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Abstract

Underwater Image Rendering aims to generate a true-to-
life underwater image from a given clean one, which could
be applied to various practical applications such as under-
water image enhancement, camera filter, and virtual gam-
ing. We explore two less-touched but challenging problems
in underwater image rendering, namely, i) how to render
diverse underwater scenes by a single neural network? ii)
how to adaptively learn the underwater light fields from nat-
ural exemplars, i,e., realistic underwater images? To this
end, we propose a neural rendering method for underwater
imaging, dubbed UWNR (Underwater Neural Rendering).
Specifically, UWNR is a data-driven neural network that
implicitly learns the natural degenerated model from au-
thentic underwater images, avoiding introducing erroneous
biases by hand-craft imaging models.

Compared with existing underwater image generation
methods, UWNR utilizes the natural light field to simulate
the main characteristics of the underwater scene. Thus, it is
able to synthesize a wide variety of underwater images from
one clean image with various realistic underwater images.

Extensive experiments demonstrate that our approach
achieves better visual effects and quantitative metrics over
previous methods. Moreover, we adopt UWNR to build
an open Large Neural Rendering Underwater Dataset con-
taining various types of water quality, dubbed LNRUD.
The source code and LNRUD are available at https:
//github.com/Ephemeral182/UWNR.
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Fig. 1. Visual comparison of our method and previous underwater
rendering methods. (a) and (c) are respectively obtained by UW-
GAN [45] and UISA [18]. (b) and (d) are rendered by our method.
The underwater rendering results by our method have more natu-
ral visual effects closing to real underwater scenes.

1. Introduction

The underwater environment and resource has been
gradually developed and explored in the last decade [6, 12,
14, 21, 24]. Unlike the terrestrial environment, it is hard for
us to obtain satisfactory paired underwater datasets, limiting
the development of many underwater vision tasks. For ex-
ample, underwater image enhancement is a practical com-
puter vision task that requires paired underwater images
with ideal ground-truth for training. However, manual col-
lection often requires a lot of workforce and material re-
sources. [19, 20, 28]. Furthermore, the visual effect of the
ground-truth generated by various algorithms in current un-
derwater image datasets is not satisfactory for implementa-
tion. And the synthetic underwater datasets based on the tra-
ditional underwater imaging model hardly model the com-
plex degeneration of the underwater environment well. In
particular, underwater image rendering that effectively gen-
erates true-to-life underwater images becomes a novel and
valuable technique compared to the high cost of acquiring
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paired underwater datasets with real underwater images.
Previous underwater image restoration works [3,11] usu-

ally utilize the following formula as the underwater imaging
model:

I(x) = J (x)t(x) +B(x)(1− t(x)). (1)

where B(x) is the background light and J (x) is the im-
age without degrading by underwater particle scattering.
t(x) = e−βd(x) is the transmission map, β is the scatter-
ing coefficient and d(x) is the depth of scene. The I(x) is
the underwater image.

Image generation like image rendering etc. usually in-
volves adversarial generative networks (GAN) [13, 22, 23,
31, 47]. Zhu et al. [47] utilized a cycle-consistent GAN
to implement image style transfer. Proposing mapping net-
works and adaptive Instance Normalization techniques were
proposed in a large generative network Stylegan [22, 23].
Li et al. [31] presented Weather GAN to render differ-
ent weather scenes and migrated weather conditions from
one category to another. The above GAN-based approaches
generate impressive results. However, there are well-known
shortcomings for GAN methods. For example, GAN-based
methods are prone to mode collapse and create fake fea-
tures.

For previous underwater image generation methods,
commonly focus on physical model-based and GAN gen-
erating techniques [18, 45–47]. It can be observed from
Eq.(1) that generating an underwater image requires esti-
mating the ambient light B(x) and the underwater trans-
mission map t(x). Moreover, physical model-based meth-
ods for underwater image generation still have the follow-
ing limitations: (1) A simple physical model cannot cover
all complex underwater scenes, especially the current phys-
ical model-based approach is biased by limited estimation
of key parameters. (2) Previous methods most ignore the
effect of the scattering coefficient in underwater imaging,
because of the difficulty of capturing this coefficient accu-
rately, which leads to unfavorable transmission maps can
cause the visual effect of generated underwater images to be
un-satisfactory. (3) The underwater transmission map t(x)
of the physical model is a coefficient map with depth varia-
tion characteristics. Obtaining RGB-D images is relatively
expensive and limited in resources.

To address these problems, we propose an underwater
rendering framework to achieve the efficient rendering gen-
eration of true-to-life underwater images. The mechanism
of Light Field Retention (LFR) in our framework can ef-
fectively transfer the diverse underwater style from natural
underwater images to the objective generated images, which
effectively guarantees the diversity of rendering results. It’s
worth to note that there is no physical model constraints and
GAN-based method in our framework so that it can easily
avoid following problems: (1) Mode Collapse. [45] (2)

Fake Features. [45] (3) Limited performance by incom-
plete underwater imaging physical model. [18, 33] . And
it is also worth mentioning that we utilize the well trained
depth estimation network for collaborative work, which sig-
nificantly alleviates the obstruction of our method in practi-
cal applications by avoiding the high cost of RGB-D images
as the input of network [29, 45]. Specifically, our method
only needs a clean image and its depth map estimated by Li
et al. [32]’s way to generate a great quantity of underwater
images from real world terrestrial image. To the best of our
knowledge, this is the first method that gets rid of the physi-
cal model and GAN-based methods to generate underwater
images. We summarize our novelties and contributions as
follows:

• We develop a natural light field retention module that
renders the characteristics of the terrestrial image as
close to the underwater situation as possible with the
help of underwater dark channel loss and light field
consistency loss we proposed.

• To the best of our knowledge, this is the first work to
render underwater image without physical models and
GAN methods, which can easily render realistic under-
water scenes with diverse styles.

• We conduct extensive experiments to demonstrate that
our method achieves state-of-the-art rendering perfor-
mance in terms of objective evaluation.

• We synthesize a large neural rendering underwater
datasets (LNRUD), which contains a large number of
underwater images synthesized from land images by
our method.

2. Related Work
Image Generation. Generative adversarial networks

were first proposed by Goodfellow et al. [13]. In the field
of image generation, many designs with adversarial theory
as the base have produced unforgettable impression. Cycle-
GAN [47] utilized cycle consistency principle to enhance
GAN for unsupervised image style transfer, which also
was extended to some other image generation methods and
achieved amazing results [7, 39, 41]. Motivated by the high
quality of StyleGAN [22,23], which performs exceptionally
well on image editing and processing tasks. Based on the
StyleGAN, Elad et al. [12] presented an end-to-end training
method for learning a mapping from images to StyleGAN
latent codes to generate high-quality images. Chong et al.
[9] allowed StyleGAN to directly start various tasks through
pre-training and a little operation on the latent space. In ad-
dition to these, there are many interesting image generation
tasks using the GAN-based method [8, 31, 35, 42]. For ex-
ample, Li et al. [31] developed Weather GAN to realize the

489



Fig. 2. Various synthetic underwater images are generated by the proposed UWNR network based on the same indoor clean image and
different realistic underwater images. (a) The clean indoor image. (b) Realistic underwater images (top row), light field maps (middle row),
and synthetic underwater images generated by the proposed method (bottom row).

transformation of different seasons and weather, Sarkar et
al. [42] designed HumanGAN which was the first way to
address every aspect human image generation, e.g. global
appearance sampling, pose transfer.

There are also inevitable problems behind the excellent
effect of generative adversarial networks. The first is that
the GAN architecture is usually difficult to train and it is
not easy to objectively measure the generation effect [2, 4,
5, 15, 36]. Another difficulty is that GAN will experience
mode collapse due to improper punishment during training
[30, 34, 44].

Underwater Image Generation. Deep learning has
proven to perform well in various underwater tasks, but it is
difficult to obtain large datasets in deep-sea environments.
How to generate underwater images from existing resources
is an important and challenging task [3, 10, 18, 29, 45, 46].
In [3, 10], authors constructed a large number of synthetic
datasets utilizing previously calculated ocean attenuation
coefficients combined with underwater attenuation models.
Hou et al. [18] developed the quadtree to select the back-
ground light area and obtained the transmission map ac-
cording to the DCP principle [16]. Different types of under-
water degradation images were designed to imitate differ-
ent underwater scenes. Li et al. [29] proposed WaterGAN,
which takes in-air images, depth maps, and noise vectors as
input and outputs synthetic images using a camera model
and a generative adversarial network. On this basis, Wang
et al. [45] presented UWGAN which only input aerial im-
ages and depth maps into the model, adopting the imaging
model [1] and GAN to design a simple underwater image
generation model.

The previous underwater image generation methods are
based on the physical model as the vital core to render un-
derwater images. Still, the biased estimation characteris-
tics of the physical model make it difficult to guarantee
the underwater image effect. The GAN-based approaches
will lead to train unstably and prone to mode collapse. Our
framework retains light field information to avoid the above
problems and achieve better performance.

3. Proposed Method
This section presents our underwater image rendering

framework with natural light field retention. First, we dis-
cuss our natural light field retention module. Then we elab-
orate on the underwater image generation module of our
method. Finally, we present the loss functions we used in
training. The overview of our underwater rendering method
is shown in Fig. 3.

3.1. Natural Light Field Retention

In theory, the transferring procedure consists of the es-
timation of three key parameters (i.e., d(x), β and B(x))
based on the underwater imaging model. Due to parti-
cle scattering, the light characteristics of underwater scenes
are extremely different from terrestrial images because they
have strong randomness, which causes difficulty for the tra-
ditional physical method to model these accurately.

To address the above problem, we propose the light field
retention scheme to transfer the diverse underwater light
filed information to the objective image possibly. For an
underwater image xu in dataset Xu {xu, yu}, according to
Retinex [25,26] theory, the image can be disassembled into

xu = xl · xr. (2)

where xl represents the illumination component of ambi-
ent light, xr is the reflection component of the target object
carrying the image detail information. We perform a multi-
scale Gaussian low-pass filter on the xu to obtain underwa-
ter light field map:

xg =
1

3

∑
σ

Gaussσ(xu), σ ∈ {15, 60, 90} . (3)

similar to MSR [40], we empirically set σ to 15, 60, 90, re-
spectively. The appropriate convolution kernel is selected
by σ adaptive control in the formula. Considering that
Gaussian filter may still contain object details, we trans-
form it to logarithmic domain and scale it to get the final
underwater light field map:

xl = Normalization(log xg). (4)
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Fig. 3. Underwater image rendering framework we proposed. In the training phase, with the pair of real underwater image and its clean
ground-truth, the light field map and the scene depth are estimated using a natural light field retention module and a pre-trained depth
estimation module respectfully. Then a MHB-Unet is trained to generate the synthetic underwater image. In the generating stage, a real
underwater image can be used to render any unrelated clean image into an underwater image.

Using the above operations, the natural light field maps
of the real underwater images we obtained are shown in
Fig. 2, from which we can found that our estimated light
field does not contain object information and it well rep-
resents the underwater natural light field information. The
reserved features in the underwater light field map focus on
the natural style information of diverse underwater scenes
without detailed and structured information from original
underwater images. In theory, the underwater light field
map contains two significant pieces of information for un-
derwater characteristic transferring: B(x) and β. It’s worth
noting that previous methods [18, 45] ignored the impor-
tance of β for underwater imaging; recent work [27] about
hazy image generation calls our attention to focus on im-
plicit estimation of the above two coefficients with entan-
gled way. Our experiments demonstrate the obvious advan-
tages of our transferring procedure.

3.2. Underwater Image Generation Module

Depth Estimation Network. After the light field preser-

vation module, we get the information of the light field. In
addition, we also need to obtain the depth map that replaces
the transmission map in the clean image image to preserve
the depth information of the generated image. Therefore
we design a depth estimation network whose network ar-
chitecture we utilize Li et al.’s pre-trained model [32]. It is
worth saying that our estimated depth map is a biased im-
age. We feed this together into our underwater generative
model (MHB-Unet) and let the network learn this biased
property. The benefit is that our method does not require
paired depth map datasets and can synthesize a large num-
ber of underwater images for practicality.

Multi-branch Hybrid Unet (MHB-Unet). We design
the Unet style architecture network as our underwater image
generation model, called MHB-Unet. For further improv-
ing the performance of MHB-Unet, we develop a multi-
scale hybrid convolutional attention module as shown in
Fig. 4(a). Considering that the local features of underwa-
ter scenes are complex and diverse, we first obtain different
receptive fields through 1×1 and 3×3 convolutions to per-
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form multiple feature fusion. At the same time, we also use
residual connections, which can solve the problem of van-
ishing gradients and take into account that the spatial struc-
ture and color of certain regions in underwater images are
not affected by scene degradation. After multi-branch fu-
sion, we apply a combination of spatial attention Fig. 4(b)
and channel attention module Fig. 4(c). The spatial atten-
tion mechanism improves the network’s ability to pay at-
tention to complex areas such as light field distribution and
depth information in underwater images, while the channel
attention pays attention to the network’s expression of im-
portant channels in features, thereby improving the overall
expression performance of the model.

It is worth noting that our model has excellent perfor-
mance and even high-resolution images can be rendered
well. Please refer to the more discussion section of experi-
ments for more details of actual performance.

Fig. 4. From left to right are multi-branch hybrid modules, spatial
attention and channel attention, respectively.

3.3. Training Losses

We propose following loss functions to ensure the ren-
dering effect of the generated underwater images.

Reconstruction Loss. To ensure that our predicted im-
ages are enough close to the real underwater images, we
introduce the L1 loss as our basic reconstruction loss:

Lrec = ∥Iu − xu∥1 . (5)

where ∥·∥ represents L1 loss, Iu is the output underwater
image by our architecture.

Perceptual Loss. Perceptual loss which utilizes the fea-
ture layers extracted from pre-trained VGG19 model [43]
as the loss network aims to maintain perceptual structure
consistency. It is defined as follows:

Lper =

5∑
j=1

1

CjHjWj
∥ϕj (Iu)− ϕj (xu))∥22 . (6)

where Cj Hj Wj represents the number of channels, length
and width of the feature map extracted in the j-th hidden
features respectively. ϕj is the specified j-th layer of the
loss network.

Underwater Dark Channel Loss. UDCP [11] applied
the dark channel prior principle to underwater. We define
an underwater dark channel loss to make the generated un-
derwater image consistent with the clean image at the dark
channel level.

UDC (x) = min
y∈N(x)

[
min

c∈{g,b}
xi

c(y)

]
. (7)

where x and y are pixel coordinates of image xi, xc repre-
sents c-th color channel of xi, and N(x) denotes the local
neighborhood centered at xi.

The formula for the underwater dark channel loss is as
follows:

Ludc = ∥UDC (Iu)− UDC (xu)∥1 . (8)

Light Field Consistency Loss. In order to effectively
maintain the light field characteristic of real underwater im-
ages, we introduce the light field consistency loss based on
the natural light field map for better rendering performance.
We utilize multi-scale Gaussian filter to capture the light
field map:

LF(J ) =
1

3

∑
σ

Gaussσ(J ), σ ∈ {15, 60, 90} . (9)

where the J denotes the image and LF(·) denotes the cap-
turing operation of light filed. And the light field consis-
tency loss function is defined as follows:

Llfc = ∥LF(Iu)− LF(xl)∥1 . (10)

Overall Loss Function. The overall loss function is ex-
pressed as follows:

L = λrecLrec + λperLper + λudcLudc + λlfcLlfc. (11)

where λrec, λper, λudc and λlfc are trade-off weights.

4. Experiments

In this section we conduct extensive experiments to eval-
uate the effectiveness of our method. First we describe the
specific implementation details of our training part. Sec-
ond, we adopt the FID [17] evaluation metric to objec-
tively evaluate the effect of our generated images, then we
adopt PSNR, SSIM and UIQM metrics to measure the effect
of our generated underwater image dataset compared with
other underwater image generation methods on the under-
water enhancement network. Finally we perform ablation
experiments to vertify the necessity of the components in
our framework.
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Table 1. Comparative metric analysis of various methods on different datasets. Best results marked in bold.

Metrics
NYU Dataset(890) SUID Dataset(890)

Clean Images UWGAN [45] Ours (UWNR) Clean Images UISA [18] Ours(UWNR)

FID 239.36 236.23 221.93 274.67 220.90 216.76

PSNR - 18.41 18.86 - 12.87 19.32

SSIM - 0.70 0.77 - 0.63 0.77

UIQM - 2.28 2.62 - 2.44 2.63

Fig. 5. Underwater images synthesized by UWGAN [45] and our method (UWNR) on the NYU [38] dataset.

Fig. 6. Underwater images synthesized by UISA [18] and our method (UWNR) on the SUID [18] dataset.

4.1. Experiment Settings

Training Details. In training details, we select 500 im-
ages from the underwater real dataset UIEB [28] as our
training set. We also add random rotations between 0, 90,
180 and 270 degrees and horizontal flip for data augmenta-
tion. The patch of the input for training is set to 256×256
and we train the network for 200 epochs, where we set the
initial learning rate to 0.0002, and after 100 epochs we start
a linear decay of the learning rate. We employ the Adam op-

timizer whose first momentum and second momentum are
taken to be 0.9 and 0.999, respectively. For perceptual loss,
we select layers 1, 3, 5, 9 and 13 in the VGG19 [43] model
to extract hidden features.

Evaluation Metrics. How to evaluate the data generated
by the image generation network is a vital question. The
generated dataset should be visually appealing, diverse, and
close to the real domain. Based on the above, we choose
FID [17] as the evaluation metrics. FID directly considers

493



Table 2. Ablation study on different loss function configurations of our UWNR framework, bold means the best result.

Method
NYU Dataset(890) SUID Dataset(890)

FID PSNR SSIM UIQM FID PSNR SSIM UIQM

Ours w/o Lrec 224.97 18.01 0.76 2.54 224.68 18.22 0.76 2.55

Ours w/o Lper 216.42 17.55 0.67 2.55 223.54 18.48 0.70 2.59

Ours w/o Ludc 223.09 18.24 0.77 2.59 218.10 18.89 0.76 2.61

Ours w/o Llfc 223.81 18.21 0.76 2.60 220.48 18.73 0.76 2.63

Ours 221.93 18.86 0.77 2.62 216.76 19.32 0.77 2.64

the distance between the synthetic data and the real data at
the feature level to measure the difference between the gen-
erated image and the real image. The smaller the value, the
closer it is to the image in the real domain. To measure the
performance of our synthetic dataset, we use it with other
synthetic underwater datasets to test the recovered results in
the underwater image enhancement network. We apply the
Peak Signal-to-Noise Ration (PSNR) and Structural Simi-
larity (SSIM) to objectively evaluate the enhanced perfor-
mance. In addition, we also use the non-reference indica-
tor UIQM, which evaluates colorfulness (UICM), sharpness
(UISM), and contrast (UIConM).

4.2. Quantitative Comparison

We apply the various real underwater image xr in Xr

{xr, yr} as the reference for the FID evaluation metric, and
its distance from the generated underwater dataset measures
the reality of the data. We compare our method with pre-
vious state-of-the-art underwater image synthesis methods.
We select another part of the light field map that is dif-
ferent from the training details to generate images so as
to avoid the risk of data leakage. Since the two methods
adopt NYU [38] and SUID [18] datasets to generate under-
water datasets. For the sake of fairness using FID metric,
we compare our method with previous two rendering meth-
ods on their datasets respectively. Specifically, for a fair and
efficient comparison, we randomly select 890 clean images
from the NYU and SUID datasets, using UWGAN [45] and
UISA [18] methods to generate corresponding underwater
images, and we render the clean images into the underwa-
ter images by our method, which also are included in our
LNRU dataset. In the visual comparison, as shown in Tab. 1,
we can observe that the results of our method are closer to
the natural underwater images than other methods.

At the same time, in order to verify the effectiveness of
our method, we use our dataset and the datasets of other
methods where the contents of the scenes are the same
to train the underwater enhancement network Shallow-
UWnet [37], in which we train for 100 epochs, the other
training details are the same as those in the original paper.
For the test part, we adopt 90 small image dataset in the
UIEB dataset to measure the effect of underwater enhance-
ment by utilizing PSNR,SSIM and UIQM metrics.

Model Complexity Analysis. We analyze the parameters
of our model is 11.57M. We also study the computation and
inferencing runtime of rendering is 276.26GMac/0.0023s
when the image size is 1024×1024, which illustrates the ef-
ficiency of our model during generating stage and provides
a prerequisite for the actual project landing.

4.3. Visual Comparison

To verify the superiority and diversity of our proposed
method, we compare the state-of-the-art method of under-
water image synthesis and present the results in Fig. 5 and
Fig. 6. Due to the mode collapse issue of the GAN architec-
ture, the UWGAN [45] method in the NYU dataset results
in a single underwater dataset which only has the green un-
derwater feature. Compared with UWGAN, our method can
generate more diverse underwater images with better visual
effects.

In the SUID dataset, the UISA [18] method based phys-
ical model estimation to generate different types of under-
water images. But the estimated deviation of its parame-
ters will cause a large visual difference between the syn-
thetic underwater image and the real underwater environ-
ment, which makes the generated underwater images sus-
ceptible to appear too bright or too dark to match the real
underwater scene. Our framework does not have this prob-
lem in terms of visual effects and is more in line with un-
derwater characteristics.

4.4. Ablation Study

To validate the necessity of the components in our ap-
proach, we performed extensive ablation experiments to
validate our claims.

As shown in Tab. 4, we perform ablation experiments of
the light field retention (LFR) module and the depth esti-
mation network (DEN) to show their necessity. We elimi-
nate these two modules separately to carry out the follow-
ing training: (1) LFR+MHB-Unet. (2) DEN+DCP+MHB-
Unet. To demonstrate the superiority of our light field
preserving module, we replace our light field module
with a dark channel prior to obtain background light.(3)
LFR+DEN+MHB-Unet (Ours). From the Tab. 3, we can
observe that the lack of depth information and light field in-
formation will reduce the quantitative performance of our
method. In particular, as shown in Fig. 7, compared to the
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Table 3. Ablation experiments with light field retention and depth
estimation modules. Bold presents best result.

Method
NYU Dataset(890) SUID Dataset(890)

FID PSNR SSIM UIQM FID PSNR SSIM UIQM

Ours w/o LFR+DCP 223.52 18.58 0.76 2.61 232.47 17.64 0.71 2.64

Ours w/o DEN 223.36 18.45 0.76 2.57 221.96 18.82 0.73 2.59

Ours 221.93 18.86 0.77 2.62 216.76 19.32 0.77 2.64

background light obtained by DCP [16], our light field re-
tention method can reduce the limitation of diversity and
generate a more progressive effect.

Fig. 7. Top is the underwater image which applys DCP [16]
method to replace our LFR module, bottom is the underwater im-
age with LFR.

To elaborate the effectiveness of our loss function, we
also perform extensive ablation experiments to eliminate
each loss function separately to train our model and test it.
From the Tab. 2, we observe that the absence of reconstruc-
tion loss causes a significant drop in metrics because it is
critical for pixel-level reconstruction of the image. The loss
of underwater dark channel is considered from the statisti-
cal characteristics of underwater images, and the light field
consistency loss is based on the characteristics of underwa-
ter ambient light, which provide conditions for underwater
image rendering from different angles. Not using them can
also cause model performance to drop. As show in Fig. 8, it
is worth noting that removing the perceptual loss will make
the indicator FID of underwater synthesis more excellent.
But in terms of intuitive visual effects, we will find that the
loss of detail information is serious, especially in some con-
tours, which is a fatal issue in image synthesis.

And we perform another ablation experiment to demon-
strate the effectiveness of the multi-branch Hybrid Block
in our MHB-Unet. We present the following three training
methods: (1) Unet+Multi-Branch Hybrid Block w/o spatial
attention. (2) Unet+Multi-Branch Hybrid Block w/o chan-
nel attention. (3) Unet+Multi-Branch Hybrid Block w/o
Multi-branch Hybrid Convolution (MHC). From the results
in Tab. 4, we prove that the multi-branch-based channel at-
tention and spatial attention can better allow our model to
learn the characteristics of real underwater complex envi-

Fig. 8. Top is the underwater image w/o perceptual loss, bottom is
the underwater image with perceptual loss.

ronments and achieve better metrics. We also found that the
absence of multi-branch convolutions and residual connec-
tions reduces our metric performance. Probably because of
the lack of multiple feature fusion, the processing power in
diverse and complex regions is reduced.

Table 4. The network architecture ablation experiment of MHB-
Unet, bold indicates the best result.

Method
NYU Dataset(890) SUID Dataset(890)

FID PSNR SSIM UIQM FID PSNR SSIM UIQM

Ours w/o SA 223.55 18.05 0.75 2.57 218.21 18.48 0.76 2.57

Ours w/o CA 224.69 18.18 0.76 2.58 222.60 18.67 0.77 2.58

Ours w/o MHC 222.2 18.71 0.75 2.61 220.61 19.10 0.74 2.63

Ours 221.93 18.86 0.77 2.62 216.76 19.32 0.77 2.64

4.5. Large Neural Rendering Underwater (LNRU)
Dataset

We create a large neural rendering underwater dataset
with 50,000 underwater images, in which each underwater
image has the associate groundtruth of a latent clean im-
age. Specifically, we collected 5,000 authentic underwater
images and randomly selected them for rendering. We will
open-source the LNRU dataset after our submitted paper is
received. Please refer to our supplementary material for re-
viewing the thumbnails and more details of LNRU dataset.

5. Conclusion

In this paper, we propose an underwater image rendering
framework that avoids the problem of ground truth inaccu-
racy in underwater paired datasets. We utilize light field in-
formation and a multi-scale unet network to generate a large
number of diverse images using only unpaired images dur-
ing rendering. In addition to this, we have open-sourced a
large-scale underwater image synthesis dataset. The exper-
imental results demonstrate that our method achieves the
best results compared with the state-of-the-art methods in
terms of vision and metrics.
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