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Figure 1. Subjective performance of our proposed method on the test set of the NTIRE 2022 challenge.

Abstract

As a widely studied task, video restoration aims to en-
hance the quality of the videos with multiple potential
degradations, such as noises, blurs and compression arti-
facts. Among video restorations, compressed video qual-
ity enhancement and video super-resolution are two of the
main tacks with significant values in practical scenarios.
Recently, recurrent neural networks and transformers at-
tract increasing research interests in this field, due to their
impressive capability in sequence-to-sequence modeling.
However, the training of these models is not only costly but
also relatively hard to converge, with gradient exploding
and vanishing problems. To cope with these problems, we
proposed a two-stage framework including a multi-frame
recurrent network and a single-frame transformer. Besides,

multiple training strategies, such as transfer learning and
progressive training, are developed to shorten the train-
ing time and improve the model performance. Benefiting
from the above technical contributions, our solution wins
two champions and a runner-up in the NTIRE 2022 super-
resolution and quality enhancement of compressed video
challenges.

1. Introduction
The recent decades have witnessed an explosive growth

of video data over the internet. Meanwhile, the resolution
of the videos becomes higher and higher to satisfy the in-
creasing demand for the quality of experience (QoE). How-
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ever, due to the limited bandwidth, the videos are commonly
down-sampled and compressed, which causes inevitably
degradation on video quality. Therefore, it draws a great at-
tention in the computer vision community for video restora-
tion tasks, such as video super-resolution, de-artifacts of
compressed video.

Video restoration is challenging because it requires ag-
gregating information from multiple highly related but mis-
aligned low-quality frames in video sequences. Most ex-
isting methods of video restoration consider it as a spatial-
temporal sequence prediction problem, and can be mainly
divided into two categories: sliding window methods [9,15,
32, 35, 42] and recurrent-based methods [4, 5, 19]. For in-
stance, BasicVSR++ [5] proposes a second-order grid prop-
agation network to better mining the spatial-temporal infor-
mation. It demonstrates the great effectiveness of the recur-
rent framework and wins the NTIRE 2021 quality enhance-
ment of heavily compressed video challenge. However, the
recurrent framework processes the video frames sequen-
tially, which limits the efficiency of the recurrent-based
methods. Recent works [2, 23] try to enhance video frames
in parallel, on the top of transformer architecture. However,
both recurrent network and transformer have square com-
putational complexity with respect to sequence length and
image size, resulting in O(n4) computational complexity.
Subject to the huge memory consumption, these networks
can only be fed by the clipped sequence with no more than
16 frames, even on a NVIDIA A100 GPU. This degrades
PSNR performance compared to BasicVSR++ [5] on the
REDs dataset [27]. Besides the large consumption of GPU
memory, the models with larger structures, such as Trans-
former, are also hard to be tuned. That is, we sometimes are
unable to finely adjust the key hyper-parameters, like batch
size and learning rate, which are essential on stabilizing the
training process. Moreover, the “large” models also prone
to suffer from the problems of over-fitting and performance
fluctuation across the restored frames.

To address the above problems, we propose a two-stage
framework combing a multi-frame recurrent-based net-
work and single-frame transformer-based network. Specif-
ically, the first stage is developed to coarsely restore the
video frames and alleviate the quality fluctuation across the
frames. Given the restored frames from the first stage, the
second stage further effectively removes the severe artifacts
frame by frame. Specifically, the first stage model is an im-
proved BasicVSR++ [5], and in the second stage we adopt
SwinIR [24] as the backbone model. We train these two
models separately to save memory resources and further im-
prove the accuracy. Besides, multiple strategies of transfer
learning and progressive training are conducted in both two
stages, to not only accelerate the convergence but also im-
prove final restoration performance. In summary, the con-
tributions of this paper are as follows:

• We propose a two-stage framework to simultaneously
remove compression artifacts and mitigate the quality
fluctuation in compressed videos.

• We introduce a progressive training scheme to stabilize
training and improve finally performance.

• We introduce a transfer learning strategy with pre-
trained models to shorten training time.

• Our proposed method achieves a good trade-off be-
tween the enhancement performance and model com-
plexity, and wins the NTIRE 2022 challenge of super-
resolution and quality enhancement of compressed
video [40].

2. Related Work
2.1. Video Restoration

As one of the main tracks of video restoration, com-
pressed video quality enhancement on has been widely
studied [11, 15, 35, 41, 42] in the past years. Among them,
most of the existing methods are based on the single-
frame quality enhancement [11, 35, 41]. Observing that
the frame quality remarkably fluctuates after compression,
MFQE [42] and its extended version MFQE 2.0 [15] take
advantage of neighboring high-quality frames. They adopt
a temporal fusion scheme that incorporates dense optical
flow for motion compensation. Similarly, STDF [9] aggre-
gates temporal information while avoiding explicit optical
flow estimation.

Video Super Resolution. In addition to the compressed
video quality enhancement, video super resolution (VSR)
aims to restore the videos by improving their resolution.
Different from the single image super resolution (SISR),
VSR utilizes neighboring frames to reconstruct the high-
resolution sequence. The existing VSR methods can be di-
vided into two categories: window-based [22,32,36,43] and
recurrent methods [4, 5, 18, 19]. Specifically, EDVR [32]
adopts deformable convolutions [8, 46] to align neighbour-
ing frames. Similar to EDVR, D3DNet [43] uses de-
formable 3D convolution network to fully exploit the spatio-
temporal information for video SR. Besides, BasicVSR [4]
proposes to untangle the basic components for VSR such
as propagation, alignment, aggregation and up-sampling.
On the top of BasicVSR, BasicVSR++ [5] further im-
proves performance with extensive bi-directional propaga-
tion strategy and flow-guided deformable alignment. In this
work, we adopt BasicVSR++ as our backbone model in the
first stage.

2.2. Vision Transformer

Recently, sourced from the area of natural language pro-
cessing (NLP) [10, 21, 25], Transformers have shown the
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Figure 2. Two-stage framework of our method.

outstanding performance and outperforms the state-of-the-
art models in many vision tasks, including image classifica-
tion, object detection, semantic segmentation, human pose
estimation and video classification [1, 3, 12, 16, 26, 26, 34,
34,44]. Specifically, Swin transformer [26] proposes a hier-
archical transformer structure with shifted windows mecha-
nism, which integrates the advantages of build-in inductive
biases of CNN and long-range self-attention of transform-
ers.

There also exists some attempts to apply transformers in
low-level vision tasks [6, 7, 20, 24, 33, 37, 45]. For instance,
SwinIR [24] proposes an image restoration model based
on Swin transformer, which not only handles local con-
text but also efficiently captures long-range dependencies.
Uformer [33] proposes a general U-shaped transformer-
based structure, which shows strong performance on real
de-noising tasks.

Transformers have also been introduced for video
restoration [2, 13, 23]. VSRT [2] utilizes the parallel com-
puting ability of transformer to align the features between
neighboring frames in parallel. VRT [23] introduces a tem-
poral mutual self attention module to better mining spatial-
temporal information. Unfortunately, these approaches can
not be trained with longer video clips as they require large
memory of GPU. In this work, we adopt SwinIR as our
backbone model in the second stage.

3. Method
3.1. Proposed Two-stage Framework

We first introduce our two-stage framework for video
restoration, as shown in Fig. 2. In stage I, the network is
developed on the top of BasicVSR++ [5]. Based on this,
we replace the second-order flows in BasicVSR++ by PQF
flows [15, 42]. Besides, we deepen the reconstruction mod-
ule of BasicVSR++ from 5 residual blocks to 55 blocks.
In stage II, we further improve the quality of the enhanced
consecutive frames by a state-of-the-art image restoration
network, i.e., SwinIR [24]. This stage helps remove severe
artifacts and further improve the quality upon the previous

stage. Finally, the networks of stage I and II are cascaded
for producing the final results. In summary, we first feed
the compressed video with N compressed frames {Ft}Nt=1

into the stage I model. Then, we obtain the enhanced video
frames {F̃t}Nt=1 by stage I. Next, we feed {F̃t}Nt=1 into the
stage II model frame by frame. Finally, we get the en-
hanced video frames {F̂t}Nt=1, which are sequentially com-
bined into the final enhanced video.

3.2. First Stage and Progressive Training

Our stage I model consists of three developed modules:
feature extraction, propagation and image reconstruction.
Given an input video, two strided convolution and five resid-
ual blocks are first applied to extract spatial features from
the input frames. At the same time, all input frames are
down-sampled by the factor of 4 with an bicubic filter, and
then applied to SpyNet [29] to calculate the forward and
backward flows. Next, as shown in Fig. 3, for enhancing
the t-th frame, the features of neighboring (t − 1)-th and
(t + 1)-th frames as well as the features of previous and
subsequent PQFs are propagated to the spatial feature of the
t-th frame. For the propagation of each frame, the frame is
warped by its estimated flow. Finally, we use 55 residual
blocks to decode the propagated features, and reconstruct
the video. To be more specific, in stage I model, we use
pixel shuffling [30] to restore the resolution of decoded fea-
tures. Besides, residual learning [17] is also conducted for
generating the final enhanced image, by reducing the train-
ing complexity of the model.

As introduced, our reconstruction module contains 55
residual blocks, which is rather “heavy” for training. Thus,
a progressive training [14, 28] strategy is conducted for our
stage I model. Specially, we lighten the reconstruction mod-
ule by using its first 5, 15, 25, 35, 45 and 55 residual blocks
for reconstruction, respectively. Specifically, let R1, R2, ...,
R5 and R6 denote the 1-5, 6-15, 16-25, 26-35, 36-45, 46-55
residual blocks; E and P refer to the modules of feature ex-
traction and feature propagation; S and R are the two pixel
shuffling layers and residual block at the end of our stage
I model. Given the input frame Iin, the restored frame Iout
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Figure 3. Structure of stage I model (for Track 1).

can be obtained by the progressively training as follows

Iout = R(S(R1(P (E(Iin))))) (1)
Iout = R(S(R2(R1(P (E(Iin)))))) (2)
Iout = R(S(R3(R2(R1(P (E(Iin))))))) (3)
Iout = R(S(R4(R3(R2(R1(P (E(Iin)))))))) (4)
Iout = R(S(R5(R4(R3(R2(R1(P (E(Iin))))))))) (5)
Iout = R(S(R6(R5(R4(R3(R2(R1(P (E(Iin))))))))))

(6)

For the first training, we load the parameters of E, P , S and
R from the open-sourced model of BasicVSR++. For the
k-th training (2 <= k <= 6), we load the parameters of E,
P , S, R and {Ri}k−1

i=1 from the (k−1)-th converged model.
Note that the temporal information is embedded in the prop-
agation module as illustrated in Fig. 2, which is simplified
in the above equations.

3.3. Second Stage and Transfer Learning

Although a single BasicVSR++ could achieve state-of-
the-art performance for the compressed videos restoration,
the restored results are not satisfactory in the cases with
severely distorted scenes. Thus, we develop a stage II
model to further refine the enhanced video frames by stage I
model, similar to the two-stage restoration strategy in [32].
However, different from [32], we empirically find that sim-
ply cascading a second BasicVSR++ on stage I can only
bring slight improvement. Instead of cascading a video
restoration model, we employ a single-image restoration
model in stage II to further improve the quality of the en-
hanced frames.

Specifically, SwinIR [24] model is utilized in stage II to
further enhance the outputs of stage I, which is proven to
be still effective for enhancement of compressed video, in
addition to the restoration of single image. Besides, due
to the fact that transformer requires training in large-scale
datasets, transfer learning is applied during the training of
SwinIR. More specifically, the SwinIR model is initialized
by pre-trained parameters from [24], which is trained for
RGB image denoising. The effectiveness of stage II is illus-
trated in Table 2.

4. Experiments

4.1. Datasets

We use two datasets for training our models in both two
stages. First, we adopt the LDV dataset [39], which is
released officially by the NTIRE 2022 challenge. It con-
tains 240 qHD sequences belonging to 10 categories of
scenes, including animal, city, closeup, fashion, human, in-
door, park, scenery, sports and vehicle. Besides, we build
a large-scale dataset with 870 4K sequences acquired from
YouTube. Specially, for each above category, 87 sequences
are collected. These sequences are with high-quality and
without visible artifacts. Then, we follow the data pro-
cessing procedure in NTIRE 2021 report [38], and convert
our 4K sequences to qHD sequences. As a prepossessing,
we further remove repeated frames in the compressed se-
quences and the corresponding frames in raw sequences.

To validate the performance of our proposed method, we
select one sequence from each scenes to construct a offline
validation set. These 10 sequences are 109, 030, 125, 056,
189, 124, 119, 102, 106 and 158 from LDV dataset. In gen-
eral, we use 1100 sequences for training, and 10 sequences
for validation.

4.2. Implementation Detail

For stage I, we first fine-tune the official pre-trained Ba-
sicVSR++ model for 300K iterations with Charbonnier loss.
Adam optimizer is adopted with a initial learning rate of
2× 10−5. We also adopt the Cosine Restart scheduler with
the period of 300K iterations. The learning rate is linearly
increased for the first 10% iterations. Besides, we progres-
sively train and converge our model by increasing the num-
ber of residual reconstruction blocks from 5 to 55. Then, we
fine-tune our model with L2 loss for 100K iterations. All
experiments are conducted with four NVIDIA V100 GPUs.

For stage II, we first fine-tune the image restoration
model of SwinIR via the default Charbonnier loss, which is
initialized by the pre-trained parameters on the task of im-
age denoising. Then we jointly fine-tune the overall model
with a small learning rate of 1×10−6 using L2 loss function,
over our established dataset and NTIRE training dataset. It
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Table 1. Quantitative results of average PSNR ↑ on stage I model in Track 1. Note that LDV refers to the 230 official training data, and EX
refers to the 870 training data collected from YouTube. MSE is the Mean Squared Error training loss, and RMD indicates that we removed
duplicated frames at test time.

Model Params Settings Our Offline Official(10th frames)

BasicVSR++ c128n25 [5] 44.08M LDV 32.5930 31.8269
StageI c128n25 44.08M LDV 32.6130 31.8611
StageI c128n25 44.08M LDV+EX 32.6957 32.0252

StageI c128n25 rec2 47.51M LDV+EX 32.7484 32.0587
StageI c128n25 rec3 50.61M LDV+EX 32.7850 32.0826
StageI c128n25 rec4 53.71M LDV+EX 32.7945 32.0933
StageI c128n25 rec5 56.80M LDV+EX 32.8054 32.1025
StageI c128n25 rec6 59.90M LDV+EX 32.8240 32.1067
StageI c128n25 rec6 59.90M LDV+cleaned EX 32.8672 32.1934
StageI c128n25 rec6 59.90M LDV+cleaned EX, MSE 32.8968 32.2224
StageI c128n25 rec6 59.90M LDV, MSE 32.9055 32.2323
StageI c128n25 rec6 59.90M LDV, MSE, RMD 32.9193 32.2395

Table 2. Quantitative results of PSNR ↑ on our 10 offline validation videos in Track 1. Note that LDV refers to the 230 official training
data, and EX refers to the 870 training data collected from YouTube. MSE is the Mean Squared Error training loss; RMD indicates that
we removed duplicated frames at test time, and TTA indicates the employing of self-ensemble. TTA I and TTA II indicates applying
self-ensemble in stage I and II, respectively.

Stage Model Settings 30 56 102 106 109 119 124 125 158 189
Avg.

Offline
Avg.

Offical
LQ Input - 29.39 32.89 27.84 34.09 30.04 28.90 30.14 34.19 31.9 26.79 30.6170 30.1768

Baseline
BasicVSR++ c128n25 [5] LDV 31.65 35.13 29.08 35.65 31.00 30.30 32.84 37.40 34.75 28.14 32.5930 31.8269
BasicVSR++ c128n25 [5] LDV, TTA 31.90 35.29 29.20 35.70 31.30 30.42 33.19 37.71 35.00 28.30 32.8019 32.1188

I

Stage I c128n25 LDV 31.64 35.01 29.07 25.64 31.17 30.29 32.88 37.47 34.82 28.13 32.6130 31.8611
StageI c128n25 LDV+EX 31.60 35.18 29.26 35.76 32.25 30.32 32.89 37.54 34.99 28.16 32.6957 32.0252

StageI c128n25 rec6 LDV+EX 31.74 35.31 29.3 35.79 31.36 30.39 33.20 37.81 35.07 28.27 32.8240 32.1067
StageI c128n25 rec6 LDV+cleaned EX 31.81 35.29 29.29 35.74 31.4 30.42 33.34 37.94 35.11 28.33 32.8672 32.1934
StageI c128n25 rec6 LDV, MSE, RMD 31.84 35.35 29.39 35.78 31.52 30.45 33.37 37.97 35.14 28.36 32.9193 32.2395
StageI c128n25 rec6 LDV, MSE, RMD, TTA 32.09 35.49 29.48 35.84 31.62 30.54 33.60 38.19 35.38 28.49 33.0721 32.4334

II

SwinIR [24] LDV+EX 32.05 35.43 29.40 35.80 31.57 30.51 33.61 38.08 35.23 28.47 33.0148 32.3687
SwinIR [24] LDV+cleaned EX 32.06 35.42 29.39 35.80 31.57 30.51 33.63 38.13 35.25 28.46 33.0227 32.3757
SwinIR [24] LDV+cleaned EX, MSE 32.07 35.43 29.40 35.81 31.58 30.53 33.65 38.13 35.26 28.48 33.0327 32.3873
SwinIR [24] LDV+cleaned EX, MSE, TTA I 32.25 35.54 29.46 35.86 31.65 30.59 33.81 38.28 35.42 28.58 33.1451 32.5425
SwinIR [24] LDV+cleaned EX, MSE, TTA II 32.27 35.55 29.47 35.86 31.66 30.60 33.83 38.32 35.45 28.59 33.1619 32.5525

is noteworthy that we only sample one of every eight frames
from each video for training, instead of sampling all video
frames.

4.3. Quantitative Results

In the experiments, we adopt the peak signal-to-noise ra-
tio (PSNR) to evaluate the video restoration performance.
We report our performance of Track 1 on two parts: (1) 10
sequences of our offline validation set and (2) 15 sequences
of the official online validation set.

As shown in Table 1, our stage I model achieves 0.326
dB PSNR improvement on the offline validation set. Spe-
cially, by training with extra data, we improve our perfor-
mance by 0.083 dB. Besides, the performance can be fur-
ther improved by 0.043 dB by removing some poor-quality
sequences. By progressively training our model, 0.128 dB
PSNR improvement is achieved with 15.82M more param-
eters. Fine-tuning with MSE Loss and removing duplicated
frames bring us 0.028 dB and 0.014 dB improvements, re-
spectively.

We also provide the results on our offline validation set
in Table 2. As can be seen, the employing of stage II model
brings 0.11 dB performance gain in terms of PSNR upon the
results of stage I. Furthermore, after applying self-ensemble
in stage II, the performance (i.e., PSNR) boost by 0.13 dB
and achieves 33.16 dB in the offline validation set, and
achieves a total improvement of 0.36 dB compared with the
baseline BasicVSR++ model. This indicates that the uti-
lizing of stage II helps achieve superior performance, and
verifies the effectiveness of our proposed two-stage strategy
in restoration of compressed videos.

4.4. Qualitative Results

We present our results on the official test set of NTIRE
2022 challenge in Fig. 1 and those on our validation set in
Fig. 4. It is observed that our proposed method restore rich
details in the blurred regions of video frames. Besides, the
output of our solution contains less motion blur, compared
with the compressed video. The edge of objects are also
much clearer.
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Figure 4. Subjective performance of our proposed method on our validation set.

Table 3. Ablation results on the effectiveness of transfer learning for stage II in terms of PSNR ↑ and training time, respectively. The
results are evaluated on our 10 offline validation videos.

Model 30 56 102 106 109 119 124 125 158 189 Avg. Training time

SwinIR wo transfer 31.98 35.39 29.37 35.79 31.56 30.46 33.57 38.09 35.21 28.43 32.9822 66h
SwinIR wt transfer 32.06 35.42 29.39 35.80 31.57 30.51 33.63 38.13 35.25 28.46 33.0227 29h

4.5. Ablation Study

Table 3 shows the ablation results on transfer learning of
stage II. As can be observed, with the application of trans-
fer learning, the PSNR of stage II achieves an improve-
ment of 0.04 dB compared with the model training from
scratch. This indicates the effectiveness of transferring the
knowledge of image denoising to the compressed video en-
hancement. Besides, the training time of SwinIR is sig-
nificantly reduced after employing transfer learning, which
drops from 66 hours to 29 hours. This verifies the advan-

tages of transfer learning on stage II.

Table 4. Our results of averaged PSNR ↑ of all three tracks in the
challenge. Note that for the evaluation on the validation set, we
provide results of stage I/II.

Track
validation

(10th frames)
test set

(10th frames)
test set

(all frames)
1 (Winner) 32.43/32.55 31.92 32.07
2 (Winner) 28.15/28.17 27.48 27.55

3 (Runner-up) 25.08/25.09 24.19 24.22
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5. NTIRE 2022 Challenge
We participate in all three tracks in the NTIRE 2022

super-resolution and quality enhancement of compressed
video challenge. Quantitative results are presented in Ta-
ble 4. In the competition, the self-ensemble [31, 32] is used
in all the three tracks, while the model-ensemble is used
only in Track 3. Specifically, for Track 1&2, we flip and
rotate the input image to generate eight augmented inputs
for each sample, and then merge the eight predicts as the
input of the stage II model. For Track 3, in addition to the 8
augmentation in Track 1&2, we further conduct the model
ensemble in the first stage. As a result, 16 predicts (two
models with eight rotations of each) is used as the input of
the stage II model.

6. Conclusion
In this paper, we proposed a two-stage framework to

simultaneously remove compression artifacts and mitigate
the quality fluctuation in compressed videos. Specifically,
we introduced the progressive training and transfer learn-
ing strategies to stabilize the training process, shorten the
training time, and improve final performance of video en-
hancement. Our method achieved a good trade-off be-
tween the enhancement performance and model complexity,
and wined two champions and one runner-up in the super-
resolution and quality enhancement of compressed video
challenge of NTIRE 2022.
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