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Abstract

This paper reviews the NTIRE 2022 Challenge on Super-
Resolution and Quality Enhancement of Compressed Video.
In this challenge, we proposed the LDV 2.0 dataset, which
includes the LDV dataset (240 videos) and 95 additional
videos. This challenge includes three tracks. Track 1
aims at enhancing the videos compressed by HEVC at
a fixed QP. Track 2 and Track 3 target both the super-
resolution and quality enhancement of HEVC compressed
video. They require x2 and x4 super-resolution, respec-
tively. The three tracks totally attract more than 600 reg-
istrations. In the test phase, 8 teams, 8 teams and 12
teams submitted the final results to Tracks 1, 2 and 3, re-
spectively. The proposed methods and solutions gauge the
state-of-the-art of super-resolution and quality enhance-
ment of compressed video. The proposed LDV 2.0 dataset
is available at https://github.com/RenYang-
home/LDV_dataset. The homepage of this challenge
(including open-sourced codes) is at https://github.
com/RenYang-home/NTIRE22_VEnh_SR.

1. Introduction

Nowadays, there are increasing demands on transmitting

high quality videos over the Internet. Video compression

plays an important role on the efficient video transmission

through the band-limited Internet, however, it also unavoid-

ably lead to compression artifacts, which may severely de-

grade the visual quality. Therefore, it is necessary to study

on the quality enhancement of compressed video (Track 1).

Besides, in early years, due to the much lower speed of the

Internet and the smaller memory of devices, the videos were

usually with low resolution. Therefore, in the case that we

intend to restore these videos to high resolution and better

quality, it is meaningful to explore the methods that enhance

the quality and meanwhile achieve the super-resolution of

compressed video (Track 2 and Track 3).

For enhancing the quality of compressed video, there

has been plenty of works proposed in the past a few

years [16, 20, 27, 46, 60, 63, 67, 68, 70, 71, 75–77]. In these
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methods, [63, 75, 76] are single-frame quality enhancement

methods, while [16, 20, 27, 46, 60, 68, 70, 71, 77] propose

enhancing quality by taking advantage of temporal corre-

lation. Besides, a great number of methods [8, 21, 26, 30,

42,54–56,61,64] were proposed for video super-resolution.

However, these methods only focus on the super-resolution

of uncompressed videos. In 2020, Chen et al. [12] pro-

posed the compressed domain deep video super-resolution

method, and their latest work [13] further improves the

quality performance.

The NTIRE 2022 Challenge on Super-Resolution and

Quality Enhancement of Compressed Video is a step for-

ward for establishing a benchmark of video quality en-

hancement and a benchmark of super-resolution on com-

pressed video. It uses the LDV 2.0 dataset, which contains

335 videos with the diversities of content, motion, frame-

rate, etc. In the following, we first describe the NTIRE 2022

Challenge, including the proposed LDV 2.0 dataset. Then,

we will introduce the proposed methods and the results.

2. NTIRE 2022 Challenge
The objectives of the NTIRE 2022 challenge on Super-

Resolution and Quality Enhancement of Compressed Video

are: (i) to advance the state-of-the-art in quality enhance-

ment of compressed video; (i) to advance the state-of-the-

art in super-resolution of compressed video; (iii) to compare

different solutions; (iv) to promote the LDV 2.0 dataset.

This challenge is one of the NTIRE 2022 associ-

ated challenges: spectral recovery [2], spectral demo-

saicing [1], perceptual image quality assessment [19],

inpainting [53], night photography rendering [18], effi-

cient super-resolution [36], learning the super-resolution

space [47], super-resolution and quality enhancement of

compressed video [74], high dynamic range [50], stereo

super-resolution [62], burst super-resolution [5].

2.1. LDV 2.0 dataset

The proposed LDV 2.0 dataset is an enlarged version of

the LDV dataset [72] with 95 additional videos. There-

fore, there are totally 335 videos in the LDV 2.0 dataset.

The same as LDV, the additional videos in LDV 2.0 are

collected from YouTube [28], containing 10 categories of

scenes, i.e., animal, city, close-up, fashion, human, indoor,

park, scenery, sports and vehicle, and they are with diverse

frame-rates from 24 fps to 60 fps. To ensure the high quality

of the groundtruth videos, we only collect the videos with

4K resolution, and without obvious compression artifacts.

We downscale the videos by the factor of 4 using the Lanc-

zos filter [59] to further remove the artifacts, and crop the

width and height of each video to the multiples of 8, due

to the requirement of the HEVC test model (HM). Besides,

we convert videos to the format of YUV 4:2:0, which is

the most commonly used format in the existing literature.

Note that all source videos in our LDV 2.0 dataset have the

licence of Creative Commons Attribution licence (reuse al-
lowed)1, and our LDV 2.0 dataset is used for academic and

research proposes.

In the NTIRE 2022 Challenge, we use the 240 videos in

the original LDV dataset [72] as the training sets for all three

tracks. We choose 90 videos from the remaining videos in

LDV 2.0, and split them into six datasets with 15 videos in

each. When splitting the datasets, we have paid attention to

the diversity (content, frame rate, etc.) of the videos in each

set. These six datasets are utilized as the validation and test

sets for the three tracks, respectively. All videos in the LDV

and LDV 2.0 datasets and the splits in NTIRE 2021 and

NTIRE 2022 Challenges are publicly available at https:
//github.com/RenYang-home/LDV_dataset.

2.2. Track 1 – Quality enhancement

To establish a progressive benchmark upon NTIRE

2021 [73], the Track 1 in NTIRE 2022 is set as the same

task as that in NTIRE 2021. That is, Track 1 aims at en-

hancing the quality of compressed video towards fidelity.

We evaluate the enhanced quality in terms of PSNR. In this

track, the videos are compressed using the official HEVC

test model (HM 16.202) at QP = 37 the default Low-Delay

P (LDP) setting (encoder lowdelay P main.cfg).

2.3. Track 2 – Quality enhancement with x2 SR

Track 2 is a more challenging task, which requires the

participants to enhance and meanwhile ×2 super-resolve

the compressed video. In this track, the input videos are

first downsampled by the following command:

ffmpeg -pix fmt yuv420p -s WxH -i x.yuv
-vf scale=(W/2)x(H/2):flags=bicubic
x down2.yuv

where x, W and H indicates the video name, width and

height, respectively. Then, the downsampled video is com-

pressed by HM 16.20 with the same configurations as that in

Track 1. Note that in this track, we first crop the groundtruth

videos to make sure that the downsampled width (W/2) and

height (H/2) are integer numbers.

2.4. Track 3 – Quality enhancement with x4 SR

In Track 3, we further use ×4 downsampling, and there-

fore the participants are required to enhance and meanwhile

×4 super-resolve the compressed video. In this track, we

change the width and height of downsampled video to W/4
and H/4. Other settings are the same as Track 2. We also

1https : / / support . google . com / youtube / answer /
2797468?hl=en

2https : / / hevc . hhi . fraunhofer . de / svn / svn _
HEVCSoftware/tags/HM-16.20
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Table 1. Results of Track 1 (quality enhancement). Blue indicates the state-of-the-art method.

Team

PSNR (dB)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 Ave.

TaoMC2 34.20 32.71 31.59 37.12 32.75 30.81 30.79 34.58 32.13 37.13 27.35 24.42 30.60 33.38 31.54 32.07
GY-Lab 34.23 32.90 31.61 37.32 32.70 30.83 30.77 34.55 32.06 36.87 27.34 24.28 30.58 33.34 31.56 32.06

HIT&ACE 34.07 32.68 31.47 37.10 32.60 30.73 30.70 34.38 31.98 36.69 27.27 24.38 30.54 33.20 31.40 31.94
BOE-IOT-AIBD 33.96 32.58 31.45 36.90 32.45 30.63 30.54 34.25 31.91 36.51 27.16 24.05 30.47 33.12 31.33 31.82

OCL-VCE 33.81 32.54 31.30 36.82 32.28 30.59 30.47 34.07 31.75 36.28 27.08 24.00 30.37 33.01 31.25 31.71
BasicVSR++ [10] 33.73 32.42 31.22 36.75 32.16 30.57 30.41 33.99 31.68 36.20 27.06 23.93 30.24 32.94 31.20 31.63

OREO 33.64 32.38 31.16 36.80 32.08 30.55 30.37 34.02 31.63 36.12 27.02 23.98 30.30 32.91 31.10 31.60
UESTC+XJU CV 33.57 32.33 31.04 36.60 31.97 30.46 30.24 33.76 31.47 35.96 26.94 23.77 30.19 32.77 31.05 31.47

AVRT 33.19 31.19 30.14 35.59 31.37 29.87 29.88 33.15 31.05 35.79 26.81 23.61 29.39 32.32 29.77 30.88

Compressed video 32.43 30.18* 29.05 34.31 30.49 28.99 28.84 31.80 29.86 34.65 26.30 22.87 28.42 31.21 29.03 29.90

* The frames with MSE = 0 are excluded when calculating the average PSNR.

Table 2. Results of Track 2 (quality enhancement and ×2 super-resolution)

Team

PSNR (dB)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 Ave.

TaoMC2 27.71 24.11 26.53 31.30 31.84 27.11 25.13 24.20 28.76 32.16 26.39 27.83 26.27 24.73 29.17 27.55
GY-Lab 27.56 23.89 26.47 31.26 31.69 27.03 25.05 24.12 28.61 32.15 26.34 27.71 26.08 24.61 29.17 27.45

HIT&ACE 27.43 23.79 26.38 31.13 31.42 26.96 24.94 23.91 28.38 32.01 26.21 27.61 25.95 24.47 29.06 27.31
ZX VIP 27.46 23.77 26.42 31.03 31.50 26.83 24.91 24.00 28.46 31.69 26.23 27.61 25.97 24.55 29.00 27.30

Trick collector 27.44 23.90 26.40 31.02 31.38 26.94 25.00 22.28 28.34 31.86 26.17 27.58 26.03 24.49 29.01 27.19
HMSR 27.18 23.54 26.26 30.85 31.22 26.69 24.68 23.84 28.28 31.61 26.13 27.45 25.67 24.34 28.68 27.09
TBE 26.87 23.23 26.12 30.53 30.76 26.36 24.36 23.65 27.92 31.27 25.93 27.23 25.28 24.07 28.34 26.80

AVRT 26.58 22.88 25.92 30.21 30.39 26.23 24.01 23.43 27.68 30.77 25.77 26.94 24.70 23.68 27.95 26.48

Bicubic ×2 25.55 22.03 25.53 29.12 29.33 25.20 23.17 22.67 26.54 29.65 25.12 26.25 23.92 22.76 26.83 25.58

Table 3. Results of Track 3 (quality enhancement and ×4 super-resolution). Blue indicates the state-of-the-art method.

Team

PSNR (dB)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 Ave.

GY-Lab 27.13 21.22 25.15 24.78 26.80 24.39 21.93 24.32 28.05 22.33 22.24 24.06 20.88 25.66 24.49 24.23
TaoMC2 27.20 21.24 25.14 24.71 26.72 24.19 21.98 24.31 28.04 22.35 22.24 24.06 20.93 25.63 24.49 24.22

NoahTerminalCV 28.40 20.84 24.61 23.91 26.44 25.66 22.06 23.83 26.79 21.86 23.81 23.75 21.56 24.90 24.61 24.20
HIT&ACE 27.06 21.10 24.99 24.49 26.33 23.93 21.83 24.18 27.74 22.18 22.13 23.95 20.75 25.48 24.30 24.03

XPixel 27.02 21.10 24.96 24.58 26.43 24.04 21.80 24.15 27.48 22.15 22.14 23.98 20.81 25.42 24.26 24.02
Trick collector 26.75 21.15 25.01 24.01 26.23 23.85 21.04 24.16 27.66 22.12 22.10 23.88 20.69 25.38 24.26 23.88

HyperPixel 26.72 20.87 24.68 23.82 25.92 23.49 21.46 23.90 27.16 21.90 22.04 23.66 20.51 25.12 23.88 23.68
CVStars 26.75 20.88 24.72 23.66 25.90 23.71 21.52 23.81 26.94 21.86 22.16 23.77 20.50 25.00 23.90 23.67
AVRT 26.63 20.75 24.39 23.58 25.72 23.48 21.39 23.69 26.64 21.76 22.07 23.54 20.41 24.98 23.70 23.52

StarRay 26.46 20.66 24.17 22.97 24.15 23.22 21.19 23.37 26.01 21.49 22.10 23.41 20.22 24.39 23.48 23.15
CDVSR [13]* 26.20 20.64 24.03 22.61 24.90 23.02 21.02 23.24 25.88 21.35 21.97 23.18 20.13 23.89 23.40 23.03
Modern SR 26.38 20.49 23.90 22.76 24.81 22.93 21.09 23.13 25.56 21.29 21.92 23.27 20.14 24.18 23.31 23.01

TUK-IKLAB 26.19 20.55 23.74 22.37 24.17 22.39 20.80 22.84 25.10 21.07 21.94 23.05 19.89 23.35 23.12 22.70

Bicubic ×4 26.04 20.52 23.53 22.14 24.24 22.06 20.58 22.63 24.80 20.89 21.91 22.92 19.78 23.32 23.06 22.56

* The CDVSR [13] method only enhances the Y channel and upsamples the U and V channels by the bicubic algorithm.

crop the groundtruth videos to make sure that the downsam-

pled width (W/4) and height (H/4) are integer numbers.

3. Challenge results

3.1. Track 1: Quality enhancement

Table 1 shows the PSNR results of the 8 methods pro-

posed in this challenge, in comparison with the com-

pressed videos without enhancement. Besides, we also

show the result of the winner method in NTIRE 2021 (Ba-

sicVSR++ [10]), which is the state-of-the-art performance.

It can be seen from Table 1 that the PSNR improvement

of the 8 proposed methods ranges from 0.98 dB to 2.17 dB.

The top 3 methods have the PSNR improvement higher than

2.0 dB, and the top 5 methods successfully outperform the

winner method in NTIRE 2021 (BasicVSR++ [10]). Specif-

ically, the TaoMC2 Team achieves the best average perfor-

mance in this track, and its results are the best on 9 videos.

The GY-Lab Team ranks second with very similar average

performance to the TaoMC2 Team, and it has the best re-

sults on 6 out of the 15 test videos. The PSNR results of

both these two top methods are higher than the last winner

(BasicVSR++ [10]) by more than 0.4 dB.
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Table 4. The time complexity, hardware, test strategies and training data of the proposed methods (reported by the participants).

Team

Running time (s) per frame

Hardware Ensemble / Fusion Extra training dataTrack 1 Track 2 Track 3

TaoMC2 44.1 44.1 13.0 Tesla V100 Flip/rotation x8, two models 870 videos from YouTube [28]
GY-Lab 6.9 4.6 11.5 Tesla V100 Spatial-temporal ensemble and several models REDS [49], Vimeo90K [69], YouTube [28]

HIT&ACE 17.30 10.97 17.40 Tesla V100 Flip/rotation x8, two models 540 samples from YouTube [28]
NoahTerminalCV - - 150 Tesla V100 Flip/rotation x8, five networks 90,000 videos from YouTube [28]
BOE-IOT-AIBD 1.61 - - Tesla V100 Flip/rotation x8 -

ZX VIP - 12 - Tesla V100 Flip/rotation x8 REDS
OCL-VCE 28.72 - - Tesla T4 Flip/rotation x8 -

Trick collector - 2.56 3.2 Tesla A100 Flip/rotation x6/x8, model voting REDS [49]
XPixel - - 13.02 Tesla A100 Flip/rotation x8 REDS [49], Vimeo90K [69] and 2174 clips
OREO 19.4 Tesla A40 Flip/rotation x8 -
HMSR 14.36 Tesla A100 Flip/rotation x8 1274 additional from Youtube [28]

UESTC+XJU CV 0.16 - - GeForce RTX 3090 - -
TBE - 0.90 - Tesla V100 - 91 videos

HyperPixel - - 0.44 Tesla V100 Flip/rotation x8 -
CVStars - - 10 Tesla V100 Flip/rotation x8, epoch-ensemble -
AVRT 27 8 2 Tesla A100 Flip/rotation x4 202 videos

StarRay - - 4.0 GeForce RTX 2080 Ti Two models with different loss -
Modern SR - - 0.86 GeForce RTX 3080 - -

TUK-IKLAB - - ≤1.0 GeForce RTX 3090 - -

3.2. Track 2 – Quality enhancement with x2 SR

The results of Track 2 are tabulated in Table 2. We also

reported the PSNR of the videos that are directly upscaled

by the bicubic algorithm, which can considered as the un-

processed videos. It can be see that the best method pro-

posed by the TaoMC2 Team improves the PSNR by around

2.0 dB, in comparison with bicubic ×2, and it also achieves

the highest PSNR on all test videos. The GY-Lab Team is

0.1 dB lower on the average PSNR, and has the best result

on one test video (#15).

3.3. Track 3 – Quality enhancement with x4 SR

Track 3 is the most challenging track that requires a

super-resolution on the compressed video. Similar to Track

2, we consider the videos that are ×4 upscaled by bicu-

bic algorithm as the unprocessed samples. As shown in Ta-

ble 3, there are 10 teams that outperforms the state-of-the-

art method [13]. Besides, there are 8 methods that improves

the average PSNR by more than 1.0 dB upon the bicubic

×4 videos. The top 3 methods achieve > 1.6 dB PSNR im-

provement, and forth-rank and the fifth-rank methods also

has around 1.5 dB PSNR improvement, in comparison with

the bicubic ×4 videos.

In the proposed methods, the top 3 methods (GY-Lab,

TaoMC2 and NoahTerminalCV) has comparable perfor-

mance. The differences on the average PSNR among the

top 3 methods are ≤ 0.03 dB. The GY-Lab, TaoMC2 and

NoahTerminalCV Teams has the best results on 7, 3 and 6

test videos, respectively.

3.4. Efficiency, test strategies and training data

We report the running time of the proposed methods in

Table 4. It can be seen from Table 4 that the GY-Lab Team

has the highest time efficiency among the top methods, in-
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Figure 1. The two-stage approach proposed by the TaoMC2 Team.

dicating that it achieves a good trade-off between quality

and time efficiency. Besides, as Table 4 shows, most top

methods uses the self-ensemble [57] to improve the quality

performance, and moreover, the GY-Lab Team further uses

a temporal ensemble strategy. Some teams also utilize the

ensemble of several models, which are trained with different

loss functions or at different training epochs. Table 4 also

shows that extra training data of each team. Most top teams

trained their models with extra training samples, including

REDS [49], Vimeo90K [69] and the videos collected from

YouTube [28]. This indicates that enlarging the training set

is beneficial for improving the performance of quality en-

hancement. Note that, the data in Table 4 are provided by

the participants, so the data may be obtained under differ-

ent hardware and conditions. Therefore, Table 4 is only for

reference. It is hard to guarantee the fairness in comparing

time efficiency.

4. Teams and methods
4.1. TaoMC2 Team

Framework. The TaoMC2 Team proposes a two-

stage approach for quality enhancement on the compressed
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Figure 2. Visual results of the two-stage approach of TaoMC2.

videos, the pipeline of which is shown in Figure 1. In stage

I, the network is developed on the top of BasicVSR++ [10].

Specifically, they replace the second-order flows in Ba-

sicVSR++ by PQF flows [20, 77]. They also deepen the

reconstruction module of BasicVSR++. Finally, the stage

I model is trained over a large-scale high-quality dataset

in a progressive manner, which is inspired by the fea-

ture progressive sharing and deep supervision training of

RBQE [66]. In stage II, they further improve the quality of

the enhanced consecutive frames by a state-of-the-art image

restoration network, i.e., SwinIR [38]. This stage helps mit-

igate severe blurry and further improve the quality upon the

single-stage method. Finally, the networks of stage I and II

are cascaded for producing the final results.

Training. For stage I of Track 1, they first fine-tune the

official pre-trained BasicVSR++ [10] model for 300,000 it-

erations with the Charbonnier loss [33], using Adam op-

timizer with the initial learning rate of 2 × 10−5. They

also adopt the Cosine Restart scheduler with the period of

300,000 iterations, and linearly increase the learning rate

for the first 10% iterations. Besides, they progressively train

and converge the model by increasing the number of resid-

ual reconstruction blocks from 5 to 55. Then, the model is

fine-tuned with L2 loss for 100,000 iterations. For stage I

of Tracks 2 and 3, they load the pre-trained model of Track

1 and repeat the above training process. For stage II of

Track 1, the image restoration model of SwinIR is fine-

tuned over the NTIRE training dataset and the additional

870 videos from YouTube [28], via the default Charbonnier

loss. This SwinIR model is initialized by pre-trained param-

eters from [38], which is trained for RGB image denoising.

Then they jointly fine-tune the overall model with a small

learning rate of 10−6 using the L2 loss function, over the

training datasets. For stage II of Track 2, they fine-tune the

pre-trained model from Track 1 with Charbonnier loss for

15K iterations. The stage II of Track 3 directly uses the pre-

trained model from Track 2 without additional fine-tuning.

Test. For Tracks 1 and 2, all frames of each compressed

video are input into the model of stage I to get the enhanced

Figure 3. The pipeline of the method proposed by the GY-Lab

Team in all three tracks. Models under different settings (struc-

ture, loss functions) are first trained independently. They apply

both spatial and temporal ensemble on each model and average

the outputs of all models as the final result.

frames. Then, the enhanced frame is further enhanced by

the model of stage II model. Moreover, they conduct a 8-set

self-ensemble method [57] to augment the input frames, and

then averaging the all enhanced results as the final output.

For Track 3, on the top of self-ensemble, they further con-

duct a two-set model ensemble for the inference of stage I.

Specifically, they average the outputs of two trained models

as the final result of stage I, while each model is first con-

ducted above 8-set self-ensemble. Subsequently, the output

of stage I is feed into stage II, which is without any en-

sembles. Figure 2 shows the visual results of the TaoMC2

Team. It can be seen from Figure 2 that it achieves more de-

tails in the blurred regions of video frames, e.g., the hair is

much clearer in the enhanced frame. Besides, the output of

the proposed method contains less motion blur, compared

with the compressed video.

4.2. GY-Lab Team

Framework. The method of the GY-Lab Team is built

on BasicVSR++ [10]. Figure 3 shows the pipeline of the

proposed method. Inspired by [40], an enlarged model com-

bined with proper training strategies is expected to have no-

ticeable improvements over the baseline. On the one hand,

they perform two modifications on BasicVSR++ to improve

its capacity. To be specific, since the modules of feature ex-

tracting and upsampling are far weaker than that of feature

propagation, they increase the number of residual blocks

in these two modules. Besides, enhanced activation func-

tions (e.g., SiLU [17]) are proven to be effective according

to [40]. For the sake of training efficacy, they replace Leaky

ReLU in BasicVSR++ with PReLU [22] and verify its ef-

fectiveness. On the other hand, they adopt different loss

functions (e.g., MSE loss and Charbonnier loss [33]) to su-

pervise model training so as to obtain results with different

aspects of advantages, which is beneficial to subsequent en-
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Figure 4. Details of the temporal ensemble strategy of the GY-Lab

Team. Each video is split into several clips with overlap and the

average of these outputs is taken as the ensemble result.

semble.

Training. For improving the generalization ability of

the proposed method, they employ the videos from REDS

[49], Vimeo90K [69] and YouTube as training samples, in

addition to the NTIRE training set. In Track 1, they adopt

open-sourced BasicVSR++ [10] as the baseline as well as

the pre-trained model. In terms of data augmentation, they

follow the settings in BasicVSR++ except the patch size

is increased from 256 to 384. Besides, the model is en-

larged by two modifications mentioned above to increase

the capacity. Low-precision training (fp16) is adopted to

enable the training of larger model with bigger patch size.

Different loss functions (e.g., MSE loss and Charbonnier

loss [33]) are leveraged to train models independently for

results of diverse characteristics. Each model is first trained

for 300, 000 iterations with Adam [31] optimizer (initial

learning rate of 4 · 10−5 and batch size of 8). After that,

another training with 100, 000 iterations is performed with

an initial learning rate of 4 · 10−6. In Track 2 and Track 3,

they utilize the models trained in Track 1 as the pre-trained

models. Similar training strategy is adopted for these two

tracks. Note that for the models of different super-resolution

scales, most layers in the pre-trained models have identical

structures except the modules of feature extracting and up-

sampling. Therefore, they set a larger initial learning rate of

10−4 for these layers to encourage faster convergence.

Test. In the first stage, they utilize spatial and tempo-

ral self-ensemble strategies to improve the final results. For

spatial ensemble, they feed augmented input frames inde-

pendently to the network, including horizontal flip, verti-

cal flip and rotation, and use the average outputs as predic-

tion. This brings 0.18 ∼ 0.20 dB improvement on PSNR.

As for temporal ensemble, they split each video into over-

lapped clips and obtain average results as shown in Fig-

ure 4. Since short clip length causes unexpected perfor-

mance drop, temporal clip length is restricted to 200, which

results in 0.01 ∼ 0.02 dB PSNR improvement. Besides

self-ensemble, they also use conventional multi-model en-

semble strategy to further improve the result. Among the

three tracks, they choose several models trained with dif-

ferent hyper-parameters and fuse the results by averaging.

Figure 5. The proposed method of the NoahTerminalCV Team.

However, the multi-model ensemble is time-consuming and

cannot always get a stable improvement. It performs better

on Track 3 than Tracks 1 and 2.

4.3. HIT&ACE Team

Model fusion is a commonly used strategy for boosting

performance, but averaging the results of exactly the same

models which are re-trained for multiple times only pro-

vides marginal improvement. In order to obtain models

that are complementary to each other, they propose train-

ing models with different architectures and sizes, and then

fuse the results by weighted average. Specifically, they use

BasicVSR++ [10] as the backbone architecture. For track1,

they train two models. In one of them, they replace the

five reconstruction residual blocks with four transformer

blocks [78]. In the other model, they increase the num-

ber of channels to 256 and enlarge the number of the resid-

ual blocks in each recurrent step to 30 (denoted as large-

BasicVSR++). The results of the two models are averaged

with weights of 0.3 and 0.7, respectively. In track2, they

only use a large-BasicVSR++ model. In track3, they train

one BasicVSR++ model and one large-BasicVSR++ model.

Then, they average the results with weights of 0.7 and 0.3,

respectively.

4.4. NoahTerminalCV Team

The proposed method of the NoahTerminalCV Team

consists of two subsequent stages. Firstly, they perform an

initial super-resolution using an ensemble of feed-forward

multi-frame neural networks. The second step is called

reference-based frame refinement. They find the top K sim-

ilar images for each low-resolution input frame from the
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external database. Then, they run a matching correction

step for every patch on this input frame to perform a global

alignment of reference patches. As a result, we have the

ISR, which comes from the first stage, and a set of globally

aligned references {I1R, I2R, ..., IKR }. Finally, they are pro-

cessed with the RBFR network (NRBFR) to handle residual

misalignments and to properly transfer texture and details

from the reference images to initially super-resolved out-

put ISR, and then the final output IO can be obtained. The

proposed framework is illustrated in Figure 5.

4.4.1 Initial super-resolution

Many different networks have been tried to perform the ini-

tial super-resolution. The key ideas which are followed to

design a network are briefly introduced as follows:

1. As a general pipeline, they follow the NoahBurstSR-

Net [4] which is a window-based neural network. It

takes a low-resolution image to enhance (key-frame)

and also N additional frames from the video. The

design of this network architecture allowed us to use

N=16 during training and N=128 during inference;

2. The original convolutional blocks in NoahBurstSRNet

are replaced with SwinIR [38] modules;

3. The original alignment module in NoahBurstSRNet

is based on PCD [64] which is a pyramid alignment

with deformable convolutions [15]. To improve the

alignment procedure, they employ the ideas from [10]

and [64] and build a new alignment module which is

called Pyramid Flow-Guided Deformable Alignment

(PFGDA). The main difference from PCD is the usage

of optical flow estimated by a pretrained GMA [29]

network as a residual for an offset prediction block.

4. They employ a bitstream parser [52] to extract codec

information from the input videos. For each of the

frames, it extracts various statistics, including aver-

age motions, QP values, block sizes, etc. In total, for

each input frame, they build a vector of 127 numbers.

Then, to supply the network with this information, they

replace LayerNorm [3] layers in Swin Transformer

blocks with Adaptive Layer Normalization which is

similar to AdaIN [24].

5. To increase the capacity of the network without affect-

ing training and inference speed, they added a trainable

Product Key Memory (PKM) layer [34] before the last

Swin Transformer block.

The super-resolution network is trained using a pixel-

wise L1 objective on the full input images without cropping.

The training of one network until convergence takes about

7 days using 64 NVIDIA Tesla V100 GPUs. Using a big-

ger batch size typically leads to better performance on the

validation dataset.

4.4.2 Reference-based frame refinement (RBFR)

To employ the reference-based refinement strategy, they

first build a retrieval engine. The database consists of

1,400,000 images of size 960×512 sampled from a training

dataset. The naive way of storing the database would take

2 TB which is challenging for practical usage. Therefore,

they train an autoencoder to compress the database.

AutoEncoder. The typical autoencoder consists of two

parts: Encoder NE and Decoder ND. The image is firstly

processed by the encoder to obtain a latent representation

z = NE(IHR) and then the decoder can be used to re-

construct the original input ÎHR = ND(z). To improve

the reconstruction quality of the AutoEncoder, they sup-

ply the decoder with additional ILR input. Therefore, in

this case, the reconstruction is obtained as follows: ÎHR =
ND(z, ILR). This approach can improve the reconstruc-

tion quality by 0.5 dB. The autoencoder is trained using the

L1 objective. Also, they use a pair of unaligned images

ILR, IHR from the same video for training to improve the

robustness.

Feature Extractor. To build a retrieval engine, they train

a feature extractor network that takes a low-resolution im-

age ILR and represents it as a feature vector. They use a

contrastive learning [14] framework to train the feature ex-

tractor. For positive samples, they use two random frames

from the same video, while for the negative samples we em-

ploy frames from different videos. The Resnet-34 [23] ar-

chitecture is utilized as the feature extractor.

Retrieval Engine. After compressing the database of

images using the trained Encoder, obtaining latent repre-

sentations, and representing all low-resolution versions as a

feature vector of size 1000 extracted from the trained Fea-

ture Extractor, they build an index using the HNSW [48] al-

gorithm from the nmslib [6] library. This algorithm allows

searching for the top K nearest neighbors in the database.

RBFR. Finally, they train a network NRBFR that takes

the result of initial super-resolution ISR and top K similar

images from the database {I1R, I2R, ..., IKR }. The network

produces the final prediction IO. We train NRBFR through

the L1 objective between IO and IHR. As a NRBFR, the

NoahBurstSRNet [4] architecture is used, since it effec-

tively handles small misalignments and can properly trans-

fer information from reference non-aligned images.

4.4.3 Test

During the inference, in order to upscale the key-frame IiLR

we put it to the initial super-resolution network together
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Figure 6. Proposed framework of the BOE-IOT-AIBD Team.

with additional frames Ii−1
LR , Ii+1

LR , Ii−2
LR , Ii+2

LR .... The num-

ber of additional frames during the inference is set to 128.

For RBFR, they first obtain top K (typically 16) similar

images using the retrieval engine. Then, the inference is

done in a patch-wise manner. They extract a patch from the

ISR and use the Template Matching [7] to perform a global

alignment and find the most similar patches on the images

{I1R, I2R, ..., IKR }. Then, they are fed to the NRBFR to gen-

erate the final result.

4.5. BOE-IOT-AIBD Team

Given the success of the BasicVSR++ model in NTIRE

2021 [10], they focus on the training strategies using this

model. Based on the recommendations in [32, 41, 43],

they applied several strategies including: adding spatial

dropout [58] before the last layer of the model, using large

batch size (240) and increasing the batch volume focused

mostly on an increased number of frames (from 75 to 120).

The major difficulty is the memory requirements to run

training on large batches and for this purpose they use the

automatic mixed–precision library APEX3 from NVIDIA.

Finally, they use a loss function that weighted the MSE error

per pixels based on the 3D Laplacian magnitude, increasing

the relevance of pixels along 3D edges (spatial and tem-

poral). Figure 6 illustrates the proposed framework of the

BOE-IOT-AIBD Team.

4.6. ZX VIP Team

The ZX VIP Team trains the BasicVSR++ network [10]

by the following steps. In pre-train phase, they train the

model on the REDS dataset [49] with Adam optimizer and

the CosineRestart scheme. The initial learning rate of the

main network and the flow network are set to 10−4 and

2.5 · 10−5, respectively. The total number of iterations is

200,000, and the weights of the flow network are fixed dur-

ing the first 5000 iterations. The batch size is 16 and the

patch size of input low resolution frame is 64 × 64. They

use the Charbonnier loss function, and use the pre-trained

SPyNet [51] as the flow network. The number of residual

blocks for each branch is set to 25 and the number of fea-

ture channels is 128. Then, in the training phase, they train

the model on the NTIRE training set. They adopt the Adam

optimizer and the step scheme. The initial learning rate of

the main network and the flow network are set to 2 · 10−5

3https://nvidia.github.io/apex/

Figure 7. The framework proposed by the OCL-VCE Team. The

static video is detected via the gradient of the averaged frames.

and 5 · 10−6, respectively. The total number of iterations

is 600,000, and the weights of the flow network are fixed

during the first 5000 iterations. The batch size is 12 and the

patch size of input LR frame is 48 × 48. They also use the

Charbonnier loss and load the above pre-trained network.

They also perform data augmentation during the training

phase, i.e., horizontal flip and vertical flip.

4.7. OCL-VCE Team

The OCL-VCE Team propose training the model for I-

frames on the video clips with 30 frames, that are cut from

the original training videos and encoded by the LDP config-

urations. Then, they fine-tune the intra-frame BasicVSR++

on the video clips with the first frame encoded as I-frame.

They observed improvement on I-frames except for few se-

quences at high frame-rate and with slow motion (i.e., video

226, 227). These cases can be separated by comparing the

gradient of the averaged frame with a given threshold. The

averaged frame is calculated as

f̄ =

i∗m<N∑
i

fi∗m, (1)

where m is a scaling factor, which is set as m = 4 for the

videos with the frame-rates less than 30 fps and as m = 8
for those with the frame-rates greater than 30 fps. Then, its

gradient is compared with a given threshold

∇f = ||∇xf ||+ ||∇yf || < τ, (2)

where ∇x,∇y denote the gradients in the horizontal and

vertical directions, respectively. τ is a given threshold of

22,500. τ can be normalized based on the number of pixels.

Therefore, they propose fusing multiple enhanced results

with difference input frames based on the video context, as

shown in Figure 7.

4.8. Trick collector Team

The Trick collector Team proposes a separated frame-

work for video quality enhancement. Their contributions

can be summarized as follows. First, they divide video qual-

ity enhancement into two sub-tasks: artifact reduction and
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Figure 8. The method for Track 2 of the Trick collector Team.

Figure 9. The method for Track 3 of the Trick collector Team.

super resolution. For each sub-task, they use an one-stage

or two-stage model. Specifically, for Track 2, they use the

two-stage models on both artifact reduction and super reso-

lution. For Track 3, they use an one-stage model on artifact

reduction and a two-stage model on super resolution. The

baseline model of each stage is BasicVSR++ [10]. Besides,

they find that averaging results of multiple models on the

last stage of Track 3 is helpful. Therefore, they train three

models with different hyper-parameters on the last stage of

Track 3 and average their results as the final results. Be-

sides, they also consider self-ensemble in the training phase.

Typically, self-ensemble [57] is only used in the test phase.

However, in the separated framework, self-ensemble can

be used in each stage of each sub-task. In order to make

the model better adapt to the results of self-ensemble, self-

ensemble should also be considered in the training phase.

Specifically, in the training phase, they use 256× 256 RGB

patchs from the training set as input, and augment them with

random horizontal flips and 90 rotations. All of our models

are optimized by the Adam optimizer with mini-batches of

size 1, with the learning rate initialized to 10−4 using the

cosine annealing restarts [45] strategy. They use MSE loss

(L2 loss) as the loss function.

4.9. XPixel Team

Inspired by Video Swin Transformer [44] and Ba-

sicVSR++ [10], the XPixel Team designs a Bidirectional

Recurrent Transformer (BRT) by combining the Video

Swin Transformer block and BasicVSR++. These mod-

ules effectively increase the implicit and explicit interac-

tion of information between multiple frames and perform

well on the challenge validation dataset. The overall frame-

work is shown in Fig. 10. The model recovers N high-

resolution frames based on N low-resolution frames. First,

to enhance the interaction of information between multiple

frames, several Swin Transformer layers are used to align

frames in an implicit way. Then, to handle large motions
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Figure 10. Overview of the proposed BRT framework of the

XPixel Team. This figure shows an example with three input

frames.

between frames, BasicVSR++ is used to align, aggregate

and propagate features explicitly. Some other Swin Trans-

former layers are then added to further refine features. Fi-

nally, a reconstruction module is employed to produce high-

resolution frames based on the processed features. The key

components of the proposed method is highlighted in the

following.

Video Swin Transformer Block. They use several

Video Swin Transformer blocks to align frames with 3D

multi-head self-attention (3D-MSA) implicitly in the fea-

ture level. 3D-MSA focuses on extracting spatio-temporal

global information from frames. The overview of Video

Swin Transformer blocks is shown in Figure 10.

Bidirectional Recurrent Warping Block. Considering

the effectiveness of BasicVSR++ [10] in terms of alignment

and aggregation of inter-frame information, they use it to

align and propagate the features. In this module, features

of frames are propagated and warped 4 times in the grid

structure explicitly. After that, features of each pipeline are

aggregated to produce the high-resolution frames.

Extended Dataset. Overfitting may affect the general-

ization ability of the model. When training our network

with only official training dataset, they encounter a severe

overfitting issue. To overcome it, they collect more than

2000 HD video clips from YouTube. The paired dataset is

synthesized according to the degradation script provided by

organizers.

Training and Testing Techniques. In the training pro-

cess, inputting more training frames improves the perfor-

mance. Therefore, they design a model that can be trained

with 100 frames by checkpoint optimization. In the test-

ing process, they use patch-based testing method in order

to input more frames. This strategy further improves the

performance of the proposed method.

4.10. OREO Team

For Track 1, the OREA Team proposes a bi-directional

recurrent network with attention-guided aggregation for
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traction to the attention-based aggregation block are omitted in the

figure.

compressed video quality enhancement, based on the archi-

tecture of BasicVSR++ [10]. As shown in the Figure 11,

the pipeline of the proposed method mainly consists of

three parts: feature extraction, a recurrent network with bi-

directional propagation equipping with attention blocks and

a restoration stage.

First, a series of residual blocks are utilized for shallow

feature extraction, which allows all subsequent operations

be performed on the feature level, such as feature alignment

and propagation. Then, a four-layer recurrent network are

applied to propagate and supplement inforamtion between

neighboring frames. Here, each layer contains a forward

branch and a backward branch, in which two branchs first

carry out feature aligment and propagation independently,

and then their features are selective aggregated to refine in-

formation and for the next layer. After this, information

from all stages of the recurrent framework are aggregated

to restore the final enhanced image for each video frame.

Bi-directional Recurrent Network. In order to enjoy

the complementary information from neighboring frames,

they design a parallel multi-layer bidirectional network

which is denoted in Figure 11. For each layer, the inter-

mediate features are propagated backward or forward in-

dependently. Take the backward propagation as an ex-

ample. Specifically, the next-time frame features are first

aligned to the current features, and then the aligned results

are further combined with the current features into residual

blocks to take advantage of information from neighboring

frames. The outputs are delivered to the previous frame

and performed alignment and combination sequently in a

backward manner. Here, they employ the flow-guided de-

formable alignment mechanism as in BasicVSR++. Differ-
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Feature selection
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Conv+Sigmoid expand
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conv
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Figure 12. Attention-based aggregation block in the method of the

OREO Team.

ent from the BasicVSR++, they apply an attention-guided

fused block and residual blocks to discriminatively aggre-

gated the backward and forward information to the current

features, outputs of which are more informative and fur-

ther set as the input of the next layer of network. Conse-

quently, the aligned block aims to make the neighboring

frame aligned with the enhanced features from the previ-

ous layer of the current frame, instead of the initial shallow

features. The bidirectional propagation allows the informa-

tion flow from the first and last frames to the current frame,

enhancing the feature expressiveness.

Attention-Guided Aggregation. Take the features from

backward and forward propagation of the current layer, and

those from all previous layers of the current frame as input,

they apply an attention block to discriminatively emphasize

the informative components and restrain the useless ones,

boosting the feature characterization ability. Generally, the

accuracy of optical flow and offset prediction greatly affects

the alignment, which will further impose a negative impact

on the current frame features. They take a combination

of channel and spatial attention mechanism to adaptively

select the effective and appropriate information for subse-

quent feature fusion between frames, which helps mitigate

the impact of the inaccurate predictions of the optical flow

and offset. On one hand, they take an average pooling op-

eration and two convolutions with a Sigmoid for input as

in RCAN, to generate a group of weights for each feature

channel of input. One the other hand, they apply a 1×1 and

a 3×3 convolution to input to produce weights for each spa-

tial point of input. Then, two-branch weights are combined

as a new weight set, which further are multiplied by the in-

put to enable feature selection and refinement. The mecha-

nism of screening before fusion is conducive to the effective

aggregation of features from backward and forward direc-

tion with the current features. The attention-based aggrega-

tion block is shown in Figure 12.

4.11. HMSR Team

Based on BasicVSR++ [10], the HMSR Team proposes

an HM-mask branch for the reconstruction module. They

apply the HEVC test model (HM) to extract the information

of block division of low resolution videos, and then intro-
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Figure 13. The proposed method of the HMSR Team.

duce them into the network as a prior to provide additional

information for compressed video super-resolution, thereby

improving the final performance. The proposed method is

illustrated in Figure 13.

4.12. UESTC+XJU CV Team

The UESTC+XJU CV Team uses BasicVSR++ [10] in

Track 1. The number of residual blocks for the initial fea-

ture extraction is set to 5. The number of residual blocks for

each branch is set to 25. The number of feature channels is

128. In the training process, the raw and compressed se-

quences are cropped into 256× 256 patches as the training

pairs, and the batch size is set to 4. Meanwhile, the 15 com-

pressed frames are used as inputs. They also adopt flip and

rotation as data augmentation strategies to further expand

the dataset. The model is trained by Adam optimizer [31]

with β1 = 0.9, β2 = 0.999 and ε = 10−8 for 6 · 105
iterations. The learning rate is initially set to 10−4 and re-

tained throughout training. Following [10], they use Char-

bonnier loss [11] as the loss function and use pre-trained

SPyNet [51] as the optical flow network. They take the 165

video frames as inputs to explore long-range temporal in-

formation for restoration.

4.13. TBE Team

The proposed architecture of the TBE Team is com-

posed of two cascaded stages. As shown in Figure 14,

they apply a recurrent video super-resolution framework

BasicVSR++ [10] in stage 1. Then, the stage 2 includes a

video quality enhancement model IconVSR [9] without the

upsampling layers. Two stages are trained individually in

two phases. In the first phase, they feed the low resolution

frames into the model of stage 1 (BasicVSR++) and obtain

the best super-resolved outputs. Then, they take the video

super-resolution results as the input to stage 2 for training

the IconVSR model to acquire the final results.

During the training phase, the total data we used are 331

video sequences. They choose 307 videos for training and

24 videos for evaluation. For the training of BasicVSR++,

they randomly extracted 30 consecutive frames from each

low resolution sequence. The 128 × 128 low resolution

patches are randomly cropped from each of the 30 frames

as the low resolution inputs. At the same time, the cor-

responding 256 × 256 high resolution patches in the high

resolution frames are cropped as ground-truth. They set the

Figure 14. The proposed framework of the TBE Team.

Figure 15. The method proposed by the CVStars Team.

batch size to 1 and train the model for total 141,360 itera-

tions. For the training of IconVSR, they random extract 15

continuous frame from each super-resolved sequences and

crop them to 128 × 128. The batch size is 1 and iterations

is 13,860. During the test phase, they feed 100 consecu-

tive frames into BasicVSR++ to acquire the super-resolved

videos. Then, we input them into IconVSR for refining and

obtain the final results with rich detailed information.

4.14. HyperPixel Team

The HyperPixel team proposes the enhanced Ba-

sicVSR++ method, which improves BasicVSR++ [10] from

two aspects. On the one hand, to make the network more

accurately capture the features of video frames, the De-

formable ConvNets v2 [79] is adopted for spatial feature ex-

traction. On the other hand, in order to intensify the training

samples and make their flow more fluently, an intermediate

auxiliary ×2 stage loss is added in training. Specifically,

they downsample the high quality image in half and use it

as the ground-truth in ×2 super resolution in the reconstruc-

tion stage of BasicVSR++.

4.15. CVStars Team

The CVStars Team adopts the BasicVSR++ [10] net-

work and proposes an enhanced version of BasicVSR++.

The proposed method is illustrated in Figure 15. In order to

better extract features and enhance the ability to align be-

tween frames, they deepen the depth of forward and back

propagation to make them to be triple propagation. In train-
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Figure 16. The proposed method of the AVRT Team.

ing, they use frequency reconstruction loss to enhance the

recovery of high-frequency details. Self-ensemble [57] and

epoch-ensemble methods are used in the testing phase.

4.16. AVRT Team

The solution of the AVRT team has three steps as

shown in Figure 16. First, they build a Continuous Super-

Resolution (CSR) dataset with seven scales. Then, they

build several CSR models with different feature extraction

backbones and train them. Finally, they execute the test us-

ing ensemble strategies.

Continuous super-resolution datasets: They reprocess

all the official datasets to generate the CSR datasets by crop-

ping the raw videos in Track 1 to the target resolutions as

high quality data and downsample them as the inputs of

the encoder to obtain the low resolution and low quality

data. Considering the resolution has to be integer numnbers,

they simplify the proposed CSR to seven specific super-

resolution scales, i.e., 1, 1.5, 2, 2.5, 3, 3.5, 4, which cover

the scales of all three tracks. Depending on the official

training dataset, they produce four extra pairs of datasets

using for 1.5, 2.5, 3 and 3.5 times super resolution tasks

whose resolutions are 960×528, 960×520, 960×528 and

952× 532, respectively. All these extra datas are processed

following the procedure in [72].

Dataset expansion: In addition to the NTIRE training

they collect other videos from Youtube and Movies to ex-

pand the scenes in the training dataset. In the first few tests,

the PSNR of some categories, such as Sports are signifi-

cantly lower than others, and therefore they drag down the

overall performance. Thus, these categories are taken into

account when expanding training sets by controlling their

quantity to the rest categories as 2:1. All collected videos

are cut to clips with 300 to 600 frames by a scene-cut de-

tection algorithm to avoid that a single video clip contains

more than one scenes. Then these clips are processed ac-

cording the above procedure, and finally, 740 groups of ex-

tra samples are incorporated into training.

4.17. StarRay Team

The StarRay Team employs an enhancement-first strat-

egy based on the enhanced BasicVSR++ model. Specifi-

Frame

Frame

Frame

Feature
Preprocess &
Enhancement

Module
(128 channels)

PCD
Alignment

Module

Aligned
Feature Maps

Temporal 3D
Fusion 

Module

Channel
Attention

Reconstruction
Module

Cascade
Subpixel

Upsampling

Bilinear Upsampling

High-Resolution
Result

(Left or Right)

Frame

Frame

Figure 17. The proposed method of the Modern SR Team.

cally, they first use a pretrained STDF [16] model to en-

hance the videos and recover the details. Sequentially, they

train an enhanced BasicVSR++ [10] model using the Char-

bonnier loss and the Gradient-Weighted (GW) loss [65]

based on the enhanced results. To obtain the final results,

they ensemble the results of the two models trained by the

Charbonnier loss and the GW loss, respectively.

4.18. Modern SR Team

The Modern SR Team designs a method based on the

improved EDVR model [25]. In Track 3, they extract a 128-

channel feature in super-resolution and take five consecu-

tive video frames as input. The architecture of the proposed

method is shown in Figure 17. In comparison with [25],

the proposed method has larger feature size, because the

dataset in this challenge is much more complex than the

REDS dataset which is used to train [25].

4.19. TUK-IKLAB Team

The TUK-IKLAB team proposes Residual Denoising

and Feedback Networks (RDFDBK-Net) for video super

resolution. In short, the method applies denoising, deblur-

ring, enhancement, and spatial-temporal super-resolution

on video frames. The method uses an external denoiser

on low-resolution images to remove unwanted noise. As

a result, the images are enhanced and scaled. Following

this step, the network uses a feedback network using resid-

ual frames to improve the enhancement and scaling results.

The method is inspired by SRFBN [37] and GMFN [35].

The problem with SRFBN was that it only propagates the

highest-level features, thus ignoring the low-level features,

which results in color enhancement but the preservation of

some features such as face or shape is not performed. This

also results in the addition of false artifacts. The GMFN

on the other hand, added multiple feedback connections to

transmit multiple high-level features. Although the method

performs slightly better in preserving low-level information,

the artifacts are still introduced with more blocking effect.

In this regard, they modify the residual blocks in the GMFN

to help refine the low-level features while adding an atten-

tion mechanism to the refined features. The residual blocks

are closely related to the ones used in EDSR network [39].
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Figure 18. Proposed RDFDBK-Net of the TUK-IKLAB Team.

Subsequently, they also use enhancement block to denoise,

deblur, and deblock the frames with every feedback step.

In addition to the bicubic interpolation-based degradation

method, they also add kernel estimation that estimates the

blur and noise level for enhancing the LR images. The use

of aforementioned methods provide distinctive advantage

over SRFBN and GMFN methods, respectively. The pro-

posed network architecture has been shown in Figure 18.
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