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Abstract

Image inpainting (a.k.a. image completion) allows us
to remove unexpected foreground objects from an observed
image and to restore the removed region with background
pixels. The performance of image inpainting is improved
by auxiliary cues such as edge boundaries and segmenta-
tion regions. As a new auxiliary cue, this paper focuses
on a depth image that is estimated from an input RGB im-
age by monocular depth estimation. In the depth image,
boundaries between different objects (e.g., objects located
in different distances) with similar pixel values might be
available, while those boundaries are difficult to be detected
by edge detection and segmentation. Our proposed method
employs those boundaries in the edge and depth images as
auxiliary cues. Experiments demonstrate that our proposed
method augmented by the depth image outperforms its base-
line quantitatively (i.e., 1.17dB and 0.74dB PSNR gains on
the Paris-StreetView and Places datasets, respectively) and
qualitatively.

1. Introduction
Image inpainting restores unknown pixels in an image.

In an example shown in Fig. 1, an original RGB image (a)
is partially masked to make a masked image (b), which is
an input image given to image inpainting. Image inpainting
allows us to develop various real-world applications. For
example, unexpected photobombs such as other tourists can
be removed from sightseeing photos, noise such as glares
can be removed, and so on. A basic approach for image
inpainting [2, 32] is to predict the image structure within
the masked region based on pixels surrounding the masked
region. As demonstrated in [20,30,33–38,40,42,43,45,52,
54,55,57,58,61,62,64], this approach is improved by deep
convolutional neural networks trained with a huge number
of sample images.

Image inpainting can be further improved by auxiliary
cues such as edge boundaries [40] and segmentation re-
gions [45]. The examples of edge and segmentation images,
which are estimated from Fig. 2 (a), are shown in Fig. 2 (b)

(a) (b) (c) (d)

Figure 1. Comparison between the results of the baseline [40] and
our proposed method. (a) Ground-truth RGB image, (b) masked
RGB image where masked pixels are indicated by white pixels, (c)
the result of the base method [40], and (d) the result of our method.

and Fig. 2 (c), respectively. Since these auxiliary images
are simpler than its original RGB image, completing the
masked region in each auxiliary image is easier than that
in the RGB image. Therefore, these auxiliary images can
be completed first, and then these completed auxiliary im-
ages support the image inpainting of the RGB image, as
proposed in EdgeConnect [40]. In EdgeConnect, the edge
image estimated by a local filter (i.e., Canny edge detec-
tor [4]) is used as an auxiliary image. However, the edge
image often lacks boundaries between different objects with
similar pixel values. These lacks result in unsuccessful sup-
port for RGB image inpainting.

This paper focuses on how to provide a more reliable
auxiliary cue (or the one working complementarily with the
edge image). As such an auxiliary cue, we propose to em-
ploy a depth image (Fig. 2 (d)). The depth image can be
also estimated from the RGB image by monocular depth
estimation. Its accuracy is improved also by convolutional
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(a) RGB image (b) Edge image

(c) Segmentation image (d) Depth image

Figure 2. Auxiliary cues for image inpainting. In (b), pixels where
pixel values are significantly changed among neighboring pixels
are detected. In (c), pixels belonging to the same semantic region
(e.g., sky, mountains, and persons) are clustered. In (d), regions
closer to a camera are colored by brighter colors.

neural networks with wide receptive fields, as demonstrated
in [1, 3, 9, 11, 15, 16, 18, 19, 39, 53]. In particular, it is ex-
pected that, in the depth image, boundaries between differ-
ent objects (i.e., objects located in different distances) with
similar pixel values, while those boundaries are difficult to
be detected by edge detection.

The novel contributions of this paper are as follows:

• Depth-aware two-step inpainting: Image inpainting
is supported by a depth image obtained by monocu-
lar depth estimation. Such a depth image provides
us the boundaries of objects with similar pixel values.
These boundaries can successfully help to predict ob-
ject boundaries within a masked region for image in-
painting, as proven in [40] with an edge image.

• Auxiliary-cue fusion using gated convolutions: Sev-
eral object boundaries might be correctly estimated in
only either of edge and depth images. In order to ap-
propriately select these correct boundaries, our pro-
posed method employs gated convolutions [57].

2. Related Work
2.1. Image Inpainting

A network for image inpainting is trained in a super-
vised manner using a reconstruction loss so that an input
masked image is fed into the network and its output is
equal to the ground-truth complete image. In addition to

this reconstruction loss, additional loss functions are em-
ployed for improving the completion quality. Adversarial
losses [17] are used for improving the fidelity in many meth-
ods [20,21,25,27,33,35,37,43,45,52,55,57,61,64–66,68].
The perceptual quality is progressed by style losses [20, 23,
27, 33] and perceptual losses [23, 27, 33, 38, 45, 47, 64, 68].
In [59], the reconstruction and perceptual losses are bal-
anced in the frequency domain. Inappropriate local optima
(e.g., checkboard artifacts [28]) are suppressed by total vari-
ation losses [23, 27, 33].

The inpainting quality is changed also depending on the
type of convolution filters. Dilated convolutions are useful
for efficiently incorporating wide contexts [25, 27, 37, 45,
52, 55, 57, 61]. Partial convolutions [36] are proposed for
image inpainting with irregular masks [20, 33]. The par-
tial convolutions are generalized with a learnable dynamic-
feature-selection mechanism in gated convolutions [57].
The gated convolutions are used for image inpainting also
in [27, 35, 55]. DSNet [51] also copes with difficulty in ir-
regular masks by proposing two types of dynamic selection
modules. Different from the aforementioned convolutions,
Fourier convolutions [5] allow us to cover wider regions for
inpainting [47]. Such wide receptive fields can be also cov-
ered by Transformers [8] as proposed in [60].

Instead of adjusting the receptive fields, large missing
holes are filled by iterative hole filling using the confidence
map of filled pixels [62] and by co-modulation of both con-
ditional and stochastic style representations [65].

The effectiveness of an attention mechanism is also val-
idated in image inpainting [24, 37, 48, 55, 61, 64, 66, 68] as
well as in many other image recognition tasks; see survey
papers (e.g., [41]). The attention maps can be used also for
the iterative updates of image inpainting [34, 62].

As mentioned in Section 1, several types of auxiliary
cues are utilized for image inpainting. Segmentation im-
ages are useful for selecting visual features for completion
depending on semantic regions [33, 35, 45]. Edge images
can be also used for image completion depending on object
boundaries [40, 54]. For example, in EdgeConnect [40], a
masked edge image as an auxiliary cue is first completed
and then a RGB image is fed into an image-inpainting net-
work that is supported by the completed edge image. Edge-
Connect can work well if the completion of the auxiliary
cue is easier than that of the RGB image. The goal of our
proposed method is to further improve image painting by
another auxiliary cue (i.e., depth images).

Different from RGB-D inpainting [10], our RGB in-
painting method has to employ a depth image estimated by
monocular depth estimation. While SLIDE [26] also em-
ploys monocular depth estimation, it focuses on the 3D pho-
tography task with the estimated depth image. On the other
hand, our method focuses on how to utilize the depth cue
for improving the RGB inpainting quality.
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Figure 3. Pipelines of two-step image painting methods. The base method (i.e., EdgeConnect) [40] and our method are shown inside
green and red rectangles, respectively. Black, blue, and red arrows indicate processes in the first step, the second step, and our method,
respectively. “C” and “×” are concatenation and elementwise-mult operations, respectively. Images enclosed by orange and purple
rectangles indicate input data in training and inference stages, respectively. Strictly speaking, instead of the masked RGB image, its
masked grayscale image is fed into the edge inpainter and the depth inpainter. For simplicity, this masked grayscale image is omitted in
both this figure and the main text.

2.2. Monocular Depth Estimation

Monocular depth estimation [39] is widely studied in
computer vision. While its performance is significantly
gained by convolutional networks (e.g., [9, 53]), it is fur-
ther studied in terms of various aspects (e.g., self-supervised
learning using sequential frames [3, 16, 18, 19], unsuper-
vised learning using stereo views [3, 11, 15], and improved
learning via transfer learning [1]).

3. Edge-aware Two-step Image Inpainting

While a depth image as an auxiliary cue can support var-
ious image inpainting approaches, our method is designed
with a two-step approach proposed in EdgeConnect [40].
This is because it is easier to complete depth pixels as well
as edge boundaries than RGB pixels with complex texture
patterns.

The pipeline of EdgeConnect [40] is illustrated inside
the green rectangle in Fig. 3. The first and second steps
in EdgeConnect corresponding to edge inpainting and RGB
inpainting are indicated by black and blue arrows, respec-
tively. The first and second steps have networks for in-
painting edge and RGB images, respectively. In what fol-
lows, this section briefly introduces the inference and train-
ing stages of EdgeConnect; see [40] for the detail.

3.1. Inference

In the inference stage, an input RGB image and its binary
mask image (indicated by “RGB image” and “Mask image”
in the Fig. 3, respectively) are given.

In the first step, from the input RGB image, its edge
image is computed. These RGB and edge images are
elementally-multiplied by the binary mask image to get
their masked RGB and masked edge images, respectively.
These mask, masked RGB, masked edge images are con-
catenated and fed into the edge inpainter network.

In the second step, the inpainted edge image is concate-
nated with the masked RGB image and its mask image. The
concatenated images are fed into the RGB inpainting net-
work. With the support of the inpainted edge image, RGB
image inpainting is achieved.

3.2. Training

In the training stage, the input complete RGB image (de-
noted by I) and the mask image (denoted by M ) are given
as training data. M is the binary mask image in which
its values are 1 and 0 for the missing region and for back-
ground, respectively.
Edge inpainter: Let E denote the edge image of I . In
EdgeConnect, the Canny edge detector is used. I and E are
masked by M . These masked images are denoted by IM
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and EM . Then, EM , M , and IM are concatenated and fed
into the edge inpainter in order to inpaint EM . This edge
inpainter is trained with the weighted sum of the following
two loss functions, namely the hinge-variant of GAN loss
(LEG) and the feature-matching loss (LEF ):

LE = λEGLEG + λEFLEF , (1)

where weight constants are λEG = 1 and λEF = 10.
LEG is defined as follows:

LEG = −DE(EI , I), (2)

where EI denotes the inpainted edge image. The discrim-
inator DE evaluates whether or not EI is realistic as the
edge image of I . DE is trained by the following loss:

LDE
= max (0, 1−DE(EGT , I))

+max (0, 1 +DE(EI , I)) (3)

The feature-matching loss LEF compares the activation
maps in the intermediate layers of DE . As proposed in [12,
28], feature-level matching between EI and E allows us to
perceptually make EI look as much like E as possible.

LEF =
∑
i

1

N i
∥ Di

E(E)−Di
E(EI) ∥1, (4)

where N i and Di
E denote the number of elements and the

activation in the i-th activation layer of DE , respectively.
RGB inpainter: EI and IM are concatenated and fed into
the RGB inpainter in order to inpaint IM , as shown in
“Inpainted RGB image” in Fig. 3. This RGB inpainter is
trained with the weighted sum of the following four loss
functions, namely the hinge-variant of GAN loss (LIG), the
feature-matching loss (LIF ), the style loss (LIS), and the
reconstruction loss (LIR):

LI = λIGLIG + λIFLIF + λISLIS + λIRLIR,(5)

where λIG = λIF = 0.1, λIS = 250, and λIR = 1.
As with LEG and LEF , LIG and LIF are defined as the

hinge-variant of GAN loss and the feature-matching loss,
respectively.

The activations used in LIF are also employed for LIS

as follows:

LIS =
∑
i

∥ Gi
ϕ(I)−Gi

ϕ(II) ∥1, (6)

where Gi
ϕ denotes a Gram matrix constructed from activa-

tions ϕi [13]. LIS relieves checkerboard artifacts [44].
The reconstruction loss, LIR, directly evaluates the dif-

ference between I and II :

LIR =
1

NM
∥ I − II ∥1, (7)

where NM denotes the number of masked pixels in M .

4. Image Inpainting with Adaptive Fusion of
Multi Auxiliary Maps

This section describes our proposed method. While our
method is based on EdgeConnect [40] in terms of a two-step
inpainting scheme, our method (1) utilizes an additional
auxiliary cue (i.e., depth map) that works complementar-
ily with an edge image and (2) adaptively fuses these two
auxiliary cues by gated convolutions.

4.1. Training of the Depth Inpainter

The input complete RGB image and the mask image are
given as training data in the training stage of our proposed
method as with EdgeConnect. The goal is to optimize the
three networks (i.e., “Depth inpainter” in addition to “Edge
inpainter” and “RGB inpainter” in Fig. 3). In addition to all
processes in EdgeConnect enclosed by the green rectangle
in Fig. 3, additional processes indicated by red arrows are
proposed for our method.

In the first step, from the complete RGB image, its depth
image is estimated. While any monocular depth estimation
is applicable, our method employs Dense Depth [1]. After
this estimated depth image is elementally-multiplied with
the mask image, the masked depth image is concatenated
with the masked RGB image and the mask image, and fed
into the depth inpainting network. This depth inpainter is
trained with the weighted sum of the following two loss
functions, namely the hinge-variant of GAN loss (LDG) and
the feature-matching loss (LDF ):

LD = λDGLDG + λDFLDF , (8)

where λDG and λDF are weight constants.
LDG and LDF are equal to LEG in Eq. (2) and LEF

in Eq. (4) except that the depth image is used in LDG and
LDF instead of the edge image.

4.2. Training of the RGB Inpainter with Adaptive
Fusion of Multi Auxiliary Maps

The RGB inpainter of our proposed method is trained
with the weighted sum of the following four loss functions,
namely the hinge-variant of GAN loss (L̂IG), the feature-
matching loss (L̂IF ), the style loss (L̂IS), and the recon-
struction loss (L̂IR).

L̂I = λ̂IGL̂IG + λ̂IF L̂IF + λ̂ISL̂IS + λ̂IRL̂IR,(9)

where weight constants are λ̂IG = λ̂IF = 0.1, λ̂IS = 250,
and λ̂IR = 1. As with L̂DG and L̂DF , L̂IG and L̂IF are
defined as follows:

L̂IG = −D̂I(II , DC), (10)

where II and DC denote the inpainted RGB image and
composite depth image DC = D ⊙ (1 − M) + DI ⊙ M
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(a) Original image (b) Edge image (c) Depth image

(d) Masked image (e) Inpaint from (b) (f) Inpaint from (c)

Figure 4. Difference between (b) edge and (c) depth images.

where M denotes the binary mask image, respectively. The
discriminator D̂I evaluates whether or not II is realistic as
the RGB image of DC . D̂I is trained by Eq. (3) so that DE ,
EGT , and I in Eq. (3) are substituted by D̂I , IGT , and DC ,
respectively.

L̂IF =
∑
i

1

N i
ϕ

∥ ϕi(I)− ϕi(II) ∥1, (11)

where N i
ϕ and ϕi denote the number of elements and the

activation in the i-th activation layer of VGG-19 pretrained
with ImageNet, respectively. The activations used in L̂IF

are also employed for L̂IS as follows:

L̂IS =
∑
i

∥ Gi
ϕ(I)−Gi

ϕ(II) ∥1 (12)

The reconstruction loss, L̂IR, is equal to Eq. (7) as follows:

L̂IR =
1

NM
∥ I − II ∥1 (13)

The edge and depth images with the masked RGB im-
age are fed into the RGB inpainter. Since the boundaries of
the edge and depth images are different as shown in Fig. 4,
these two images provide complementary cues for image in-
painting in the masked RGB image. In Fig. 4, the boundary
lines of a pole located in the image center are not detected in
(b) the edge image but detected in (c) the depth image. This
difference leads to the presence and absence of the pole in
(f) and (e), respectively.

For complementarily extracting the aforementioned fea-
tures from multiple sources, multimodal data fusion is use-
ful. As well as most computer vision methods, multi-modal
data fusion is achieved by CNNs, for example, early fu-
sion [6] and late fusion [31, 46, 49]. In accordance with the

fusion scheme employed in EdgeConnect, all of the masked
RGB, edge, and depth images are concatenated and fed into
the RGB inpainter.

However, standard fixed-shape convolutions may have
difficulty in extracting effective features simultaneously
from these two images. Instead of the fixed-shape convolu-
tions, in our proposed method, gated convolutions [57] are
employed in the RGB inpainter for extracting features from
different receptive fields depending on the image/channel.
In the original work [57], the gated convolution is pro-
posed to achieve adaptive receptive fields for the mixtures
of masked and non-masked pixels in the image inpainting
task. Our proposed method, on the other hand, employs the
gated convolution in order to adaptively determine the re-
ceptive field for each of the RGB, edge, and depth images.

4.3. Inference

As with the the original method [40], an input RGB im-
age and its binary mask image are given in the inference
stage. In addition to the edge inpainter, the depth inpainter
is employed for inpainting the masked depth image. Its out-
put is “Inpainted depth image” in Fig. 3. This inpainted
depth image is concatenated with the masked image and the
inpainted edge image, and then fed into the RGB inpainter.

5. Experimental Results
Our code will be available at https://github.

com / rain58 / Boudary - aware - Image -
Inpainting.

5.1. Depth Estimation

Our proposed method requires monocular depth esti-
mation as a pre-process. This depth estimation was done
by Dense Depth [1] in our experiments, as mentioned in
Sec. 4.1. Its official implementation is available with the
pre-trained model in [1]. While the pre-trained model is
trained with images captured by on-vehicle cameras [14],
this model is finetuned with a generic scene dataset with
image and depth data [50].

5.2. Datasets

Paris-StreetView Dataset In the Paris-StreetView
dataset [7], 14,900 training and 100 test images are con-
tained. While each training image is 936 × 537 pixels,
it is divided into three images (i.e., left, center, and right
images, each of which is 537 × 537 pixels) in accordance
with evaluation done in [40]. In total, 14, 900×3 = 44, 700
training images are obtained. These 44,700 training images
are split into 42,000 training and 2,700 validation images.
On the other hand, test images with 228 × 228 pixels are
not split and directly fed into an inpainting network.

For both training and inference stages, random mask re-
gions are provided by the dataset of [36].
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Figure 5. PSNR, L1 error, LPIPS, and FID scores on the Paris-
StreetView dataset. These scores are separately evaluated with the
mask images of different sizes. The mask images are separated
based on the percentage of mask pixels to all pixels in each image,
which is indicated in the horizontal axis.
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Figure 6. PSNR, L1 error, LPIPS, and FID scores on the Places
dataset. The mean scores over all mask sizes is shown.

Places Dataset The Places dataset [67] has 1,803,460
training, 36,500 validation, and 328,500 test images. While
each original image is split into sub-images for training in
the Paris-StreetView dataset, each training image is directly
fed into a network in the Places dataset. For the evaluation
purpose, 100 validation images are used in accordance with
related work [25, 34, 42, 55, 57].
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(a) Original image (b) Masked image (c) EdgeConnect (d) Our method

Figure 7. Two typical examples of successful image inpainting results obtained by our method on the Paris-StreetView dataset.

5.3. Training Details

The validation images were used for determining the
epoch in which the training is finished so that the mean
PSNR of the validation images is converged. Adam [29] is
employed for an optimizer. The learning rate and the mini-
batch size are 0.0001 and 4, respectively.

5.4. Quantitative Evaluation

The performance is assessed using PSNR, L1 error,
LPIPS [63], and FID [22] in which larger, lower, lower, and
lower values are better, respectively.

Paris-StreetView Dataset For ablation study, EdgeCon-
nect (EC) [40], its modified version in which a depth image
is used instead of an edge image, which is called DepthCon-
nect (DC), and our method without the gated convolution
(GC) are also evaluated. The results of these methods are
shown in Fig. 5. In addition, the results of RFR-Net [34],
BATfill [60], and WAVEfill [59] are also shown. The results
of [34, 59, 60] are given by the publicly-available authors’
codes and weights trained with the Paris-StreetView dataset.

In all metrics, our method outperforms all other meth-
ods in smaller mask regions (i.e., “0–10%” and “10–20%”),
while RFR-Net is the best in other mask sizes. On the other
hand, our method is superior to all other methods in all mask
sizes in terms of L1 error.

With both edge and depth images, our fusion method
can outperform both EdgeConnect and DepthConnect in all
mask regions in all metrics. In comparison between ours

without the gated convolution and ours, we can see that the
gated convolution successfully improves our method.

Places Dataset The results of comparative experiments
on the Places dataset are shown in Fig. 6. As SOTA inpaint-
ing methods, global-and-local consistency [25] (GL), con-
textual attention [56] (CA), gated convolution [57] (GC),
contextual residual aggregation [55] (HiFill), diverse struc-
ture [42] (Diverse), BATfill [60], WAVEfill [59], and Edge-
Connect [40] (EC) are compared with the variants of our
method. The results of all of these SOTA methods are ob-
tained by the publicly-available authors’ codes and weights
trained with the Places dataset1. For ablation study, Depth-
Connect (DC) and our method without the gated convolu-
tion are also shown in Fig. 6.

In terms of PSNR, L1 error, and LPIPS, our method out-
performs all other methods. Our method is the second best
in terms of FID, while the gap from the best one (i.e., BAT-
fill) is small: 65.28 vs. 66.58. It can also be seen that our
method is improved by all of the edge image, the depth im-
age, and the gated convolution on the Places dataset as well
as on the Paris-StreetView dataset.

5.5. Visual Evaluation

Paris-StreetView Dataset Figure 7 shows typical exam-
ples in which our method can resolve several unnatural ar-
tifacts reconstructed by the baseline (EdgeConnect [40]) on
the Paris-StreetView dataset.

1RFR-Net [34] is not evaluated because its model trained with the
Places dataset is not publicly available (on April 18th, 2022).
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(a) Original (b) Mask (c) RFR-Net (d) BATfill (e) WAVEfill (f) EC (g) DC (h) Ours w/o GC (i) Ours

Figure 8. Visual Results on the Paris-StreetView dataset. In each row, circles are located in the same positions, and orange and red circles
enclose regions that are similar and dissimilar to the ground-truth region, respectively, which is enclosed by a blue circle.

(a) Original (b) GL (c) CAD (d) GC (e) HiFill (f) Diverse (g) EC (h) DC (i) Ours w/o GC (j) Ours

Figure 9. Visual Results on the Places dataset. Circles are overlaid in the same manner in Fig. 8.

In the upper example, the structure of a building is cor-
rupted in (c) EdgeConnect, while our method better re-
constructs windows on the wall as shown in (d). In the
lower example, the legs of a person are observed beyond
the fence. In (c) EdgeConnect, the legs are unnaturally ex-
tended, while the image inpainted by our method is more
similar to (a) the original image.

More results are shown in Fig. 8.

Places Dataset Figure 9 shows several examples of our
method and the SOTA methods. For example, in the middle
example, many methods fail to reconstruct the horse and
its shadow, while our result is better than those enclosed
by red circles. In the bottom example, on the other hand,
our method cannot outperform others. In this example, the
depth cue is not effective for inpainting a distant region such
as the one enclosed by the blue circle in (a), because no
depth difference is estimated in such a distant region.

6. Concluding Remarks

This paper proposed an image inpainting method using a
depth image as an auxiliary cue for reconstructing ambigu-
ous object boundaries. While the object boundaries take
an important role in image inpainting, it is difficult to per-
fectly detect them. For effective fusion of imperfect edge
and depth cues for RGB image inpainting, we propose to
utilize the gated convolution instead of the standard convo-
lution.

Future work includes joint end-to-end learning with an
edge detection network, while a simple edge detector such
as the Canny edge detector is employed in a pre-process.
This end-to-end learning allows the whole network to opti-
mize edge boundaries for the image inpainting task. While
the effectiveness of the gated convolution for fusing edge
and depth features is validated in our experiments, other fu-
sion approaches should be also evaluated.
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