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Abstract

The purpose of this paper is to design a lightweight net-
work to achieve image super resolution performance equiv-
alent to SRResNet. We design an asymmetric informa-
tion distillation block (AIDB) with distillation information
multiplexing and asymmetric information extraction capa-
bilities to better achieve this goal. Distillation informa-
tion multiplexing refers to the repeated processing of dis-
tilled information to supplement the ability of key infor-
mation extraction. Asymmetric information enhancement
block (AIEB) refers to identify different features in the im-
age by the horizontal and vertical feature extraction. AIEB
greatly reduces the number of parameters, and distillation
information multiplexing works as a supplement to the lost
high dimensional information. A large number of exper-
iments show that our asymmetric information distillation
network (AIDN) achieves a better balance of performance
and complexity than SOTA model. Moreover, Our pro-
posed AIDN ranked second in the model complexity track
of NTIRE2022 efficient super resolution challenge. Com-
pared with the first place in this track, we achieves higher
PSNR performance on testset with a slight disadvantage
in the number of parameters. The code is available at
https://github.com/zzksdu/AIDN .

1. Introduction
Single image super resolution (SISR) is a classic low-

level computer vision task, which aims to reconstruct a su-
per resolution (SR) image from a single low resolution (LR)
image. Since SRCNN [3] was proposed, many deep learn-
ing methods [5, 10, 16, 17, 20, 23, 28, 31, 32] have been pro-
posed to improve the performance of image super resolu-
tion. SRCNN [3] is the first attempt to reconstruct SR from
LR using convolution neural network (CNN). Subsequently,
Kim et al. [12] achieved better super resolution performance
by increasing the network depth of SRCNN [3], which also
shows that the network depth is closely related to the su-
per resolution performance. Bee et al. [16] made greater
progress in super resolution by introducing residual struc-

Figure 1. performance and parameters comparison between our
AIDN and other State-of-the-art light weight network on urban100
dataset for upscaling factor × 4

tures that further increased the depth of the network.
In this paper, our purpose is to design a lightweight net-

work structure, which can achieve the image super reso-
lution performance equivalent to SRResNet [15]. Before
that, lots of works [11, 23, 32] have been proposed to re-
duce the number of parameters in super resolution network,
and achieved good performance. What impresses us is that
IMDN [8] improved IDN [9] by introducing information
multiple distillation block (IMDB), and got the first place
in AIM2019 efficient super resolution challenge. RFDN
[20] on the basis of IMDN [8] by replacing split opera-
tion and proposing shallow residual block (SRB) further re-
duce the runtime of SR while maintaining the super resolu-
tion performance. Although there are so many methods try
to lightweight super resolution network, many works still
have large amount of parameters and huge computational
complexity. To solve this problem, NTIRE2022 held the
efficient super resolution challenge [18], which aims to re-
quire participants to use the least computing resources to
achieve performance equivalent to SRResNet [15]. More-
over, PSNR requires a minimum of 29dB, and any evalu-
ation of parameter, flops, runtime, memory, and activation
layer are lower than SRResNet [15]. This challenge will
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Figure 2. The architecture of asymmetric information distillation network (AIDN)

greatly promote the development of lightweight super res-
olution network. In order to minimize the parameters, we
propose a very simple and effective super resolution net-
work (AIDN) with less computational complexity. More-
over, in model complexity track we achieved the second
place among all the effective submissions. And compared
with the first place in this track, we achieved higher PSNR
performance on testset with a slight disadvantage in the
number of parameters. In the rest of this paper, we will
introduce our method. First we rethink the network struc-
ture of RFDN [20]. RFDN [20] is composed of four resid-
ual feature distillation blocks (RFDB). In RFDB, the mul-
tistage distillation structure is used to extract the key infor-
mation of SR reconstruction layer by layer. The input fea-
tures are divided into two parts in RFDB. One part of the in-
formation is retained through simple CNN calculation, and
the other part enhances the nonlinear ability by SRB mod-
ule, which further improves the information extraction abil-
ity. We found that SRB in each RFDB can be completely
equivalent to a convolution calculation in the final inference
stage. In other words, there are many redundant calculations
in RFDB. In order to further reduce the channel dimension
of RFDB, we reduce the channel dimension at the beginning
of each block and reduce redundant calculations. Moreover,
we use asymmetric convolution in different directions to re-
place the original traditional convolution operation, which
reduces the amount of parameters by 50% compared with
RFDB. However by reducing the amount of parameters di-
rectly, the performance of super resolution will inevitably
weaken with the reduction of network parameters. There-
fore, we multiplex the distilled information obtained previ-
ously to enhance the distillation information behind in every
block, so as to achieve better super resolution performance.
The main contributions of this paper can be summarized as
follows:

1.We propose an asymmetric information enhancement
block (AIEB) to achieve faster and better image super res-
olution performance. Moreover, we reach the second place
in the model complexity track of efficient super resolution
challenge [18].

2.We designed an AIDB module. It has the same super
resolution performance as the baseline network (SRResNet
[15]). However, the number of parameters is reduced by

84% and the number of flops is reduced by 91.5%.
3.We systematically summarized the design of RFDN

[20]. Based on our understanding of RFDN [20], we re-
designed our model structure to realize the lightweight su-
per resolution network.

2. Related work
In recent years, methods based on deep learning have

been widely used in the field of super resolution (SR) and
have made great progress. The SRCNN [3] network pro-
posed by Dong et al. was the first attempt to which utilize
convolution neural networks to address image super reso-
lution. SRCNN [3] was a three layer convolution neural
network to achieve image reconstruction in an end to end
manner. Compared with SRCNN [3], VDSR [12] further
improved the performance of SR by stacking 20 convolu-
tional layers, which to some extent indicates that the depth
of the network has a positive effect on the result of SR re-
construction. Kim et al. proposed the DRCN [13] struc-
ture by recursively using the feature extraction layer, which
reduces the computational complexity of the SR network
to a certain extent. DRRN [8] achieves better results by
combining recursive and residual network schemes on the
basis of DRCN [13], and reduces the amount of parame-
ters. The laplacian pyramid super-resolution network (Lap-
SRN [14]) takes the original LR image as input and recon-
structs the subband residuals of the HR image step by step
to improve speed and accuracy. For model acceleration,
Zhang et al. [29] proposed a generalized singular value de-
composition method to asymmetric reconstruction and im-
proved the running speed of the model. In order to fur-
ther improve the operation speed of the SR network, Shi et
al. [24] designed an efficient sub-pixel convolution to up-
scale the resolution of the feature maps at the end of the
SR model, which can make a lot of calculations in low-
dimensional feature space. Similarly, fast SRCNN (FSR-
CNN [4]) use transposed convolutions as upsampling lay-
ers to accomplish resolution upscaling. Lim et al. [19] pro-
posed EDSR and MDSR by removing unnecessary mod-
ules in traditional residual networks, which achieved signif-
icant improvements in the SR performance. On the basis of
EDSR [19], Zhang et al. [31] proposed residual dense net-
work (RDN) by introducing dense connections in residual
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Figure 3. (a) RFDB: residual feature distillation block. (b) RFDB-E: the equivalent of RFDB. (c) AIDB: asymmetric information distillation
block. (d) Asymmetric information enhancement block (AIEB)

blocks. They also introduced the channel attention mecha-
nism into the improved SR residual block, and proposed the
Residual Channel Attention Network (RCAN [30]), which
utilizes global adaptive pooling to extract channel statistics.
It can rescale channel-wise features to help train very deep
networks by taking into account the interdependencies be-
tween channels. CAUN-M [26] improved the efficiency of
super resolution by using group convolutions and achieves
comparable results to models of computational complexity.
Dai et al. [2] proposed SAN, which uses a second order at-
tention mechanism to adaptively adjust the scale of features
by considering feature statistics higher than first-order. Guo
et al. [6] proposed a dual regression scheme, which intro-
duced a dual branch based on the traditional SR network,
which completed the process from SR to LR, thereby form-
ing a closed-loop system and improving the performance
of SR model. Despite the great success of CNN-based SR
methods, most of them are not suitable for mobile devices.
To address this issue, Ahn et al. [1] proposed a CARN-M
model for mobile scenarios through a cascaded network ar-
chitecture. Hui et al. [9] proposed an Information Distilla-
tion Network (IDN) to explicitly divide the extracted fea-
tures into two parts. Building on the IDN [9], they also
propose a fast and lightweight Information Multiple Dis-
tillation Network (IMDN [8]), which is the winning solu-
tion of the AIM 2019 Constrained Image Super-Resolution
Challenge. On the basis of IMDN [8], RFDN [20] replaced
the split operation of IMDN [8] with the traditional 1 × 1
convolution, and proposed the SRB module, which won the
championship of AIM2020-efficient super resolution chal-
lenge [18].

3. Method

3.1. Residual feature distilllation block

As shown in Figure3 (a), RFDN [20] proposes a more
effective information distillation block (RFDB) based on
IMDB, and it is still a progressive refining network. In the
process of information distillation, one branch uses a sin-
gle convolution for information distillation, and the other
branch further enhances the input feature through a sim-
ple SRB. In the information distillation process, every stage
will distill some information. Then all the distilled infor-
mation is fused in the tail of block. Finally, the distilled
information is then enhanced by enhanced spatial attention
(ESA) layer [20]. The whole process can be expressed as
equation (1).

Fdistilld 1, Fcoarse 1 = Conv1×1(Fin), SRB(Fin)

Fdistilld 2, Fcoarse 2 = Conv1×1(Fcoarse 1), SRB(Fcoarse 1)

Fdistilld 3, Fcoarse 3 = Conv1×1(Fcoarse 2), SRB(Fcoarse 2)

Fdistilld 4 = SRB(Fcoarse 3)

(1)

Where Fin represents the input feature. Conv11 is the
convolution operation with kernel size of 1 × 1. Fdistilledi

,
Fcoarsei is the i-th distillation information and course in-
formation respectively. Equation 2 indicates concat the dis-
tilled features along the channel dimension.

Fdistilld = Concat(Fdistilld 1,Fdistilld 2,Fdistilld 3,Fdistilld 4) (2)
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Figure 4. The Base block, AIEB block, FDC block and AIDB used in ablation study.

3.2. Rethinking the RFDB
Compared with IMDB, RFDB has made great progress

in parameter and flops, but there are still some redundant
calculations. Firstly, SRB in RFDB can be completely
equivalent to an ordinary convolution operation. In other
words, RFDB can be completely equivalent to Fig3 (b) with
sufficient training. Then, we found that in the information
distillation of the following layers within each block, the di-
mension of channel can be appropriately reduced, and there
is no need to maintain a high dimension. As described in
Fig. 3 (b), the structure of the whole block can be described
as equation 3:

Fdistilld 1,Fcoarse 1=Conv1×1(Fin),Conv3×3(Fin)

Fdistilld 2,Fcoarse 2=Conv1×1(Fcoarse 1),Conv3×3(Fcoarse 1)

Fdistilld 3,Fcoarse 3=Conv1×1(Fcoarse 2),Conv3×3(Fcoarse 2)

Fdistilld 4 = Conv3×3(Fcoarse 3)

(3)

We call this new structure as RFDB-E, which removes
obvious redundant computing. In addition, we believe that
in the process of high-dimensional information extraction,
a single convolution cannot provide better information dis-
tillation capability, and there should be some more effective
ways to complete information extraction.

3.3. Asymmetric information distillation block

In this section, we will introduce our proposed AIDB,
which is a lighter and more effective information extraction
module. The overall structure of AIDB is shown in figure
Figure3(c). You can observe that the information distilla-
tion operation is completed through a 1 × 1 convolution op-
eration, which can greatly reduce the amount of parameters.
In the deeper information distillation module, we propose
an AIEB, which improves the ability of information extrac-
tion. The AIEB is composed of two pairs of asymmetric
convolutions in different directions. The sizes of these two
asymmetric convolutions in different directions are 1 × 3

and 3 × 1 respectively, and they are used in different order
on each branch. And a ReLU activation layer is added be-
tween every two asymmetric convolutions, which also im-
proves the nonlinear ability of AIDB, so as to improve the
ability of information extraction. Due to the powerful infor-
mation extraction ability of AIEB, the input dimension can
be reduced to half of the original dimension at the beginning
of each block.

In the process of information distillation at the later lev-
els within each block, some additional features are often
needed to make up for the lost information caused by more
nonlinear layers. By multiplexing the distilled information
previously to the distillation information of the later levels,
better distilled information can be completed with less pa-
rameters. Next, we will focus on the proposed AIDN in the
next section.

3.4. Overall framework

We use the same structure as RFDN [20] and IMDN [8]
to implement the overall network framework, as shown in
Figure 2. The overall network structure consists of four
parts: the head block, information extraction module, fea-
ture fusion module and upsampling module. (a) The head
block. Head block is the process of extracting rough fea-
tures from LR images through a 3 × 3 convolution oper-
ation. On the other hand, the features extracted from the
head block can be used as a residual information of the
later block to supplement the distilled features. (b) Infor-
mation extraction module. The information extraction mod-
ule is formed by four AIDB stacks. With the enhance-
ment of AIDB’s ability to distill information, the output
feature of each block are more accurate and more expres-
sive. Moreover, we verified that with the increase of the
number of AIDB, the performance of super resolution will
significantly improved, with small increase in the number
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Table 1. Comparison of CARN [1], SRResNet [15], RFDN [20] and AIDN for upscaling factor ×2, ×3 and ×4. Red/Blue text: best/second-
best

Scale Method Params Set5 / PSNR Set14 / PSNR B100 / PSNR Urban100 / PSNR Manga109 / PSNR

×2 CARN [1] 1592K 37.76 33.52 32.09 31.92 38.36
×2 SRResNet [15] 1370K 38.05 33.64 32.22 32.23 38.05
×2 RFDN [20] 534K 38.05 33.68 32.16 32.12 38.88
×2 AIDN(ours) 323K 38.07 33.72 32.18 32.24 38.89

×3 CARN [1] 1592K 34.29 30.29 29.06 28.06 33.50
×3 SRResNet [15] 1554K 34.41 30.36 29.11 28.20 33.54
×3 RFDN [20] 541K 34.41 30.34 29.09 28.21 33.67
×3 AIDN(ours) 330K 34.43 30.35 29.11 28.25 33.69

×4 CARN [1] 1592K 32.13 28.60 27.58 26.07 30.47
×4 SRResNet [15] 1518K 32.17 28.61 27.59 26.12 30.48
×4 RFDN [20] 550K 32.24 28.61 27.57 26.11 30.58
×4 AIDN(ours) 339K 32.26 28.60 27.58 26.16 30.59

Table 2. Investigations of AIEB and FDC on the benchmark datasets with scale factor of ×4. The best results are highlighted.

Method Params Set5 Set14 B100 Urban100 Managa109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Base 352K 32.10/0.8933 28.51/0.7801 27.42/0.7341 26.01/0.7840 30.42/0.9072
AIEB 352K 32.19/0.8949 28.57/0.7809 27.49/0.7349 26.07/0.7849 30.50/0.9078
FDC 339K 32.23/0.8951 28.57/0.7810 27.54/0.7354 26.12/0.7857 30.56/0.9083
AIDB 339K 32.26/0.8953 28.60/0.7818 27.58/0.7360 26.16/0.7864 30.59/0.9089

of parameters. but the number of parameters does not in-
crease significantly. (c) Feature fusion module. Similar to
RFDN [20] and IMDN [8], we fuse the output features of
each AIDB through concat and a 3 × 3 convolution oper-
ation. The formula can be expressed as equation (2). (d)
Upsampling module. In the feature fusion module, we got a
more accurate and effective feature, then fintune the feature
through a 3 × 3 convolution operation, and then upsample
the image through a pixelshuffle module to get the final SR
image. The loss function of our model can be expressed as
follows:

L(θ) =
1

N

N∑
i=0

∥HAIDN (ILR
i − IHR

i )∥1 (4)

Where ∥ ∥1 represents L1 norm, LR, HR represents the
low resolution image and the corresponding high resolution
image. AIDN represents the final network structure. N rep-
resents batch size and θ represents the parameters of AIDN.

4. Experiment
In this section, we will systematically compare our

AIDN method with SOTA method on the benchmark

dataset. In addition, we conducted a large number of ab-
lation experiments to verify the effectiveness of each com-
ponent we proposed.

4.1. Datasets and metrics

We used DIV2K, Flickr2K, OST datasets as our training
data. Among them, LR is obtained by HR through bicubic
down sampling. We have a total of 13774 high resolution
images, including 800 images in DIV2K, 2650 images in
Flickr2K and 10324 images in OST. In the test phase, we
use five widely used benchmark datasets, namely Set5 [4],
SET14 [27], BSD100 [21], Urban100 [7] and Manga109
[22]. Moreover, PSNR and SSIM, two commonly used
metrics in image restoration, are used to evaluate the image
quality on the Y channel after super resolution.

4.2. Implementation details

In the training phase, we use three commonly used
datasets (DIV2K, Flickr2K, OST) to train our AIDN. LR
images (×2, ×3, and ×4) are obtained by downsampling HR
image using bicubic in MATLAB. The methods of data aug-
mentation include random flip and random rotation of 90o,
180o, 270o. The image size of HR is set to 256 × 256, which
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Table 3. Comparison of CARN [1], SRResNet [15], RFDN [20] and AIDN for upscaling factor ×2, ×3 and ×4. Red/Blue text: best/second-
best

Method Params Flops
Set5 Set14 B100 Urban100 Managa109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Scale ×2

SRCNN [3] 57K 15.10G 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN [4] 13K 1.72G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [12] 666K 175.53G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
DRCN [13] 1774K 5150.23G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732

LapSRN [14] 251K 8.57G 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
DRRN [8] 298K 1947.54G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749

MemNet [25] 678K 762.87G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
CARN [1] 1592K 63.84G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

SRResNet [15] 1370K 101.44G 38.05/0.9607 33.64/0.9178 32.22/0.9002 32.23/0.9295 38.05/0.9607
IMDN [8] 694K 45.23G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

RFDN [20] 534K 32.07G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
AIDN(ours) 323K 19.21G 38.07/0.9607 33.72/0.9192 32.18/0.8995 32.24/0.9289 38.89/0.9774

RDN [31] 22123K - 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780
RCAN [30] 15444K - 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786

SAN [2] 15674K - 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/.09792

Scale ×3

SRCNN [3] 57K 33.78G 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [4] 13K 3.21G 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [12] 666K 392.69G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN [13] 1774K 11521.99G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343

LapSRN [14] 502K 199.36G 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
DRRN [8] 298K 4356.99G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379

MemNet [25] 678K 1706.67G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
CARN [1] 1592K 76.15G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440

SRResNet [15] 1554K 121.43G 34.41/0.9274 30.36/0.8427 29.11/0.8055 28.20/0.8535 33.54/0.9448
IMDN [8] 703K 45.81G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

RFDN [20] 541K 32.51G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
AIDN(ours) 330K 19.65G 34.43/0.9274 30.35/0.8420 29.11/0.8051 28.25/0.8530 33.69/0.9451

RDN [31] 22308K - 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484
RCAN [30] 15629K - 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499

SAN [2] 15859K - 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494

Scale ×4

SRCNN [3] 57K 60.57G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
FSRCNN [4] 12K 5.3G 30.71/0.8657 27.59/0.7535 26.98/0.7105 24.62/0.7280 27.90/0.8517
VDSR [12] 665K 704.14G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
DRCN [13] 1774K 20660.11G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

LapSRN [14] 813K 171.72G 31.54/0.8850 29.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
DRRN [8] 297K 7812.53G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960

MemNet [25] 677K 3060.23G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
CARN [1] 1592K 104.48G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

SRResNet [15] 1518K 166.36G 32.17/0.8951 28.61/0.7823 27.59/0.7365 26.12/0.7871 30.48/0.9087
IMDN [8] 715K 58.53G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

RFDN [20] 550K 33.13G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
AIDN(ours) 339K 20.27G 32.26/0.8953 28.60/0.7818 27.58/0.7360 26.16/0.7864 30.59/0.9089

RDN [31] 22271K - 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151
RCAN [30] 15592K - 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173

SAN [2] 15822K - 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169
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Figure 5. Visual comparsion for upscale ×4

is obtained from the random crop on HR image. The batch
size of training is set to 32. The training process is divided
into two stages. In the first stage, AIDN is trained with L1
loss and Adam optimizer. The learning rate ranges from 2 ×
10−4 to 2 × 10−6. The first stage of training includes 1000
epochs. Then AIDN model is fine-tuned by L2 loss and
Adam optimizer in the second stage training. The learning
rate ranges from 2 × 10−5 to 2 × 10−6. The second stage
of training includes 500 epochs. Our proposed method is
implemented using the pytorch framework and trained in
NVIDIA GTX 1060Ti GPU.

4.3. Comparison with SRResNet and RFDN

The original intention of our proposed method is for effi-
cient super resolution challenge. According to the require-
ments of the challenge, our goal is to maintain at least 29dB
as SRResNet [15] in the validation dataset, and reduce the
amount of computation as much as possible. In this sec-
tion, we focus on our comparison with SRResNet [15] on
five benchmark datasets with super resolution factors of ×2,
×3 and ×4 respectively. In addition, we also compared with

the champion model of AIM2020 effcient super resolution
challenge to prove the effectiveness of our model. From
Table 1, It can be clearly found that AIDN proposed by us
is superior to CARN [1], SRResNet [15] and RFDN [20]
in different upsapling multiples of five benchmark datasets.
Importantly, our parameter quantities are 1 / 5 of CARN [1],
1 / 4 of SRResNet and 1 / 2 of RFDN [20].

4.4. Ablation study

In order to verify the effectiveness of our proposed AIEB
and distilled information multiplexing, we designed the net-
work structure of Figure 2 and carried out detailed ablation
experiments. Figure 4 describes the four blocks respectively
and shows the evaluation results in Table 2. It can be ob-
served from the comparison results of the first two lines that
under the same parameter scale, AIEB can increase by 0.08
dB compared with base model on PSNR. This shows that
AIEB plays a good role in effective information extraction.
From the last two rows of the Table 2, we can also find that
PSNR can be increased by 0.04 dB by adding distillation
information reuse.
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4.5. Comparison with SOTA method

When the upsampling factors are 2, 3 and 4 respectively,
we compare our proposed AIDN with advanced lightweight
models, including SRCNN [3], FSRCNN [4], VDSR [12],
DRCN [13], LapSRN [14], DRRN [8], MemNet [25],
CARN [1], SRResNet [15], IMDN [8] and RFDN [20]. In
addition, we also compared some SOTA models: RDN [31],
RCAN [30] and SAN [2]. Table 3 shows the evaluation met-
rics (PSNR SSIM) of different methods on five benchmark
datasets, and shows the parameters of each method. It can
be observed from Table 3. Our proposed AIDN performs
better than the current state of the art method with fewer
parameters. In particular, CARN [1] and our model achieve
the same super resolution performance, but CARN [1] has
more than six times as many parameters as ours. Com-
pared with the benchmark IMDN [8], the parameters of
AIDN we proposed is less than 1 / 3 of IMDN [8], and also
achieves the super resolution performance basically equiva-
lent to IMDN [8]. Compared with RFDN [20] that won the
first place in AIM2020 efficient super resolution challenge.
The parameters of AIDN is 1 / 2 of RFDN [20], which also
achieved same super resolution performance. In Figure 5,
We show the visual comparison results of different meth-
ods. For ’barbara’ images, our method can produce more
accurate lines than other methods. For ’baby’ and ’12084’
images, our method can achieve the same visual effect with
fewer parameters than other methods.

5. Conclusion
In this paper, we propose a relatively lightweight image

super resolution network (AIDN), and get the second place
in the efficient super resolution challenge model complex-
ity track of NTIRE2022. In particular, we propose a new
feature distillation block (AIDB), which greatly reduces
the amount of parameters while ensuring the accuracy of
distilled information. In addition, the asymmetric feature
enhancement block (AIEB) focuses on the features in the
image from different directions and performs more effec-
tive enhancement. Moreover the nonlinear layer of AIEB
further improves the nonlinear feature extraction ability.
The multiplexing of distilled information makes up for the
lost information caused by the reduction of channel dimen-
sion. Therefore, compared with SRResNet [15], our model
maintains the same level in metrics (PSNR and SSIM) and
greatly reduces the number of parameters. A large num-
ber of experiments show that our model AIDN can achieve
comparable performance to state-of-the-art lightweight net-
works.
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