep. The model hyper-
parameters are:

Hyperparameters
Diffusion steps 1000
Noise schedule linear
Channels 128
Channels multiple 1, 1, 2, 3, 4
Heads 2
Attention resolution 32, 16, 8
Dropout 0
EMA rate 0.9999
Optimiser AdamW [9]
Learning rate 1e−4
β1, β2 0.9, 0.999
Batch size 1
Slices trained 100× 5000

The model is implemented in PyTorch and trained on
a single NVIDIA Titan Xp GPU with 12GB GDDR5.
The code is released under the MIT license and made
available at: (Github URL https://github.com/Julian-
Wyatt/AnoDDPM).

3.6. Datasets

For our healthy dataset, we utilise the Neurofeedback
Skull-Stripped (NFBS) repository [16] which contains 125
T1-weighted MRI scans with dimension 256 × 256 × 192,
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Figure 3. Qualitative comparison of simplex and Gaussian noise
for detection, with x0, xλ, x̂0, square error (Esq = (x0 − x̂0)

2),
prediction (Eseg) and ground truth (GT). Increasing multi-scale
frequency of simplex noise with ν = 2−1, ..., 2−6(top), curated
samples (middle), Gaussian diffusion for λ = 250, 500, 750 (bot-
tom).

containing the full skull, skull stripped and brain mask. We
use the full skull images as an anomaly can appear any-
where, although this increases the complexity of the prob-
lem. We use 2D 256×192 axial slices of the brain as anoma-
lies are generally easier to spot from this view. We then se-
lect the slice by randomly selecting an integer i ∈ [40, 100].
For the preprocessing, we apply a random rotation of ±3◦

and a random translation of 0.02×width and 0.09×height,
and then a center crop of 235, which is resized to 256×256.
This is split into 100 training and 25 testing volumes.
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Figure 4. Segmentation evaluation experiment for patient 19691 at slice 171 and patient 18756 at slice 170 where λ = 1, ..., 1000. (a)
Dice Coefficient, (b) Intersection over Union
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Figure 5. Preliminary qualitative comparison of simplex and
Gaussian noise on the MVTec AD leather subset [2] for detec-
tion, with x0, xλ, x̂0, Esq , Eseg , and ground truth (GT). We set
λ = 150 for both samples, while the threshold value was moved
from 0.5 to 0.15 for rows 1-2 and 0.2 for rows 3-4.

For evaluation, we use an anomalous dataset of brain
tumours, unless stated otherwise. The dataset contains
22 T1-weighted MRI scans provided by the Centre for
Clinical Brain Sciences from the University of Edinburgh
[14]. The dataset consists of non-skull-stripped scans of
256×256×156. This dataset contains image intensity non-
uniformities that are the result of magnetic field variations
rather than anatomical differences. Therefore we applied
the BrainSuite [22] bias field correction to the images. For
our analysis, we center crop the axial scans to 175 × 240
which are then resized to 256×256 in order to maintain the
aspect ratio of the training set.

4. Experiments and Results

For our evaluation, we try to segment anomalies across
all 22 images in the dataset [14], where we use 4 equally
spaced slices that contain the tumour. We can perform the
conditional reconstruction with Gaussian noise [7], or with

f-AnoGAN [20] AUC=0.80 CE [12] AUC=0.73
AnoDDPM (Gauss) Ls AUC=0.59 Simplex Ls AUC=0.89
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Figure 6. ROC curve comparing square error probabilities across
every flattened anomalous MRI image [16]

simplex noise. Therefore, we evaluate the effect that the
noise function has on anomaly detection.

Furthermore, we sample AnoDDPM with simplex and
Gaussian noise on the leather subset of the MVTec AD
dataset [2], which results in excellent reconstructions, as
seen in Fig. 5; therefore, it can work well in alternative do-
mains. We preprocess the dataset by converting the images
to greyscale and generate a 256×256 random crop from the
original 1024× 1024 image.

4.1. Gaussian vs. simplex noise

As seen in Fig. 3 (bottom), it is clear that Gaussian noise
produces higher quality samples, however, after corrupting
the image to a larger t, the details of the image are lost and
altered, where at λ = 750 a completely different sample is
generated. Conversely, the simplex noise in Fig. 3 (top &
middle) captures the effect that the frequency of noise has
on anomaly detection. It shows that as the maximum fre-
quency of multi-scale noise increases, more of the tumour
is corrupted and then reconstructed as a healthy approxima-
tion.

We also evaluate the release time t that produces the best
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Dice ↑ IoU ↑ Precision ↑ Recall ↑ AUC ↑
Context Encoder [12] 0.252± 0.209 0.162± 0.149 0.258± 0.223 0.279± 0.234 0.707± 0.150
f-AnoGAN [20] 0.128± 0.001 0.093± 0.003 0.362± 0.009 0.080± 0.003 0.789± 0.001
AnoDDPM - Gauss (Ours) 0.009± 0.012 0.004± 0.006 0.006± 0.009 0.032± 0.044 0.601± 0.074
AnoDDPM Ls (Ours) 0.3830.3830.383± 0.2580.2580.258 0.2690.2690.269± 0.2040.2040.204 0.3730.3730.373± 0.2690.2690.269 0.4680.4680.468± 0.2830.2830.283 0.8630.8630.863± 0.1070.1070.107

Table 1. Segmentation performance for a threshold of 0.5 on the anomalous dataset (where AUC uses the square error probability prediction
averaged across each volume). The metrics evaluated for the Context Encoder [12], only consider the single centered 64x64 inpainted region
in a 128x128 slice; while we calculated the f-AnoGAN [20] metrics using the square error of a 64x64 slice as this gave better results over
absolute error proposed in [20].

segmentation, as seen in Fig. 4. The two large tumours re-
sult in a very different optimal release time t which shows
that the optimal t depends on more than just the size of the
anomalous region. Hence, performing a grid search, we
found empirically that λ = 250 was optimal for this par-
ticular data set.

Lastly, we calculate the receiver operating characteris-
tic curve (ROC curve), Fig. 6, which compares a context
encoder reconstruction approach [12], f-AnoGAN [20], An-
oDDPM with Gaussian noise [7], and AnoDDPM with sim-
plex noise. We use the squared error probabilities (x− x̂)2

to find the true positive and false positive rates. As seen
in Fig. 6, AnoDDPM with Gaussian noise [7] performs
slightly better than randomly for our anomalous dataset
[16], while AnoDDPM with simplex noise performs very
well, and generally performs better than f-AnoGAN [20]
(trained on 64x64 slices).

4.2. Discussion

We observe a slight decrease in sample quality for sim-
plex models, especially when noised to a further t value.
This is likely due to the asymmetry in the simplex noise
function; alternatives to this could be explored in future
work through exploring a wider range of noising functions
or designing custom multi-frequency noise functions. Fur-
thermore, because the algorithm behaves stochastically, fu-
ture work could explore sampling xλ more than once and
averaging the corresponding reconstructions x̂0.

Additionally, the model struggles to segment tumours
which are situated near other high frequency information
such as around the brain’s gyri and sulci. Further work
could be performed here to improve this by noising different
sections of the image by different amounts using inpainting
methods. We also experienced samples that introduced fea-
tures of the brain such as the lateral ventricle into slices that
should not contain those features. Therefore, with a larger
training and testing corpus, a guided diffusion model that is
conditioned on the slice could be evaluated and explored.

In the future, we would like to see if the AnoDDPM ap-
proach with simplex noise can leverage the additional infor-
mation in 3D images or colour images and extend to other
anomaly detection image datasets and applications, such as

in x-ray baggage security, biological images, and counter-
feit products.

5. Conclusion
In conclusion, we found that AnoDDPM with simplex

noise successfully captures large anomalous regions with
stable training that does not require large datasets, avoid-
ing the limitations common in GAN-based approaches [27].
The use of multiscalar (simplex) noise instead of Gaussian
noise was found to offer significant improvement in terms of
capturing larger anomaly shapes in both medical and non-
medical applications; in the future it would be beneficial to
further investigate how different noise types correspond to
other anomaly detection applications using the AnoDDPM
approach, such as in automatic threat detection and coun-
terfeit product detection. In particular, AnoDDPM with
simplex noise in the application of T1-weighted brain MRI
anomaly detection was found to outperform its Gaussian
noise counterpart as well as f-AnoGAN [20] in segmenta-
tion (DICE, IoU) and classification metrics (AUC). The pro-
posed partial diffusion strategy ensures the method remains
performant in high-resolution imagery (images throughout
paper are best zoomed in). We expect this approach to
also be successful in other applications where a full length
Markov chain is not required, such as in image enhance-
ment, semantic segmentation and filtering.

6. Compliance
The training data used in this study [16] was gathered

and anonymised by the Nathan Kline Institute who support
large scale open access health data. The data was acquired
in compliance with the Health Insurance Portability and Ac-
countability Act (HIPAA). The evaluation data [14] was
anonymised and made open access by the Centre for Clin-
ical Brain Sciences, University of Edinburgh. The patients
were given an identifiable random code which the data col-
lectors kept a record of.
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