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Abstract

Multi-frame high dynamic range (HDR) reconstruction
methods try to expand the range of illuminance with dif-
ferently exposed images. They suffer from ghost artifacts
when camera jittering or object moving. Several methods
can generate high-quality HDR images with high compu-
tational complexity, but the inference process is too slow.
However, the network with small parameters will produce
unsatisfactory results. To balance the quality and compu-
tational complexity, we propose a lightweight network for
HDR imaging that has small parameters and fast speed.
Specifically, following AHDRNet, we employ a spatial at-
tention module to detect the misaligned regions to avoid
ghost artifacts. Considering the missing details in over-
/under- exposure regions, we propose a dual attention mod-
ule for selectively retaining information to force the fusion
network to learn more details for degenerated regions. Fur-
thermore, we employ an encoder-decoder structure with a
lightweight block to achieve the fusion process. As a result,
the high-quality content and features can be reconstructed
after the attention module. Finally, we fuse high-resolution
features and the encoder-decoder features into the HDR
imaging results. Experimental results demonstrate that the
proposed method performs favorably against the state-of-
the-art methods, achieving a PSNR of 39.05 and a PSNR-µ
of 37.27 with 156.12 GMAcs in NTIRE 2022 HDR Chal-
lenge (Track 2 Fidelity).

1. Introduction
Natural scenes have a wide range of illumination, but

a low dynamic range (LDR) image captured by standard
digital camera sensors has a limited dynamic range. LDR
images often have over-exposure or under-exposure regions

*† indicates equal contribution.

Figure 1. Trade-off of PSNR-µ and Parameters between the pro-
posed method and several compared methods in the NTIRE 2022
HDR Challenge. The proposed method achieves satisfactory re-
sults with fewer parameters.

which severely affect the visual result. On the other hand,
High dynamic range (HDR) images can display affluent ap-
pearances (e.g., brightness, contrast, and scene details). To
obtain a HDR image, the common methods use multiple
LDR images captured with different exposure times to com-
bine the well exposed regions. This approach only can gen-
erate high-quality HDR image on static scenes. However,
ghosting artifacts occur in final HDR image on dynamic
scenes or hand-held cameras.

Currently, several solutions have been proposed to solve
this problem. The rejection-based methods [3, 4, 6, 7,
10, 16, 18, 21, 26, 37] can fast to detect misaligned re-
gions and remove these regions during the fusion process.
Although they have better performance for mostly static
scenes, these methods still suffer from ghosting artifacts
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when dynamic objects cannot be effectively detected. The
alignment-based methods leverage the explicit approach to
align the non-reference image to a selected reference im-
age. There are two types of alignment method: rigid reg-
istration approaches [24, 25] which cannot cope with com-
plex object motion, and non-rigid registration approaches
[5, 11, 14, 35, 38] which are error prone for motions and oc-
clusions. The patch-based methods [8, 12, 23] attempt to
generate pure static LDR images from the dynamic input
images. This method often can obtain high-quality results
than the above methods, but it has high computational com-
plexity and spends more time to infer a scene.

In recent years, with the rise of Convolutional Neural
Networks (CNNs), the HDR deghosting [13, 27, 29, 30, 34]
have generated visually delightful results, especially for
complex dynamic scenes. Unluckily, these networks have
the following natural limitations. First, since these meth-
ods employ full-resolution convolution networks to hold on
the details of input or encoder-decoder network to capture
different scales information, these networks need to em-
ploy more layers to learn semantics or particulars. Sec-
ond, existing models usually remove ghosting artifacts with
more parameters, which inevitably consumes a large num-
ber of computational resources. For example, the recent
AHDRNet [29] requires GPU with more memory to pro-
cess high-resolution images. Similarly, ADNet [15] uti-
lizes a branch to align the input with deformable convolu-
tion, which spends a large amount of time predicting re-
sult. These methods are not suitable for portable devices
with limited computational resources. Although several
light-weight deep models (e.g., ALONG Team’s, Antinscv
Team’s) have few parameters, the performances of the eval-
uation metrics are below ours as shown in Figure 1.

As discussed above, designing a CNN with both high ac-
curacy and high efficiency for reconstructing the ghosting-
free HDR image is still a challenge. To alleviate this prob-
lem, we propose a hybrid framework to fuse high-resolution
features and multi-scale features with a lightweight block.
Unlike previous CNN-based methods, we integrate the
high-resolution and encoder-decoder structure into a model.
Following AHDRNet, we introduce spatial attention to re-
move the motions and refine the features of non-reference
images in the feature extraction stage. In addition, we
use a residual operation [2, 29], which highlights useful
information (well-exposed) based on dual attention mod-
ule, to forces the fusion stage to learn more details for de-
generated regions (saturation, under-exposure). In the fu-
sion stage, we design a lightweight (LW) module to effec-
tively fuse features with fewer parameters. For the high-
resolution branch, we use the depthwise separable convolu-
tion to maintain the high-resolution features. On the other
hand, we note that the encoder-decoder network tends to
rapidly capture a larger receptive field for HDR deghosting.

Thus, we insert LW block into encoder-decoder network to
learn different scale features. Finally, the estimated image
is generated with a depthwise separable convolution.

To sum up, the main contributions of this paper are three-
fold:

• We propose an end-to-end trainable hybrid network
called HUNet with two branches (High-resolution
branch and UNet branch) for HDR image deghost-
ing and performs better effectively and efficiently than
prior work.

• We propose a dual attention module to extract the fea-
tures of well-exposed regions, and force the fusion net-
work to learn more details for degenerated regions with
residual operation.

• We utilize a lightweight (LW) module to effectively
fuse features with fewer parameters and achieve better
performance.

2. Related Works
The related work can be divided into four categories,

i.e., rejection-based approach, alignment-based approach,
patch-based approach, CNN-based approach.

Rejection-based approach. Assuming that the images
are globally registered, these approaches [3, 16, 21, 26] use
different methods to detect motion regions from static re-
gions. They merge the static regions to generate the final
HDR image. Grosch et al. [7] estimated a motion map
that uses the color constancy criteria of inputs to obtain the
ghost-free HDR image. Gallo et al. [4] employed patch-
wise comparison in the logarithmic domain to detect mov-
ing areas. Sparse representation [31] has also been used
to detect motions in logarithmic domain. Zhang and Cham
[36] used quality measures on image gradients to generate a
weighting map over the inputs. Raman and Chaudhuri [22]
conducted a comparison in the super-pixels level to im-
prove motion segmentation accuracy along edges. Although
they have better performance for mostly static scenes, these
methods still suffer from ghosting artifacts when dynamic
objects cannot be effectively detected.

Alignment-based approach. These approaches align
all LDR image to a reference image using rigid or non-
rigid algorithms. Bogoni [1] estimated motion vectors us-
ing optical flow and used parameters to warp pixels in
the exposures. Tomaszewska and Mantuik [24] performed
RANSAC after SIFT to refine the matches. Kang et al. [14]
transformed intensities of LDR images to the luminance do-
main using exposure time information and computed the
optical flow to find corresponding pixels among the LDR
images. Pece and Kautz [18] calculated the median thresh-
old bitmap (MTB) for input images to identify motion re-
gions. Zimmer et al. [38] used a modern energy-based op-
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tic flow approach that takes into account the varying ex-
posure conditions to perform the alignment step. Since
the rigid and non-rigid alignment methods are not robust
against huge motions, occlusions and brightness changes,
they are error-prone for complicated regions.

Patch-based approach. The patch-based method can
cope with both camera and object motion, which uses
dense correspondences to perform patch-based alignment
between the exposure images. Sen et al. [23] proposed
a novel patch-based energy-minimization formulation that
integrates alignment and reconstruction in a joint optimiza-
tion. Hu et al. [12] aligned images in an HDR image stack
to produce a new exposure stack where all the images are
aligned and appear as if they were taken simultaneously,
even in the case of highly dynamic scenes. Hafner et al. [8]
proposed an energy minimization approach that simultane-
ously calculates HDR irradiance and displacement fields.
These approaches reconstruct each HDR region by search-
ing for the best matching patch in LDR images. Although
these methods often can obtain high-quality results than the
above methods, but they have high computational complex-
ity and spends more time to infer a scene.

CNN-based approach. These approaches [13, 28, 29,
32–34] adopt different structures to fuse LDR images to
HDR image. Kalantari et al. [13] constructed the first HDR
imaging dataset and proposed a simple CNN network to
fuse inputs that are aligned with optical flow. Yan et al. [30]
employ multi-scale structure to refine the results. Wu et al.
[27] proposed an image-wide homography to perform back-
ground alignment, and fuse the aligned images to HDR im-
age by CNN. Despite their performance is improved, these
approaches still suffer from misalignment and ghosting, es-
pecially for fast-moving objects. Yan et al. [29] employed
an attention mechanism to suppress undesired information
before the merging stage. Prabhakar et al. [20] employed
several networks on a lower resolution and upscaled back to
full resolution. Niu et al. [17] proposed a GAN-based ap-
proach for HDR imaging which is able to synthesize miss-
ing details. These methods are not suitable for portable de-
vices with limited computational resources.

3. Method
Given a sequence of LDR images of a dynamic scene

with different exposure values, our target is to recover an
HDR image H aligned to a reference image Ir. In this
paper, we assign the medium LDR image as Ir. With the
dataset of NTIRE 2022 HDR challenge, we utilize three
LDR images (I1, I2, I3), we use I2 as the reference image
Ir.

Following previous works [13, 29], we form a linearized
image Li for each Ii as follows:

Li = Iγi /ti, (1)

where ti denotes the exposure time of LDR image Ii, γ rep-
resents the gamma correction parameter, we set γ to 2.24,
i = 1, 2, 3. As we can see dividing by the exposure time can
rectify all the images to have consistent brightness, these Li

is helpful to detect the motion regions. We concatenate Ii
and Li along the channel dimension to form a 6 channel in-
put Xi = [Ii;Li]. Given a sequence of inputs X1, X2, X3,
the proposed method produces the HDR image Ĥ by:

Ĥ = f(X1, X2, X3; θ), (2)

where f(·) denotes the network, θ is the parameter of the
network.

3.1. Overview

The proposed method is designed to alleviate the ghost-
ing artifacts for HDR imaging with the lightweight network.
The proposed network, called HUNet, consists of two sub-
networks, i.e., the attention network and the fusion network
(See Figure 2). The first part (attention network) is to de-
tect motions regions, and the second part (fusion network)
is to generate the details of degenerated regions. The atten-
tion network not only removes the motions of non-reference
images, but also highlights the useful regions of the refer-
ence image as the guidance for fusion stage with residual
learning. Considering the computation complexity and the
number of parameters, the fusion network employs UNet ar-
chitecture with a lightweight module for obtaining a larger
receptive field. To decrease the parameters of the network
further, we employ a depthwise separable convolution layer
and ghost block as the main blocks in UNet.

3.2. Attention Network

In the attention network, following AHDRNet, we em-
ploy spatial attention to remove misaligned regions between
no-reference images and reference images. As discussed
before, we obtain Xi, i = 1, 2, 3 from three LDR images,
then the attention network extracts features Fi of Xi using
encoding layer e(·).

Fi = e(Xi), i = 1, 2, 3 (3)

Note that the extracted features Fr from Xr (i.e., X2). As
shown in Figure 2, to obtain the misalignments between the
reference and the non-reference images, we put Fi, i = 1, 3
of the non-reference images into the spatial attention mod-
ule ai(·), i = 1, 3 with Fr. Then, the attention map Ai,
i = 1, 3 can be calculated by:

Ai = ai(Fi, Fr). (4)

The values of attention map are in the range 0-1. Then,
we compute the element-wise multiplication of the Fi, i =
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Figure 2. The framework of the proposed method.

1, 3 and the estimated attention map Ai to obtain the refined
feature each non-reference image F ′

i .

F ′
i = Fi ⊙Ai, (5)

where ⊙ denotes the point-wise multiplication.
Although spatial attention can effectively alleviate mis-

alignment between reference and non-reference images, di-
rectly learning clear features is still hard for network [2]. To
handle this problem, following [2], we propose a dual atten-
tion module to highlight the useful regions of the reference
image, which forces the fusion network to learn the details
of degenerated regions with a residual. In another word, the
highlighted regions of reference image will give a clue for
the fusion network, and the fusion network can pay more
attention to learn the residual of degenerated regions. As
shown in Figure 2, the dual attention module is only used
in the medium (reference) frame. The dual attention mod-
ule consists of spatial attention sa(·) and channel attention
ca(·) which are helpful to refine the features of the reference
image. The spatial attention sa(·) has several depthwise
separable convolutional layers and one sigmoid activation
to generate the spatial attention weights. The channel atten-
tion ca(·) includes one global pooling, one fully connected
layer and one sigmoid activation to generate the channel at-
tention weights. The refined features of the reference image
can be written as:

A2 = ca(sa(F2)), (6)

F ′
2 = A2 ⊙ F2. (7)

After attention network, we obtain F ′
1, F

′
2, F

′
3 which are ex-

cluded the harmful information of inputs. Then we stack
the extracted features for merging.

F = Concat(F ′
1, F

′
2, F

′
3), (8)

where Concat(·) represents the concatenation operation.
We will use F in the fusion network.

3.3. Fusion Network

To design a CNN with both high accuracy and high effi-
ciency for feature fusion, we propose a hybrid framework to
fuse high-resolution features and multi-scale features with
a lightweight block. Unlike previous CNN based methods,
we integrate the high-resolution and encoder-decoder struc-
ture into a model.

For the high-resolution branch, we use the depthwise
separable convolution to maintain the high-resolution fea-
tures.

Fh = PReLU(DC(PReLU(DC(F )))), (9)

where DC() is the depthwise separable convolution layer,
and PReLU() denotes the PReLU activation. We use
depthwise separable convolution to decrease the GMACs of
the network. On the other hand, we note that the encoder-
decoder network tends to rapidly capture a larger receptive
field for HDR deghosting. To effectively fuse features with
fewer parameters, we design a lightweight (LW) module
which can be inserted into encoder-decoder network to learn
different scale features. As shown in Figure 2, the encoder-
decoder network consists of 3 LW Modules, 3 depthwise
separable convolutional layers and upsamplings.

Since the complexity of the encoder-decoder network
is dependent on the block in the network, we design a
lightweight (LW) module. As shown in Figure 3, the LW
module includes a ghost block and depth-wise convolu-
tional layer with stride=2. Considering the redundancy in
feature maps, we use the ghost block [9] to generate more
feature maps from cheap operations. It is unnecessary to
generate these redundant feature maps one by one with a
large number of GMACs and parameters [9]. Thus, it de-
creases the GMACs of the network and improves the per-
formance of the proposed method. Given the input feature
Fin ∈ Rc×h×w, where c is the number of input channels
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Figure 3. The architecture of the proposed LW module.

and h and w are the height and width of the input fea-
ture, respectively. First, ghost block learns intrinsic features
G1 ∈ Rm×h×w by smaller size and produced by standard
convolution filters, where m = c/2.

G1 = ReLU(Conv(Fin)). (10)

To further obtain the desired c channels feature maps, the
ghost block applies a cheap linear operations on intrinsic
feature G1 to generate ghost features according to the fol-
lowing function:

G2 = DWConv(G1), (11)

where DWConv() denotes the depth-wise convolution
layer. The output is:

G = Concat(G1, G2). (12)

Thanks to LW modules, the encoder-decoder network has
fewer parameters with better performance for HDR imag-
ing. The final HDR image is generated by combing the fea-
tures of high-resolution and encoder-decoder structure with
depth-wise convolutional layer and ReLU activation.

3.4. Training Loss

From the proposed network, we can obtain the HDR im-
age Ĥ . As the HDR images are not displayed in the lin-
ear domain, we use µ-law to map the linear domain to the
tonemapped domain which is more effective than training
directly in the HDR domain.

T (H) =
log(1 + µH)

log(1 +H)
, (13)

where T (H) is the tonemapped image, µ = 5000. Based
on this tonemapping, we calculate the tonemapped L1 loss
between the estimated result and the ground truth:

L = ||T (H)− T (Ĥ)||1 (14)

3.5. Implementation Details

In training stage, we crop the 256 × 256 patches with
stride 128 for training. We use Adam optimizer and set the
batch size and learning rate as 16 and 0.001, receptively, we
set β1 = 0.9, β2 = 0.999 and ϵ = 10−8. We implement our
model using PyTorch with 2 NVIDIA GeForce 3090 GPUs.
We select the best model using the PSNR-µ score calculated
on our validation set.

We use convolution layer to extract 32 features with 3×3
kernels. We apply 3×3 and 1×1 kernels in the Depth-wise
separable Conv layers, which are followed by PReLU ac-
tivations, if not specified otherwise. Depth-wise separable
Conv layer is employed in spatial and dual attention. We
set the stride size for LW module as 2. We define the output
layer to produce 3-channel images.

4. Experiments
4.1. Experimental Settings

Dataset. We use the NTIRE2022 High Dynamic Range
Challenge [19] to train and test the proposed method. This
dataset includes 1494 different scenes, we randomly use 149
scenes as the validation set and keep the remaining as the
training set. Each sample has 3 LDR images with different
exposures, i.e., short, medium and long exposures, and a
related ground-truth HDR image aligned with the central
medium frame.

Evaluation Metrics. We evaluate the performance with
PSNR and PSNR-µ. PSNR is calculated on the linear do-
main, PSNR-µ is PSNR values for images after tonemap-
ping using µ-law.

4.2. Qualitative Evaluations

We evaluate the performance of the proposed method for
the HDR deghosting task and compare it to other state-of-
the-art methods. The compared methods contains AHDR-
Net [29], DeepHDR [27], ADNet [15], which are all CNN-
based methods. Note that ADNet is the champion solu-
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(a) (b)

(c) (d)

Figure 4. Visual comparisons on the testing data. The LDR images are shown on the left. The propose network can produce a high-quality
HDR image.

tion on the NTIRE2021 High Dynamic Range Challenge
in Track 2. For fair comparisons, we retrain the compared
methods in the challenge data with the same settings.

As shown in Figure 4, we display results in several
scenes. The scenes in Figure 4 (a) and (b) are captured with
dynamic objects and static camera. For example, the fire in
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(a) (b)

Figure 5. Attention maps of the spatial attention block.The first row shows 3 LDR images, the second and third rows are attention maps of
Long and Short frame.

Figure 4 (a) is changed drastically with severe saturation.
And in Figure 4 (b), the lady’s clothes cover over-exposure
regions in the medium and long-exposure frame. The pro-
posed method can avoid ghosting artifacts and color distor-
tion, while other compared methods still reconstruct satu-
rated details and blurred boundaries. The scenes in Figure 4
(c) and (d) are captured with dynamic objects and camera.
These scenes are more challenging. The proposed method
still can recover details of distorted regions. It can be at-
tributed to the proposed hybrid network with two branches
for HDR image deghosting. Note that the proposed model
has fewer parameters and faster speed.

To verify the visual effect of spatial attention, we dis-
play the attention maps of non-reference image in Figure
5. The first row shows 3 LDR images, the second and
third rows are attention maps of 1st and 3rd frame. Com-
pared with AHDRNet, the estimated spatial attention map
of our method can accurately highlight well-exposure re-
gions, such as the bottle in Figure 5 (a) and the part of fire
in Figure 5 (b).

4.3. Quantitative Evaluations

To verify the superiority of the proposed HUNet, we
compare it with the existing state-of-the-art methods AH-
DRNet [29], DeepHDR [27], ADNet [15]. To make fair
comparison in terms of GMACs, we redesign the small ver-
sion of DeepHDR and AHDRNet, named DeepHDR∗ and
AHDRNet∗. From Table 1, we can find that the proposed

method is on-par with the larger models DeepHDR and AH-
DRNet in terms of PSNR and PSNR-µ, and 10x smaller
than larger models in terms of GMACs. When compared
with smaller models, our proposed method has tremendous
advantages than DeepHDR∗ and AHDRNet∗ in terms of
PSNR and PSNR-µ, even with fewer GMACs. We con-
sider that the improved performance can attribute to the
proposed dual attention and hybrid fusion stage. Note that
since we cannot obtain the ground truth of testing set from
NTIRE2022 High Dynamic Range Challenge, we randomly
select 149 samples from training set as validation samples
(See Sec 4.1), thus the values of PSNR and PSNR-µ are
different with the final official results [19].

4.4. Ablation Study

To investigate the effectiveness of the proposed compo-
nents in HUNet, we design several different variants. The

Table 1. Compared with SOTA methods. ∗ denotes the model size
in 200 GMACs.

Model PSNR PSNR-µ GMACs Para.
DeepHDR 37.57 31.93 1983.38 16606339
AHDRNet 38.94 32.60 2916.92 1441283

ADNet 39.73 32.88 6249.43 3132773
DeepHDR∗ 36.16 31.21 180.79 1096706
AHDRNet∗ 36.32 31.26 186.17 90679

Ours 39.29 32.73 156.12 188992
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Table 2. Ablation study on the network structure.

Model PSNR PSNR-µ GMACs Para.
Baseline 36.32 31.26 186.17 90679
Model1 37.60 31.49 187.78 91511
Model2 38.31 32.22 150.80 188992

Ours 39.29 32.73 156.12 188992

ablation study is conducted by comparing the following
variants of HUNet:

• Baseline (i.e., AHDRNet∗). It is the small version of
AHDRNet and its model size is less than 200GMACs.

• Model1. We add a dual attention module to
AHDRNet∗ model.

• Model2. In AHDRNet∗, we replace the fusion stage
with the encoder-decoder structure.

• Ours. The full model of the HUNet.

Spatial and Dual Attention. Compared with Baseline
and Model1 in Table 2, the Model1 with the dual atten-
tion shows better performance, and obtains a 1.28dB gain
of PSNR. It is mainly because that our proposed dual atten-
tion focuses on the useful regions in reference image and
reconstructs more reasonable details.

Fusion network. The Model2 in Table 2 shows that
the hybrid network with two branches, which integrate the
information from high-resolution and encoder-decoder, is
more effective for fusing features. Compared with the base-
line model, the performance of PSNR is improved about
2dB. The main reason can be concluded that our fusion net-
work captures a larger receptive field and learns different
scale features, which obtains a better balance between qual-
ity and computational complexity.

5. Conclusion
In this paper, we propose a hybrid network with two

branches for HDR image deghosting. The proposed model
performs better effectively and efficiently than prior work.
We introduced a dual attention module to highlight details
of useful regions in the reference image. We utilized a
lightweight module to effectively fuse features with fewer
parameters and achieve better performance. We compared
our method to several state-of-the-art approaches obtaining
a better balance between performance, speed and parame-
ters.
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