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Abstract

Motion deblurring in dynamic scenes is a challenging
task when the blurring is caused by one or a combination of
various reasons such as moving objects, camera movement,
etc. Since event cameras can detect changes in intensity
with a low latency, necessary motion information is inher-
ently captured in event data, which could be quite useful
for deblurring standard camera images. The degradation
intensity does not show homogeneity across an image due
to factors like object depth, speed, etc. We propose a two-
branch network structure, Motion Aware Double Attention
Network (MADANet), that pays special attention to areas
with high blur. As part of the network, event data is first
used by the high blur region segmentation module that cre-
ates a probability-like score for areas exhibiting high rel-
ative motion to the camera. Then, the event data is also
injected to feature maps in the main body, where there is
a second attention mechanism available for each branch.
The effective usage of event data and two-level attention
mechanisms makes the network very compact. During the
experiment, it was shown that the proposed network could
achieve state-of-the-art performance not only on the bench-
mark dataset from GoPro, but also on two newly collected
datasets, one of which contains real event data.

1. Introduction
In daily taken photographs, blur is a common distor-

tion generally caused by a variety of causes, including ob-
ject motion, camera shake, depth variations in the scene,
and more. Earlier approaches modeled degradation using
a global blurring kernel applied to sharp images or using
kernels that are applied locally. However, estimating both
blur kernels and then the sharp image is a challenging ill-
posed problem, which may require a computationally de-
manding iterative solution. Meanwhile, the most recent
Convolutional Neural Network (CNN)-based approaches
[7, 31, 47, 48, 58] have shown significant improvements in
reconstruction accuracy as well as computation efficiency.
Most of them omit the kernel estimation step and are trained

Figure 1. The proposed MADANet and the state-of-the-art deblur-
ring methods, BANet [48], MIMO+ [7] and HINet [6].

directly to map blurry images to sharp images using more
realistic datasets, such as GoPro dataset [31]. Despite the
significant advances [7, 48] in deblurring networks for sin-
gle images, their performance still falls short in challenging
situations such as those involving fast-moving objects.

Furthermore, multiple input frames have also been tried
in an attempt to increase recovery performance, rather than
using only single frames, such as burst frames [1,52] or dif-
ferently exposed frames [5, 29, 56, 60]. The latter approach,
which combines long and short exposure frames and pro-
duces a sharper, more pleasing output, has been shown to
perform better in recent studies [29, 60]. However, using
a long/short exposure frames strategy may still be inade-
quate in some cases, for example when the relative motion
between the camera and the object is fast and the motion
trajectory is nonlinear. Throughout this paper, the terms
”long-exposure frame” and ”blurry image” will be used in-
terchangeably.

The objective of the present study is to use an event-
based camera as an aid for improving the quality of the
blurry image captured by a standard camera. Bio-inspired
sensors power event cameras [26, 41, 43], which detect
changes in pixel brightness at the microsecond level. When

1113



the intensity changes over a predefined threshold, a pixel in
the event camera is triggered. As a result, spatiotemporal
information of rapidly changing scenes is encoded intrinsi-
cally. This information can be extremely useful for deblur-
ring tasks, especially for images of dynamic scenes with
moving objects. However, there are only a few efforts to
deblur intensity images using event frames [18, 34, 49, 53].
Though [18, 49] are deep unfolding approach, [18, 34, 49]
techniques work iteratively and may be computationally de-
manding for portable devices like smartphones.

In comparison with traditional cameras, event cameras
possess many advantages, such as high dynamic range
(more than 120dB, compared to 60dB for traditional cam-
eras), high temporal resolution, and low power consump-
tion. However, their limited resolution (about 1 Megapixel
maximum array size [43]) makes them unsuitable for prac-
tical image restoration (for example, mobile phone cameras
have a resolution of over 10 Megapixels). Even though
deep neural networks are being used to super resolve event
streams [24], using a super-resolution (SR) algorithm for
event stream before combining it with the standard camera
image increases computational burden, especially for com-
pact, portable devices. Moreover, due to their asynchronous
structure, event streams cannot be directly used for standard
computer vision algorithms.

In this study, an event camera aided blind deblurring
network family, Motion Aware Double Attention Deblur-
ring Networks (MADANet), is introduced. MADANet is
a two branch neural network, and one branch give special
attention to high blur regions caused by high relative mo-
tions. This high blur regions are localized with a event-
aided segmentation module since Event cameras are capa-
ble of detecting such motions. Each branch contains an-
other attention mechanism (e.g., blur aware (BA) modules
from [48]) that further differentiates varying blurring level
regions as channel attention maps. In this way, a two-level
of attention mechanism (i.e., double attention mechanism)
is presented. MADANet, as opposed to complicated event-
based algorithms, directly feeds a series of event frames
to network modules, each of which is obtained from ac-
cumulated events over a shorter period of time than the
exposure time of a blurry standard camera image. In that
way, instead of super resolving the event frames in order to
fuse them with the blurry input image, MADANet directly
injects these frames in a lower resolution feature space.
The MADANet variations surpass state-of-the-art deblur-
ring algorithms such as single-frame algorithms, short/long
frame fusing methods, and previous event-aided methods
with a significant margin despite its lightweight structure
on benchmark GoPro dataset. The results were validated
using TSlowMotion data, which was collected similarly to
GoPro, but with a wider range of blurring cases and bet-
ter quality ground truth images. Furthermore, the TReal

dataset is collected using a real event camera coupled with
a standard camera. In addition, even if the MADANet was
designed as event aided deblurring solution, it still shows
comparable performance to the state-of-the art one when it
is used as either single image or long/short frame fusion de-
blurring solution. The evaluation on TReal dataset dataset
also demonstrates the benefits of the proposed method visu-
ally. Contributions to the proposed design, which make it an
effective tool for dynamic scene deblurring, are as follows:

• The blur degradation level does not exhibit homogene-
ity in a dynamic scene. In this work, for the first time
in literature, we introduce an event-aided high blur re-
gion localization sub-network. Thanks to the resulting
attention map, one of the network branches is able to
give special attention to the high blur level regions.

• Additionally, we explore for the first time in literature
how low spatial resolution event data may be used to
deblur HR RGB frames without the need for SR event
data.

2. Related Works
2.1. Single Image Deblurring

A severely challenging problem is finding the sharp im-
age from the blurred one under an unknown degradation
operation, a problem called blind deblurring. In the earli-
est approaches, blur is modeled as a spatially invariant lin-
ear system known as uniform blurring [3, 9, 22], and this
fails to accommodate blur variations due to moving objects,
different depth levels, etc, in dynamic scenes. Variations
such as these are partly included in non-uniform [17, 51] or
depth-aware [33,54] models which use overlapping patches
or different depth levels in order to estimate the pixel level
varying blurring kernels. In order to have a unique solution,
such severe ill-posed problems need some prior assump-
tions about the latent image space, which leads to iterative
and therefore computationally costly solutions [55].

Recently, Convolutional Neural Network (CNN) based
works have significantly improved the estimation of uni-
form [4, 25] and non-uniform [14, 46] blurring kernels with
less computational costs and less estimation error, but still,
any kernel estimation error may lead to undesired ringing
artifacts. Furthermore, the kernel-based blur approximation
for a blurry image in a dynamic scene does not accurately
reflect real-world blur. In the more recent CNN-based de-
blurring solutions [31, 47, 58], the kernel estimation is by-
passed and the blurry images are directly mapped to the
sharp estimations. In most of these solutions, the training
is carried out on benchmark datasets such as GoPro [31],
REDS [30], and RealBlur [40] whose degradation of blurry
images more closely mimics a real-world situation. While
the recent improvements in single image deblurring net-
works [7, 48] are significant, their performance is still lim-
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ited by challenging blurring types such as the ones caused
by fast-moving objects [21].

2.2. Deblurring by Aid of Short Exposure Frame

Additionally, as a complement to single image deblur-
ring techniques, a number of recent techniques use a burst
of blurry images that are each captured sequentially, with
equal exposure times, to produce a sharp image estimation
[1,52]. The exposure time of an image, on the other hand, is
a very important factor that determines the type of distortion
in it. Images that are underexposed, or sometimes called
short-exposure frames, appear sharper, but noisy, while
long-exposure frames are blurred, but carry much accurate
color information. Several studies [5, 29, 56, 60] have at-
tempted to solve the sharp image recovery problem by lever-
aging differently exposed images; earlier studies [51,56] at-
tempted to estimate the blur kernel of long-exposure frames
from long/short exposure frames. The most recent learning-
based methods [29,60] are trained to have a direct map from
short/long exposure image pair to restored sharp image. The
fusion strategy still fails, however, in a variety of situations,
including when fast-moving objects are present, or shutter
delays between capturing long and short exposure images
are quite long.

2.3. Event Processing, Challenges and Event-Based
Image Deblurring

A typical event camera detect the intensity change, then
records pixel location, change time and polarity of change.
Considering the standard camera coupled to event one, the
blurry image intensity can be regarded as integral over sharp
latent images changing with time, and each of these small
changes between any so-called sharp images can be calcu-
lated over the sum of the event stream (in ideal case). This
assumption led [34] to propose a model for deblurring inten-
sity images using a double integral technique. A recent ap-
proach [18], models deblurring as a Maximum-a-Posteriori
(MAP) problem and solves it using a neural network in a
deep unfolding manner.

Event cameras obtain sparse and asynchronous informa-
tion with a high temporal resolution, which makes them
very different than RGB cameras. Therefore, the event
data can not be directly plug in conventional computer vi-
sion algorithms. One direction is to use model based ap-
proaches as it is the case in above mentioned deblurring
solutions [18, 34], or new categories of neural network de-
signs such as bio-inspired neural networks Spiking Neural
Networks [28]. On the other hand, in a few recent works
event streams are converted to event frames by simple ac-
cumulation way for different computer vision tasks, includ-
ing depth estimation [20], optical flow estimation [27], and
feature tracking [13]. We will be developing an akin ac-
cumulation strategy to have a series of event frames for a

corresponding blurry image.
One of the main drawbacks of the current event cam-

era solutions is the large pixel sizes of the available prod-
ucts [11]. Their low resolution renders them unusable for
practical image restoration. About 1 Megapixel resolution
is the largest array size available [43]. There are some re-
cent attempts to use deep neural networks for event stream
superresolution [24]. Nevertheless, using a super-resolution
for event frames before combining them with the standard
camera image for image restoration adds to the computa-
tional load, especially for compact, portable devices.

3. Methodologies
Let us assume that a blurry image, B is the average

of the corresponding latent images that can be hypothet-
ically captured during exposure time interval, [0, T ], i.e.,
B = 1

T

∫ T

0
I (t) dt, where I (t) is the corresponding sharp

latent image at time t. The blurring effect occurs when ob-
jects move or handshaking occurs during the exposure time.
The blurring distortion on an object’s appearance depends
on a combination of various factors, such as the object’s
distance from the camera, parameters of the camera, the
speed of the object, etc. Even if only camera movement
takes place, the blurring distortion amount, we call it blur-
ring level, changes locally in the observed image, e.g., if
the object is close to the camera, it will be much higher [54].
Exposure time influences the overall blurring level most sig-
nificantly. As exposure time decreases, the blurring level
will be reduced at the expense of true colors and signal-
to-noise ratio. This is why there are some attempts to use
multiple exposure frames, or a long/exposure frame pair to
have a better estimation of the sharp image. All these strate-
gies will, however, be constrained by the trade-off between
exposure time to gather sufficient information and the speed
at which the scene changes for the standard camera.

Unlike traditional cameras, new emerging event cam-
eras do not have a predetermined exposure time. The bio-
inspired sensors detect changes in brightness in a scene
asynchronously at a microsecond level. The event cam-
era does not capture the intensity at pixel (x, y) at time t;
instead, it outputs the sequence of events, each denoted by
(x, y, t, δ). In this event representation, t is the time of event
occur and the polarity, δ, is determined as follows,

δ =


+1, g ≥ thr

−1 g ≤ −thr
0 else

where g = log
(

Ix,y(t)
Ix,y(tref )

)
, tref is the timestamp of pre-

vious event for same pixel, and thr is the pre-determined
threshold. We first subdivide the event stream during the
standard exposure time, T, into a number of chunks. Each
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Figure 2. The blurry image and the corresponding 6 event frames

chunk is accumulated, then it is quantized to a ternary 2-
D data. Mathematically speaking, each event frame, ei is
obtained as follows,

eix,y = Q

(∫ Ti
n

T (i−1)
n

εx,y (t) dt

)
, for i = 1, ..., n, (1)

where Q(h) = sgn(h) : R → {+1, 0, 1} and εx,y (t)
is individual event occurs at time t, and pixel location
(x, y). Different from akin event representation schemes
[13, 20, 27], our event frames have ternary data, eix,y ∈
{1, 0,−1}. In this work, we stack n = 6 number of event
frames for each blurry image. The corresponding event
stack, E =

{
e1, ..., en

}
, will then be used in both high blur

region localization module and main body of the deblur-
ring network. An example blurry image and corresponding
event frames are illustrated in Figure 2.

3.1. High Blur Region Localization Module

In photographs, fast-moving objects and those in close
proximity to the camera may appear more blurry than those
far away from the camera. It might be more efficient to
devote more resources to areas with more blur distortion.
We propose segmenting high blur level regions using a light
High Blur Region Segmentation (HBRS) sub-network to lo-
cate pixels in the image plane that correspond to the points
in 3D space having fast relative motion to the camera. The
existing event cameras are lower resolution than the stan-
dard cameras. In this study, the resolution ratio between
RGB images and event frames is assumed to be 4:1. There-
fore, as inputs, the proposed HBRS sub-network takes the
event stack, E, and down-scaled blurry image, B ↓, where ↓
is the standard bicubic down-sampling operation with scale
factor 2. Then the network outputs an attention map, A, that
gives the information about the probability of each pixel be-
ing in high blur region, i.e., A ← FHBRS (B ↓,E) such
that Ai,j ∈ [0, 1].

As illustrated in Figure 3, the proposed module is a
lightweight encoder-decoder network. The network con-
sists of 3 main components, encoder, residual groups, and
decoder. In the encoder part, we use two convolutional lay-
ers with 32 hidden neurons. The filter size is 3 × 3 for
both layers and the second one has stride 2. The decoder
part has three convolutional layers; the first one consists of
transposed convolutions with stride 2x2 and kernel size 4x4,
while the second and third are convolutional layers with

Figure 3. High Blur Region Segmentation (HBRS) network

kernel size 3x3 and 1x1, respectively. Both hidden layers
have 24 neurons. ReLU is used as the activation function at
end of each convolutional layer except the last output layer
where Sigmoid is used. The residual group contains 3 suc-
cessive residual blocks (RBs), each with 32 channels input
and output feature maps. Blur Aware Module from [48] is
borrowed as the residual block in this study. Each RB con-
sists of a Blur-aware Attention (BA) block and a Cascaded
Paralled Dilated Convolution (CPDC) with multiple dila-
tion rates. The residual group is illustrated in Figure 3, and
the details about the architecture of BA, and CPDC blocks
can be seen in [48].

There is no labeled dataset for this task in the litera-
ture. In order to overcome this limitation, a semi-supervised
method Cross-Consistency Training (CCT) that was pro-
posed in [32] is employed. As labeled data, the video seg-
mentation dataset, DAVIS [37], is used to generate blurry
image and moving object mask. The idea of CCT is to push
the encoder and residual blocks of the network to be consis-
tent under different types of small perturbations. In order to
achieve this, in each epoch, the same number of labeled data
and unlabeled data is used during the training. The labeled
data is used to update the encoder, residual blocks and the
main decoder, while the unlabeled data is for updating the
network except the main decoder. During this later update
process, the feature maps from residual blocks are pertur-
bated as suggested in [32] before fed into each auxiliary
decoder. The outputs of the auxiliary decoders are forced
to be close to the output of the main decoder. The overall
pipeline of applied CCT is shown in Figure 3.

3.2. MADANet: Double-branch Mechanism

The proposed MADANet consists of two sub-networks;
one is HBSR, FHBRS (.), and the other one is MADANet
deblurring network, M. An encoder, ME , a feature pro-
cessing part (or main body), MF , and a decoder, MD,
compose the deblurring network. Let B ∈ RS1×S2×3 be
our blurry RGB image. The encoder part maps the blurry
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Figure 4. The pipeline of the proposed MADANet: 1) Encoding the blurry standard image to a low-resolution multi-channel feature space.
2) Injecting a series of event frames onto this feature space. 3) Dividing the network into two branches. 4) Injecting the high blur region
segmentation mask, into the high blur region deblurring branch while injecting a complement of the mask into the other branch of the
network. 5) Integrating the feature maps from these two branches with a decoder to produce the final image.

image to a new representation space, i.e.,

F←ME (B) (2)

where F ∈ Rs1×s2×c is c channel representation of size
s1 × s2. In this work, we set c = 32, s1 = S1/2 and
s2 = S2/2.

The feature processor is composed of 2 branches, MH
and ML for high blur and low blur regions, respectively.
The high blur region feature processor, takes c-channel fea-
ture map, F, then it fuses them with n number of event
frames as well as with attention map, A. Hereafter, us-
ing this c + n + 1 channel inputs, it outputs a an c-channel
processed feature map, FH ∈ Rs1×s2×c, as output, i.e.,

FH ←MH (F,A,E) . (3)

In the module MH, the first layer is a convolution layer
with c-neurons, e.g., in our setup it reduces the number of
channels from 39 to 32. Then, multiple residual blocks fol-
low this layer in order to produce FH. Low blur region fea-
ture processor branch has a similar architecture withMH,
except it takes the complement of the attention map, 1−A
as input, i.e.,

FL ←ML (F,1−A,E) , (4)

where FL ∈ Rs1×s2×c is the processed feature map. The
residual blocks are the same with the ones described in Sec-
tion 3.1. The number of residual blocks for high and low
deblurring branches are empirically set to 6 and 5, respec-
tively. Having feature maps from both branches, decoder
fuse them by simple concatenation and produce the final
output, i.e.,

Ir ←MD (FH,FL) , (5)

where Ir is the final output of the network. The first layer
of MD is a c = 32 neuron transposed convolution layer
which takes the concatenation of feature maps, FH and FH.

Then, the 32 channels output of this layer is also concate-
nated with the c/2 = 16 channels feature map from the
first layer of the encoder. Finally, c/2 = 16-neuron and 3-
neuron convolution layers complete the decoder part. The
filter size of all the layers in MADANet is 3×3. The overall
structure of the network is given in Figure 4.

3.3. Loss

Our version of semi-supervised training is based on the
proposed method in [32], in which a set of perturbations
are added to the unlabeled data, including prediction-based,
feature-based, and random perturbations. Binary Cross-
Entropy (BCE) loss is used as supervised training loss and
Mean Square Error (MSE) between the output of the main
decoder and auxiliary decoders is used for unsupervised
learning. The combined loss of supervised Ls and unsu-
pervised Lu is as following

LHBRS = Ls + wu ∗ Lu (6)

where the unsupervised loss weight wu follows a Gaussian
distribution from zero up to a fixed weight.

Having HBRS trained, the deblurring network is trained
using a pixel reconstruction loss Lr and a SSIM-based loss
Ls to measure how close the reconstructe image Ir to the
ground-truth sharp image Igt. The reconstruction loss is
given by the l1 norm:

Lr = ∥Ir − Igt∥1 (7)

Ls is a differentiable version of the well-known full-
reference image quality metric, Structural Similarity Index
Measure (SSIM) [50]. Inspired by [61] we use the follow-
ing format of loss where the SSIM produces 1.0 as the best
score:

Ls =
1− SSIM(Ir, Igt)

2
(8)

The final deblurring loss Ldeblur can be writen as:

Ldeblur = Lr + λLs (9)
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where the λ is the weight for SSIM loss and we use 0.5 to
match the the scale of both loss types.

An auxilary decoders after each branch is employed dur-
ing training as shown in Figure 4 and both auxiliary de-
coders generate restored images Ihigh and Ilow. To force
the low and high blur branches to focus on handling with
different blur area according to the estimated mask A , the
losses Lhigh and Llow measuring the regional differences
between restored image and ground-truth: Ldeblur(Ihigh ·
A, Igt ·A) and Ldeblur(Ilow · (1−A), Igt · (1−A)).

4. Experiments
4.1. Data for motion segmentation

DAVIS [37] dataset contains sequences of video frames
and the annotated moving object segmentation mask for
each frame. The training of HBRS module requires blurry
images, events frame stack, and the moving object segmen-
tation map as ground-truth. Inspired by the motion blur syn-
thesis method proposed in [2], the adjacent triplet frames in
DAVIS were recursively interpolated 4 times and, then the
33 interpolated frames were averaged to produce a motion-
blurred image. The segmentation mask of the middle frame
was selected as the ground-truth mask. A video interpola-
tion network proposed in [8] was utilized to generate the
middle frame from two adjacent frames. The public event
simulator [39] is used to simulate event signals from the
interpolated frames. There are 1086 training instances gen-
erated in total among them 67 are for validation. The same
amount of unlabeled instances from the deblurring training
dataset are selected for cross-consistency training.

4.2. Deblur dataset

GoPro dataset – We follow the official suggestion of train-
ing and testing split and by averaging nearby (the number
varies from 7 to 13) frames to produce the blurry image.
The corresponding events are synthesized by ESIM simula-
tor [39]. Based on the number of frames that are averaged
for a blurry image, the corresponding synthetic events are
accumulated into 6 event frames. 2103 samples of blurry
image, event frames stack and ground-truth frame are used
for training and 1111 samples are for testing. Table 1 com-
pares the performance of MADANet and the state-of-the-art
deblurring methods. MADANet is the standard model with
5 and 6 residual blocks for low and high blur level branches,
respectively. MADANet+ is the deeper version contain-
ing 10 and 11 residual blocks for corresponding branches.
Among the listed methods, BHA [34], LEBMD [18], and
ERDN [15] are also event-aided solutions. DGN [23]
provides depth-aware deblurring, whereas MBRNN [35],
GSTA [45] and PVDNet [42] are video-based (multi-frame)
methods. MADANet outperforms HINet by 0.4 dB with
fewer parameters, but the deeper version with moderate size

Table 1. Deblurring results on GoPro dataset
Method PSNR SSIM Params

BHA [34] 29.06 0.943 N/A
DeepDeblur [31] 29.23 0.916 11.7M
SVDN [57] 29.81 0.937 N/A
SRN [47] 30.26 0.934 6.8M
DGN [23] 30.49 0.938 11.32M
PSS-NSC [12] 30.92 0.942 2.8M
MT-RNN [36] 31.15 0.945 2.6M
DMPHN [59] 31.20 0.945 21.7M
RADN [38] 31.76 0.953 N/A
LEBMD [18] 31.79 0.949 N/A
PVDNet [42] 31.98 0.928 23.4M
SAPHN [44] 32.02 0.953 N/A
GSTA [45] 32.10 0.960 N/A
MBRNN [35] 32.16 0.953 5.42M
BANET [48] 32.44 0.957 85.6M
MPRNET [58] 32.66 0.959 20.1M
MIMO-UNet++ [7] 32.68 0.959 16.1M
HINet [6] 32.71 0.959 88.6M
ERDN [15] 32.99 0.935 N/A

MADANET 33.09 0.958 9.9M
MADANET+ 33.84 0.964 16.9M

widens this gap to 1 dB. In addition, the Supplementary file
provides a visual comparison of real event data/blurry in-
tensity image pair with eSLNet [49].

TSlowmotion dataset – The limitations of GoPro are low
image quality, insufficient diversity of scenes, and moder-
ate motion blur for that the improvement from events may
be less significant. Thus, we collected more than 200 slow-
motion videos with 250 FPS using SONY RX VI camera.
Our dataset contains dynamic scenes of objects’ moving
and natural handshaking existing. Moreover, instead of fo-
cusing on outdoor scenes we also collected many indoor
videos of complex light sources. The collected high frame
rate (HFR) videos are combined with the Sony-slowmotion
dataset collected by [19]. The blurry images synthesis pro-
cess is the similar to GoPro dataset but we average 13 to 25
frames to produce heavier motion blur. We also simulate an
short exposed image that follows the blurry image. To ob-
tain short expose frame less number of images are averaged.
In that way, the ratio of long and short exposure time is set
to 4 : 1. In order to mimic the real world under-exposed
image which usually results in insufficient light and under
heavy noise, the brightness of short-exposed is reduced and
a certain amount of noise is added to the image. The noise
can be divided into signal dependent (Poisson) and signal
independent (Gaussian) [10, 16]. The Poisson noise defines
the photon noise which can be approximated as a normal
distribution P(λ) ≈ N (λ, λ) where λ is the amount of pho-
tons hitting the sensor. A zero-mean Guassian noise model
can be used to represent the other noise sources. The final
amount of noise can be expressed as:

X∼N (λ, λ) +N (0, σ2) = N (λ, λ+ σ2) , (10)

The video sequences are split into 233 for training and 36
for testing that 10213 training samples and 1528 testing
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Table 2. Performance comparison on TSlowMotion Dataset

Method PSNR SSIM params

LSD2 (L+S) [29] 33.32 0.939 31.04M
LSD2 (L+E) 36.05 0.965 31.04M

MIMO+ [7] 33.88 0.949 14.56M
MIMO+ (L+S) 35.07 0.958 14.56M
MIMO+ (L+E) 35.99 0.965 14.56M

BANet [48] 33.35 0.942 14.09M
BANet (L+S) 34.54 0.953 14.09M
BANet (L+E) 36.48 0.967 14.09M

MADANET 33.46 0.944 9.89M
MADANET (L+S) 34.83 0.956 9.89M
MADANET (L+E) 37.09 0.971 9.89M
MADANET (L+E+S) 37.18 0.972 9.89M

samples are obtained.

Along with MADANet, other three deblurring networks,
LSD2, MIMO+, and BANet, were also trained for different
input types on the TSlowmotion dataset, for a fair compari-
son. The original LSD2 is a U-net that takes long and short
frames as input. MIMO+ and BANet achieve the state-of-
the-art level performance on single image deblurring and
both utilize a certain number of residual blocks. We re-
duce the the number of the residual blocks of MIMO+ and
BANet to compare the performances of the networks with
similar complexity. All 4 networks are trained with ADAM
optimizer with parameters β1 = 0.9 and β2 = 0.99. The
batch-size is set to 8 and the patch size is 512 × 512. The
learning rate is initialized to be 1× 10−3 and reduced when
the validation loss has stopped dropping for 5 successive
epochs. The maximum number of epochs is set to be 200.
For MADANet, the HBRS module is first trained semi-
supervised manner for 100 epochs with ADAM optimizer
and we freeze this module for the main deblurring mod-
ule’s training process. We trained the mentioned networks
with different types of inputs: single long exposure blurry
frames (L), long and short frames (L+S) and long and cor-
responding events stack (L+E). A special case with all 3
types of input (L+E+S) is also considered, and MADANet
was trained for this case. As shown in Table 2, the per-
formances of all networks are improved by utilizing event
data. MIMO+ works the best on L and L+S deblurring
thanks to the advantage of multi-scale information fusion.
Compare MIMO+, the blur-aware attention network BANet
achieves about 0.5 dB improvements on L+E. MADANet
performs the second-best when input only contains RGB
image or is concatenated with the short exposure frame, and
surpasses the BANet 0.5 dB on L+E. The visual comparison
over MIMO+, BANet and MADANet trained with (L+E) is
shown in Figure 5. MADANet can restore more details for
both foreground and background compared to the other net-
works.

Table 3. Performance of different components of MADANet
HBRS Event Injection PSNR SSIM params

✓ 36.87 0.970 9.89M
✓ 36.76 0.969 7.74M

✓ ✓ 37.09 0.971 9.89M

Table 4. Performance of different branches
High-level Low-level Shared PSNR SSIM params

✓ 36.48 0.968 6.40M
✓ 36.67 0.969 6.40M

✓ ✓ 37.09 0.971 9.89M
✓ ✓ ✓ 36.64 0.968 6.64M

4.3. Ablation Study

Table 3 shows the effectiveness of different components
in MADANet: HBRS and event-injection. Without HBRS
module, the MADANet becomes a two branches incre-
mental model feeding same input to each branch. The
model with two branches mechanism brings performance
improvements compare to single branch models BANet and
MIMO+ using much less amount of parameters. Without
event-injection, the 6 event frames are first super-resolved
to have same size of blurry RGB image and concatenated
to RGB, which yields a 9-channel input. Comparing to the
MADANet with event-injection, the performance slightly
drops. In this manner, proposed injection not only bypass
the possible SR requirement, but also increase the recon-
struction accuracy. On the other hand, for a noisy and not
perfectly registered data, we may expect from SR process
to further increse the detoriation.

Table 4 shows ablation study on different branches in
MADANet. The performance of low-level and high-level
branches is directly measured on the output of the two aux-
iliary decoders after each branch. The low-level branch pro-
duce better objective scores compare to high-level branch
since high level focus on local high blur regions, while the
low-level branch prioritizes the rest of image. A MADANet
with two branches of shared weights is also trained. The
best performance is achived by fusing the outputs from two
branches with different weights as expected.

4.4. Testing on Real Events

In order to evaluate how well the algorithm handles real-
world event data, a group of image/event pairs was captured
by a camera-rig consisting of a conventional intensity cam-
era with global shutter mode and Prophesee Gen4.0 with
a high-speed event sensor. The recorded RGB and event
data are at resolution 1280x720, and a low light commercial
alignment algorithm is applied on the downsampled ver-
sion of RGB and event frames. This way, low-resolution
event data is realistically represented and used as input to
the competing algorithms as blurry images are used in their
original size. This dataset, TReal, is only used for test
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Figure 5. The visualized results from TSlowmotion dataset. BANet, MIMO+ and MADANet are trained with same type of data: blurry
image + events as inputs. The first row shows two examples of input data.

Figure 6. BANet, MIMO+ and MADANet are tested on real captured blurry image and events data. The three models are trained with L+E
input data from TSlowmotion dataset and the first row shows two examples of testing inputs.

purposes, BANet, MIMO+, and MADANet are all trained
with L+E input data from TSlowmotion dataset. Figure 6
shows the visual results tested by the three models and our
method outperforms the other two methods. Even if the
alignment is not perfect, Figure 8 of the Supplementary
shows using event data clearly improves the deblurring re-
sults compared to using only the single frame or perfectly
registered short/long frame pair.

5. Conclusion
In this paper, we present a novel approach for event-

aided deblurring that can effectively recover a sharp image
from a blurry image distorted by different motion blur. By
localizing the high blur region with High Blur Region Seg-
mentation (HBRS) module, a high blur mask and the com-

plement of the mask can emphasize high and low-level de-
blurring in our double-branch deblurring network. Unlike
other event-aided deblurring method, the event data is accu-
mulated into number of frames and fused with feature maps
at lower dimention. Our method achieves the state-of-the-
art performance on the benchmark GoPro dataset with very
limited number of parameters. Extensive experiments on
our TSlowmotion dataset and visualized deblur results on
real-world data demonstrate that our method outperforms
other methods. Although MADANet is a single image-
deblurring network, the proposed motion segmentation-
assisted double attention technology can be extended to
video deblurring, as future work.
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