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Abstract

In the portrait matting, the goal is to predict an alpha
matte that identifies the effect of each pixel on the fore-
ground subject. Traditional approaches and most of the ex-
isting works utilized an additional input, e.g., trimap, back-
ground image, to predict alpha matte. However, (1) provid-
ing additional input is not always practical, and (2) models
are too sensitive to these additional inputs. To address these
points, in this paper, we introduce an additional input-free
approach to perform portrait matting. We divide the task
into two subtasks, segmentation and alpha matte prediction.
We first generate a coarse segmentation map from the input
image and then predict the alpha matte by utilizing the im-
age and segmentation map. Besides, we present a segmen-
tation encoding block to downsample the coarse segmenta-
tion map and provide useful feature representation to the
residual block, since using a single encoder causes the van-
ishing of the segmentation information. We tested our model
on four different benchmark datasets. The proposed method
outperformed the MODNet and MGMatting methods that
also take a single input. Besides, we obtained comparable
results with BGM-V2 and FBA methods that require addi-
tional input.

1. Introduction
Image matting has become a popular research topic in

the computer vision research area. The main purpose is
to distinguish background and foreground to obtain fore-
ground objects as accurately as possible. Therefore, the
task is to generate an alpha matte that contains alpha val-
ues, namely opacity values, between [0, 1] for each pixel to
represent the effect of the foreground over the final image.
In addition to this, portrait matting, which is a subtopic of
image matting, focuses on generating alpha matte to obtain
the subject itself, instead of the generic objects, from an
input image or a video frame. There are numerous applica-
tion areas of portrait matting, such as image/video editing,
changing background which is quite common in video con-
ference applications, and video/movie post-production.

There are various challenges in the portrait matting prob-
lem due to the complex visual details of a person’s body,
e.g., the borders around the body, the hair, and the clothes,
particularly if the hair flutters and the clothes have some
opacity. The matting problem can be formulated as follows:

Ii = αiFi + (1− αi)Bi (1)

where i represents each pixel in an image I, alpha represents
alpha value for the corresponding pixel in the alpha matte
α, and F and B are foreground and the new background
images, respectively.

In the traditional approach, the alpha matte is generated
using an image and a trimap which represents the fore-
ground, background, and unknown areas on the image. The
basic idea is to enhance the unknown areas in the trimap,
which are generally problematic parts of the subject, e.g.,
the area around the subject’s body, to get a more accurate
alpha matte. The predefined foreground and background
areas are not changed. On the contrary, several latest works
[24,32,38] propose not to use a trimap, since creating trimap
is a time-consuming procedure and needs expert annotators.
Instead, some works employ original image and coarse an-
notated segmentation mask to generate a fine-grained alpha
matte [38, 48]. Moreover, recent work focuses on using
an input image and its background to produce alpha matte
without using any other information [29], while other works
utilize only the input image to achieve fine-grained alpha
matte [24, 32, 51, 52] and predict trimap to use in the alpha
matte prediction [43].

One of the crucial challenges is posed by the distribu-
tion of the background and foreground of an image. It is
an extremely severe case when the background distribution
is considerably similar to the foreground distribution. Be-
sides, if the background distribution has a large variance,
it is another compelling case to handle the discrimination
of background and foreground subject. Yet another chal-
lenge arises from the illumination conditions of the input
image since the background matting models are sensitive to
the illumination distribution. In particular, the alpha matte
prediction models are prone to generate coarse, even worse,
outputs under the cases of underexposure and overexposure.

696



In this work, we aim to enhance the quality of the gen-
erated alpha matte to extract the person, since fine-grained
details of the subjects are the main challenges in the portrait
matting task. To alleviate the problem, we handled it using
two consecutive stages, which are person segmentation and
alpha matte generation. We employed DeepLabv3+ [4] for
person segmentation and a generative adversarial network-
based (GAN) alpha matte prediction model. While the first
network takes an input image and produces the segmenta-
tion map, the alpha generation network employs the output
of the segmentation network and foreground subject, which
is obtained by multiplication of the input image and pre-
dicted segmentation map. In the end, the refinement block
receives the predicted alpha matte to refine the details. Our
contributions can be summarized as follows:

• We propose a two-stage portrait matting network,
that consists of a SOTA person segmentation network
DeepLabv3+ and subsequently a conditional GAN-
based alpha matte prediction module, without using an
additional input as trimap, background image, etc.

• We present segmentation encoding block to encode the
predicted segmentation map and the foreground sub-
ject. The idea is to obtain the feature representation of
the segmentation map and foreground subject indepen-
dently of the input, and inject it into the residual block
as well as decoder layers along with the depth. We ob-
served that using an independent encoder, instead of
encoding concatenation of all inputs with a single en-
coder, provides better feature representation.

• We propose border loss to penalize the errors around
the subject more, since it is more likely to have errors
in the prediction due to difficulties, such as hair. We
also present alpha coefficient loss to evaluate only the
pixels that have neither 0 nor 1 value in the alpha matte.

2. Related Work
Although person segmentation can be employed to ex-

tract the subject from an image as well as replace the back-
ground, it is not adequately accurate to eliminate the back-
ground and its effects on the subject. Therefore, alpha matte
generation is a more accurate approach for background re-
placement or portrait matting.

Image matting We can divide image matting literature
into three main groups which are sampling-based meth-
ods [8, 12, 14, 17, 20–23], propagation-based methods [1–3,
6,16,26,27,41], and deep learning-based methods [5,7,10,
13,18,24,28,31–36,38,39,42,46,47,49,50,53–55]. In deep
learning-based methods, Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANs) are
proposed to perform alpha matte prediction for image mat-
ting [7,18,31,34,35,49,50,54]. Besides, the attention mech-
anism increases the matting performance [28,36]. Recently,

trimap-free approaches become more and more important
due to the difficulty of obtaining trimap [13, 48, 53].

Portrait Matting In [39], a CNN-based end-to-end sys-
tem is presented to produce an alpha matte for the por-
trait matting task. In [5], the key point of Semantic Hu-
man Matting (SHM) algorithm is to learn implicit seman-
tic constraints from the data to use. Moreover, the authors
provide a new dataset and a novel fusion strategy for the
alpha matte. In [47], end-to-end Joint Matting Network
(JMNet) benefits from the pose of the human body to pro-
duce alpha matte and uses trimap refiner network to im-
prove the sharpness. In [32], the proposed system contains
three submodules that are predicting coarse semantic mask,
improving the quality of the mask, and generating the fi-
nal alpha matte. In [38], a trimap-free system takes an
input image and the background of the same image with-
out subject to generate alpha matte. To provide generaliza-
tion, another matting network is trained in relation to the
first network. In [9], a light-weight method with two de-
coders and a single encoder is proposed. The task-specific
decoders predict segmentation map and alpha matte using
encoded semantic information. In [24], a matting objec-
tive decomposition network (MODNet) is proposed and a
self-supervision-based strategy is applied to adjust it to the
real-world scenario. In [29], the proposed method has two
subnetworks and works in real-time with a high accuracy
using HR images. While the first network takes an im-
age and its background as input and generates four differ-
ent outputs —alpha matte, foreground residual, error map,
and hidden—, the second network performs refinement. Be-
sides, two large-scale datasets for video and image matting
are presented. In [48], the proposed system works without
additional input and the task is addressed as self-supervised
multi-modality problem. The system utilizes depth-map,
segmentation map, and interaction heat-map using three dif-
ferent encoders. A new dataset is also proposed in this
work. In [44], the authors propose Consistency-Regularized
Graph Neural Network to improve the temporal coherence
during the video matting and they also collected a real-
world dataset to evaluate the performance. In [52], Cascade
Image Matting Network with Deformable Graph Refine-
ment is presented to predict alpha matte automatically with-
out using additional inputs. They predict the alpha matte
from low resolution to high resolution. In [51], the pro-
posed system takes a coarse mask to alleviate the alpha gen-
eration task. The system does not require a precise trimap
but uses a general rough mask to guide the alpha matte pre-
diction. In [43], the authors propose a deep learning-based
video matting system and present a novel spatio-temporal
feature aggregation module. They also utilized frame-by-
frame trimap annotations and contributed to the literature
with a large-scale video matting dataset.
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Figure 1. Proposed model. First of all, DeepLabv3+ [4] model works and produces a segmentation map. After that, the visualized system
starts to work using the input image and the predicted coarse segmentation map. While the content encoding block encodes the input image
to provide feature maps for the decoder network, the segmentation encoding block employs the combination of the predicted segmentation
map and foreground subject that is obtained by multiplication of the input image and the predicted segmentation map. Besides, residual
connections between encoders’ layers and decoder’s layers are effective to preserve the information. After each encoders’ layer, we passed
the extracted feature maps through 1 × 1 convolutional layers to decrease the depth of the feature maps before concatenating with the
decoder’s outputs. In the end, the refinement block is responsible for capturing patches from the predicted alpha matte to refine them.

3. Methodology

We propose a two-stage approach to perform portrait
matting task. Our model consists of two sub-models which
are DeepLabv3+ [4] for person segmentation and alpha
matte generation network for alpha matte prediction. While
the segmentation model takes a single RGB image to predict
the segmentation map, the alpha matte generation network
produces alpha matte using the input image as well as the
predicted segmentation map. In the alpha generation net-
work, there are two parallel similar encoder blocks, which
are the content encoding block and the segmentation en-
coding block. While the content encoding block provides a
feature representation for the input image, the segmentation
encoding block encodes the depth-wise concatenation of the
predicted segmentation map and foreground subject that is
obtained by multiplying the input image and predicted seg-
mentation map. Afterward, the outputs of both encoders
are concatenated along with the depth. The concatenated
feature representation passes through consecutive residual
blocks and the decoder network to obtain the predicted al-
pha matte. Besides, there are skip connections between the
decoder’s layers and the encoders’ layers. Since the con-

catenation of three different feature maps makes the feature
representation too deep, we pass encoders’ outputs through
1× 1 convolutions to reduce the dimension before concate-
nating with the decoder’s layers’ outputs. In the end, there is
a small encoder-decoder network to enhance the predicted
alpha matte by taking small patches from the borders of the
subject since these regions are more likely to be inaccurate.
The proposed system is shown in Figure 1.

Generators While the content encoding block is respon-
sible for encoding the input image to obtain a feature map,
the segmentation encoding block provides a feature repre-
sentation of the predicted segmentation map and foreground
subject. The idea behind using separate encoders is to avoid
vanishing the features of the segmentation map and the fore-
ground subject. We also found that the segmentation map
and extracted foreground subject provide complementary
feature representations to the network. According to the
experiments, we noticed that using a single encoder causes
the vanishing of the feature representation of the additional
inputs. Besides, we empirically realize that a less complex
encoder is suitable to encode these additional inputs. Our
generator is based on the U-Net generator [37] and it con-
tains consecutive convolutional blocks to downsample the
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input image. After the encoding blocks, the features are
concatenated and the final representation passes through the
residual block. Later, the generator has a decoder module
to produce an output alpha map by upsampling the residual
output. Finally, 64 × 64 size of consecutive patches in the
border of a person’s body are extracted from the predicted
alpha matte to enhance the details by the refinement net-
work, since the predictions tend to have more errors around
the body. The generated image is expected to be the fine-
grained alpha matte of the input image for the portrait mat-
ting problem. Besides, the skip connections encourage the
network to keep information from both encoders.

Multi-scale discriminator network For the multi-scale
discriminator [45], we provide an image pyramid using the
original image and downsampled versions by a factor of two
and a factor of four to obtain the same image on different
scales. Therefore, this approach provides us to learn from a
general perspective to finer details, since each discriminator
has a different receptive field. Please note that all three dis-
criminators are identical, though each discriminator works
on a different scale. Since alpha matte does not contain a
sufficient amount of useful representation, we decided to
use a combination of the alpha matte and the extracted fore-
ground subject, which is obtained by multiplying the alpha
matte and the image, as an input to the discriminator net-
work. For the real image, we extracted subjects using the
images and the ground truth alpha matte, while we used the
images and the predicted alpha matte to obtain fake images
for the discriminator. Depth-wise concatenation of the three
channels RGB image and one channel alpha matte is the in-
put data of the discriminator.

Loss functions For the training of the alpha generation
network, we used adversarial loss [15], perceptual loss [19],
alpha loss, border loss, and alpha coefficient loss. In the
perceptual loss [19], we utilized the VGG model [40] to ex-
tract features. For this, we employed five different layers
of the VGG model to obtain features for the generated im-
age and the real image. We followed a similar pipeline as
in [19] to decide the layers to extract features. After that,
we calculated a weighted sum of the L1 distances between
features of the predicted alpha matte and the ground truth al-
pha matte for all extracted features. Besides, we applied the
same loss for generated foreground subject and ground truth
foreground subject that we obtained by multiplying the in-
put image with predicted alpha matte and ground truth alpha
matte, respectively. Then, we followed the same strategy to
extract features and calculate the perceptual loss.

For the alpha loss, we followed a different strategy and
calculated the L1 distance between the pixels that have only
one or zero values in the pixel domain instead of calculating
L1 distance between all pixels. The remaining pixels that
have neither one nor zero values are considered by defining
another loss based on L1 distance. Thus, we penalized the

[0,1] pixels and the pixels between 0 and 1 separately, since
they represent different cases and restrain each other when
we consider them together. Please note that we also calcu-
lated both losses using alpha matte and foreground subjects
as in the perceptual loss. Moreover, we proposed the border
loss to penalize the area around the subject. For this, we
generated border maps by applying morphological erosion
and dilation operations separately. Then, we subtracted the
eroded segmentation map from the dilated one. The final
map represents the border area of the subject. During the
training, we utilized this border map to calculate L1 loss
for only the corresponding border pixels. The overall loss
function is shown in Equation 2

min
G

max
D1,D2,D3

∑
k=1,2,3(LcGAN (G,Dk) + λLper(G)+

βLalpha(G)) + γLborder(G) + θLac(G))
(2)

where LcGAN represents conditional adversarial loss, Lper

shows the perceptual loss, Lalpha indicates the alpha loss,
Lborder states the border loss, and Lac expresses the alpha
coefficient loss. Besides, λ, β, γ, θ are coefficients that de-
termine the effect of each losses over the total loss. Accord-
ing to our experiments on validation set, we empirically de-
fined these values as 10, 25, 50, 25.

3.1. Training procedure

During the training, we did not train the segmentation
network. Instead, we only trained the alpha generation net-
work and the refinement network end-to-end. During the in-
ference, the framework works end-to-end which means we
provide an input image to the whole system and get an alpha
matte for the corresponding input image. The input images
are resized to 1280× 768 resolution before feeding the net-
work. We used 10−4 learning rate for the generator and a
ten times smaller learning rate (10−5) for the discriminator
to slow down the convergence of the discriminator since we
empirically realized that discriminator converged too fast.
We trained the alpha generation network with batch size of
one as using one image in each batch causes better conver-
gence [13]. Besides, we utilized Adam optimizer [25] for
the training of both models. We trained the discriminator
one step for every five steps for the generator training.

4. Experimental Results
Datasets In order to train our model, we used the com-

bination of Adobe Image Matting (AIM) [49] and Distinc-
tions (D646) [36] datasets to employ more data as well as
increase the diversity. Since we focused on the portrait mat-
ting problem, we selected all images that contain persons
for the training and test by following the same strategy in
the portrait matting literature. In the end, there are 201
subjects in the AIM dataset and 363 subjects in the D646
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Method Input Dataset MSE MAE SAD Grad Conn
BGM-V2 [29] Image, background AIM 2.12 8.62 9.04 8.32 9.21
FBA [13] Image, trimap AIM 0.40 3.79 3.98 1.19 3.11
MODNet [24] Image AIM 21.65 32.36 33.93 44.24 35.45
MGM [51] Image AIM 1.48 5.96 6.21 4.74 6.55
Ours Image AIM 1.06 4.93 5.04 4.22 5.39
BMG-V2 [29] Image, background PM85 0.37 1.38 1.45 1.28 2.38
FBA [13] Image, trimap PM85 1.01 2.43 2.55 3.50 2.75
MODNet [24] Image PM85 2.32 6.90 7.23 12.17 9.48
MGM [51] Image PM85 0.38 2.77 2.91 1.32 2.04
Ours Image PM85 0.19 1.11 1.19 0.65 1.16
BMG-V2 [29] Image, background D646 0.98 4.60 4.83 3.78 5.30
FBA [13] Image, trimap D646 0.44 3.10 3.25 1.70 2.38
MODNet [24] Image D646 3.51 9.80 10.27 13.54 18.98
MGM [51] Image D646 0.88 5.17 5.42 3.40 4.76
Ours Image D646 0.71 3.84 3.99 2.74 3.84
FBA [13] Image, trimap PPM-100 0.96 2.24 2.41 4.20 2.70
MODNet [24] Image PPM-100 4.60 9.70 11.59 12.48 22.16
MGM [51] Image PPM-100 1.15 5.07 5.31 5.04 5.29
Ours Image PPM-100 0.84 4.02 4.70 3.67 4.46

Table 1. Quantitive evaluation on different datasets. Since PPM-100 dataset contains real-world images, we could not test BGM-V2 due to
lack of background images. The corresponding MSE and MAE metrics are scaled by 103 to improve the readability.

dataset, making in total 564 subjects for the training set. We
created the training set by following the standard strategy in
the image matting literature for these datasets. For this, we
combined each person in the training set with 100 different
images of the MSCOCO dataset [30]. In the end, we have
56400 training images. For the test, we have four different
test sets, namely, AIM [49], PhotoMatte85 (PM85) [29],
D646 [36], and PPM-100 [24]. We followed the same strat-
egy and combined each person in the test set with 20 differ-
ent background images of the PASCAL VOC dataset [11].
In the end, AIM contains 220 images (11 different sub-
jects), PM85 includes 1700 images (85 different subjects),
and D646 has 220 images (11 different subjects). The im-
ages in PPM-100 dataset have real backgrounds and there
are 100 images in total. We evaluated our model on these
four benchmark datasets and compared our results with the
previous works. Please note that the training and test sets
do not contain any common subjects, i.e. subject indepen-
dent setup. The training and test subjects have already been
listed for the corresponding datasets.

Evaluation We used mean squared error (MSE), mean
absolute error (MAE), sum of absolute difference (SAM),
gradient (Grad), and connectivity (Conn) metrics to evalu-
ate our model as in the literature. For comparison, we chose
publicly available SOTA methods, namely MODNet [24],
BGM-V2 [29], FBA [13], MGM [51] and we tested them on
the test sets in order to perform a fair comparison since dif-
ferent backgrounds may change the models’ performances.

Please note that we calculated these metrics over the whole
image, and MSE and MAE scores are scaled by 103 to im-
prove the readability. Besides, we performed a user study
to compare our results with the other studies. To perform
this study, we combined the extracted subjects with a green
background and showed these images to the participants.

4.1. Results

In this section, we present the experimental results and
compare them with the recent SOTA works in the back-
ground matting literature, MODNet [24], FBA [13], BGM-
V2 [29], and MGM [51]. Please note that, while our method
and MODNet take an input image to generate alpha matte
for portrait matting, BGM-V2 requires the original back-
ground image without subject as an additional input and
FBA expects trimap to identify background, foreground,
and unknown areas in addition to the original input image.
Besides, MGM [51] requires a segmentation mask as our
alpha matte generation network.

Quantitative evaluation Experimental results are
shown in Table 1. We evaluated all models under the same
conditions, e.g., using background image and resolution.
According to the experimental results presented in Table
1, our model surpassed the performance of MODNet and
MGM, which do not use any additional inputs, on four dif-
ferent benchmarks. Other methods in the table —BGM-V2
and FBA— benefit from additional input such as the back-
ground of the input image and a trimap. These additional
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Input GT Ours BGM-V2 FBA MODNet MGM

Figure 2. Qualitative comparison. Rows represent AIM, D646, PM85 datasets, respectively.

inputs make the task easier and more accurate results are
likely to be obtained, since the background image is the
same one as the original input image, and trimap identi-
fies most of the area on the image as foreground and back-
ground. On the AIM dataset, our model is found superior
to the BGM-V2 in all metrics. However, the FBA method
achieves the best performance on this test set. On the PM85
dataset, our proposed model outperforms all methods and
gets the SOTA result. In the D646 benchmark, we again
outperform the MODNet, MGM, and BGM-V2. The FBA
reaches the best performance. However, it is slightly better
than our method and our results are quite acceptable when
compare with the FBA. Please note that since each study
creates the test setup with a different set of background im-
ages, the presented scores may show differences.

As previously stated, while our approach does not take
any input in addition to the original image, the FBA method
takes trimap and the BGM-V2 method takes the background
of the original input image that does not contain the sub-
ject itself. However, they are too sensitive to these addi-
tional inputs. For instance, if there are any dissimilarities in
the background image such as translation, BGM-V2 cannot
produce a proper output and generates a completely cor-
rupted prediction instead. Similarly, FBA is sensitive to the
trimap input. In addition to all these cases, our model and
all other models are sensitive to the background of the input
image according to the findings of our detailed experiments.
It indicates that the alpha matte prediction performance of
the models for the same subject can considerably change ac-
cording to the background of the input image. The illumina-
tion conditions, the color distribution, and the existence of
multiple subjects on the image affect the alpha matte pre-
diction performance. For the PPM-100 dataset, since the

images are real-world images, there are no background im-
ages without the subject. Therefore, we could not test the
BGM-V2 model on this dataset.

Qualitative evaluation In Figure 2, we present our re-
sults, input image, ground truth, and the outputs of the
other models for three benchmark datasets; AIM, D646,
and PM85. We generated outputs with our model, MGM,
and MODNet without additional inputs. However, BGM-
V2 method needs the same background of the input image
and FBA requires trimap for the corresponding input data.
For BGM-V2, we provided the background image that we
used during the preparation of the test data. Since D646,
PM85, and PPM-100 datasets do not include trimaps, we
created different trimaps by using erosion and dilation op-
erations to evaluate FBA and present the best scores. Ac-
cording to the figure, our results are almost the same as the
ground truth data, especially for the challenging part, such
as hair. Besides, although all models perform quite well,
the differences between them are in the details, particularly
around the borders of the subjects. Moreover, we randomly
collected images from the web and we run our model over
them to present the performance of the system on the real-
world images. The corresponding outputs are presented in
Figure 3. The Alpha column contains the predicted alpha
matte and the combined column includes the combination
of an arbitrary background image and the extracted subject
by using the predicted alpha matte.

We also performed a user study and asked 30 different
participants to compare all results according to the quality
of the images to measure the matting performance. We used
randomly selected sample images from all four benchmark
test sets. We present the results in Table 2. We have five
different levels of score which are much better, better, same,
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Score MODNet BGM-V2 FBA MGM
Much better 41.55% 10.45% 4.23% 8.25%
Better 29.22% 32.67% 16.61% 30.27%
Same 19.15% 39.86% 52.44% 41.02%
Worse 8.11% 16.33% 22.47% 18.20%
Much worse 1.94% 0.69% 3.58 % 2.26%

Table 2. User study using all three benchmarks. We compared
our model with MODNet [24], BGM-V2 [29], FBA [13], and
MGM [51]. The scores demonstrate how much our result is better
or worse than the other results.

worse, and much worse to compare our results with four
different methods. The scores indicate how much the out-
put image of our method is better or worse than the output
of other methods. For the comparison, we extracted sub-
jects from the image using predicted alpha matte and com-
bined with a green background to make the details of the
subject more visible for the users. During the survey, we
showed the original input image and the combination of a
green background and outputs of the models. We utilized
8 subjects for each test benchmark, except PPM100 since
we could not test the BGM-V2 model on them, for the user
study and we made pairs with our results and other results to
show them to the participants. In total, we have 24 images
for each model to create questions. According to the ta-
ble, our model overperforms the MODNet and it is slightly
better than BGM-V2 and MGM. On the other hand, par-
ticipants could not easily distinguish our results and FBA
results and majority, 52.44%, said they are the same.

4.2. Ablation study

Loss functions We performed an ablation study to eval-
uate the effects of different parameters on the performance.
We first investigated the loss functions and then utilized data
type for the losses. In the first part of Table 3, we show
used loss functions for the training as well as correspond-
ing MSE values on the AIM test set. It is observed that
each employed additional loss contributes significantly to
the prediction performance of the model. In the bottom part
of Table 3, we present the effect of using the alpha matte
and the foreground subject in the loss functions. α means
that we only utilized predicted alpha matte and ground truth
alpha matte. α and F represent that we extracted the sub-
ject from the input image with predicted alpha matte and
ground truth alpha matte to obtain predicted and real fore-
ground subjects. Then, we employed these outputs to calcu-
late loss functions for the corresponding case. While using
alpha matte helps to penalize the difference between pre-
dicted and ground truth alpha matte, using foreground sub-
ject provides more information to the network, since it con-
tains much more details and semantic information than the

Loss MSE
LcGAN + Lalpha 7.24
LcGAN + Lper + Lalpha 3.78
LcGAN + Lper + Lalpha + Lborder 1.76
LcGAN + Lper + Lalpha + Lborder + Lac 1.06
α 3.14
α, F 1.06

Table 3. Ablation study for the loss functions. We repeated the
training of the alpha matte generation network using a combina-
tion of different loss functions and we present MSE results on AIM
test set in the top part of the table. We additionally show the re-
sults with all loss functions by using only alpha matte and using
foreground subject and alpha matte together in the loss functions.

Cases MSE
Base model 2.20
Base model + SE block 1.57
Base model + SE block + refinement network 1.06

Table 4. Ablation study for the architecture. We individually in-
vestigated the effect of the segmentation encoding block and the
refinement module. The experiments are performed on the AIM
dataset.

alpha matte. According to the results, MSE scores indicate
that using the foreground subject in addition to the alpha
matte enables the network to produce a more accurate map.

Modules We further examined the effect of the segmen-
tation encoder block and the refinement network. Accord-
ing to the results in Table 4, both the segmentation encoding
block and the refinement network are significantly useful to
improve the performance of the proposed method. Because,
the segmentation encoding block improves the representa-
tion of the segmentation area by providing the encoded fea-
ture representation to the residual block, while the refine-
ment network enhances the alpha matte prediction perfor-
mance by focusing on the challenging parts.

Input type We analyzed how using foreground subject in
the generator and discriminator as input affects the perfor-
mance. The results in Table 5 indicate that providing a fore-
ground subject in addition to the segmentation map, which
we obtained by multiplying the input and the predicted seg-
mentation map, increases the performance since it provides
a more effective feature representation. Similarly, concate-
nation of the alpha matte and extracted foreground subject
provides a more useful representation to the discriminator
that yields improvement in the performance. Please note
that we evaluated the proposed system on the test set of the
AIM dataset.

Limitations Our work is sensitive to the performance
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Input Alpha Combined Input Alpha Combined

Figure 3. We tested our models on the real images that were collected from the web. In the end, we changed the backgrounds with arbitrary
backgrounds using the predicted alpha matte to show the application of the system.

Cases MSE
Segmentation map 1.86
Segmentation + Foreground 1.41
Alpha matte + Foreground 1.06

Table 5. Ablation study for the input type of the generator and
discriminator. While the first part shows the input of the segmen-
tation encoding block in the generator, the second part of the table
indicates the input type of the discriminator network.

of the segmentation network. A poor quality segmentation
output causes a less accurate outcome at the end of the alpha
matte network due to a lack of visual representation of the
subject. Besides, due to consecutive residual blocks, the
model is not able to run in real-time.

5. Conclusion
In this work, we proposed a conditional GAN-based ad-

ditional input-free approach to perform the portrait mat-
ting task. We addressed the problem as two different sub-
problems. In the first step, we proposed to use DeepLabV3+
person segmentation model to generate a coarse segmenta-
tion map from an arbitrary input image. In the second step,
this output and the original image are sent to the alpha gen-
eration network to generate the alpha matte. We presented
the segmentation encoding block that encodes the combina-
tion of the predicted segmentation map and the foreground
object. In the end, we have a refinement network to enhance

the prediction quality by capturing several patches from the
predicted alpha matte in the border area of the subject. Be-
sides, we proposed border loss to penalize challenging parts
around the subject and we also presented alpha coefficient
loss to measure only the pixels in the alpha matte that the
alpha coefficients are neither zero nor one. To handle the
domain shift problem, we combined two important train-
ing datasets to increase the amount of data as well as the
diversity. Experimental results indicate that using border
loss and alpha coefficient loss improved the accuracy of the
model and combining two datasets increased the generaliza-
tion capacity. It is also observed that encoding the combi-
nation of the segmentation map and the foreground subject
by the segmentation encoding block provided more useful
features than encoding only the segmentation map. We also
found out that the same outcome is also correct for the dis-
criminator. When we provided the prediction output and the
foreground subject, the discriminator worked better and was
more stable. In future work, it is necessary to focus on the
performance to make our model be able to run in real-time
with sequential data in order to increase the possibility of
usage in the real world. A possible scenario is to utilize the
system by eliminating the background to provide privacy in
the human-robot interaction.
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