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Abstract

Recently, deep learning has been successfully applied

to the single-image super-resolution (SISR) with remark-

able performance. However, most existing methods focus

on building a more complex network with a large num-

ber of layers, which can entail heavy computational costs

and memory storage. To address this problem, we present

a lightweight Self-Calibrated Efficient Transformer (SCET)

network to solve this problem. The architecture of SCET

mainly consists of the self-calibrated module and efficient

transformer block, where the self-calibrated module adopts

the pixel attention mechanism to extract image features ef-

fectively. To further exploit the contextual information from

features, we employ an efficient transformer to help the

network obtain similar features over long distances and

thus recover sufficient texture details. We provide com-

prehensive results on different settings of the overall net-

work. Our proposed method achieves more remarkable

performance than baseline methods. The source code and

pre-trained models are available at https://github.

com/AlexZou14/SCET.

1. Introduction

Single image super-resolution (SISR) [14] aims to re-

cover a high-resolution (HR) image from its low-resolution

(LR) observation, which is a challenging ill-posed problem

because many latent HR images can be downsampled to

an identical LR image. To address this significant prob-

lem, many image super-resolution (SR) methods [11,20,27]

based on deep convolution architecture have been proposed

and shown impressive performance. Thanks to the power-

ful representation capabilities of the deep convolution neu-
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Figure 1. Trade-off between performance vs: number of oper-

ations and parameters on Urban100 ×4 dataset. Multi-adds are

calculated on 720p HR image. The results show the superiority of

our model among existing methods.

ral networks, numerous previous approaches can learn the

complex non-linear mapping from paired LR-HR images.

Dong et al. [11] firstly propose the super-resolution

convolutional neural network (SRCNN) that outperforms

the previous work. On this basis, various SR algorithms

[12, 20, 21, 34] have been proposed with superior perfor-

mances, and those methods have a large margin compared

with traditional methods. It is widely known that deeper

networks based on residual learning [16] generally achieve

better performances. Based on this cognition, deeper net-

works with larger frameworks, e.g. enhanced deep super-

resolution network (EDSR) [27] and residual channel at-

tention network (RCAN) [50], have been proposed and

achieved excellent performance. However, previous CNN-

based SR networks have a large number of parameters, re-
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sulting in the limitation of the application of SR technology

in edge devices.

A straightforward solution to this problem is to design

lightweight and efficient networks via reducing the amount

of the parameters, e.g., building shallow networks with a

single path [12, 23], recursive operation [21, 34], informa-

tion distillation mechanism [18,19], and neural architecture

search (NAS) [6, 7]. However, most of these methods focus

on local contextual information and do not consider global

similar textures, leading to problems such as artifacts in the

recovered image. The limited receptive field of convolution

operation is difficult to capture globally similar features, re-

sulting in a poor trade-off between performance and com-

plexity.

The image restoration methods based on the transformer

architecture have made remarkable progress recently. Yet,

there are few studies on the lightweight SR transformer

network, which attracts us to explore the following exciting

topic:

How to design a lightweight transformer to effec-

tively perform single image super-resolution?

Previous distillation-based solutions achieve impres-

sive SISR performance. However, the above solutions

have redundant parameters as the channel-splitting design

of extract features progressively in a single basic block.

Furthermore, they still have scope for improvement in

performance as the spatial and channel modeling ability is

relatively weak.

According to the above analysis, the core idea of our

approach is how to make lightweight networks with both

spatial modeling and channel modeling capabilities. Due

to the complexity limitations, it is obviously more efficient

to model dependencies in the channel and spatial dimen-

sions respectively. Thus, we propose two complementary

components, the SC module and the efficient transformer

module to endow the network with powerful modeling ca-

pabilities in the spatial dimension and channel dimension

respectively.

Self-Calibrated Module. We propose the SC module as

the efficient extractor to explore the valuable spatial features

from low-resolution input. With the help of the spatial at-

tention mechanism, it adaptively pays more attention to the

detailed textures. Therefore, the SC module provides strong

spatial clues for the following transformer module.

Efficient Transformer Module. We construct a linear-

complexity transformer module to perform channel-wise

self-attention mechanism, which efficiently models the de-

pendence in the channel dimension from input features. The

combination of two proposed modules provides comple-

mentary clues in the channel and spatial dimensions for the

HR image reconstruction.

Based on above components, we propose a lightweight

Self-Calibrated Efficient Transformer (SCET) network to

solve the SISR problem efficiently. For instance, our

method achieves higher performance than the state-of-the-

art lightweight SR method A2F-M [42] with 0.53 dB PSNR

gain on the ×4 Manga109 [31] dataset, the number of

parameters in SCET only 68.3% of A2F-M. The SCET

method is a competing entry in NTIRE 2022 Efficient

Super-Resolution challenge [25].

The key contributions of this work are as follows:

• We introduce the efficient transformer design to the

lightweight SISR task, effectively exploiting to the

property that the transformer module can capture long-

range dependencies, avoiding the problem of wrong

textures generated by current lightweight SR methods.

• We design the SC module as the high-performance

extractor. Compared with the information distillation

mechanism in the IMDB block [18], the SC module

employs a more efficient feature propagation strategy,

achieving better performance with fewer parameters

and less computational effort.

• As shown in Figure 1, our SCET occupies fewer pa-

rameters and takes fewer Multi-Adds, while signifi-

cantly improving the performance of SISR networks

at low resource consumption.

2. Related Work

2.1. Deep SR models

In recent years, deep CNN is employed in various low-

level vision tasks, such as image denoising [1], deblurring

[32], and so on. Dong et al. [11] make a big step forward

by proposing a three-layer fully convolutional network SR-

CNN. On this basis, Kim et al. design deeper network

VDSR [20] and DRCN [21] via residual learning. Subse-

quently, Tai et al. [34] later develop a deep recursive resid-

ual networks (DRRN) by introducing recursive blocks and

then propose a persistent memory network (MemNet) [35]

by utilizing memory block. However, the above methods

use the bicubic interpolation to preprocess the LR image,

which inevitably losses some details and bring large com-

putation. To solve this problem, Dong et al. [12] propose

FSRCNN by adopting a deconvolution layer to upsample

images at the end of the network to decrease computations.

Then, Shi et al. [33] introduce an efficient sub-pixel convo-

lutional layer instead of deconvolution. On this basis, Lim

et al. [27] propose a deeper and wider network EDSR by

stacking residual blocks (eliminating batch normalization

layers). The significant performance gain indicates the fact

that the depth and width of the network occupy important

places in image SR. Furthermore, some other networks, e.g.
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non-local neural network (NLRN) [41], RCAN [50], and

second-order attention network (SAN) [9], improve the per-

formances by modeling the correlation of features in space

or channel dimensions. Yet, these networks sacrifice the

portability of the network, leading to the highly cost in

memory storage and computational complexity.

2.2. Lightweight SR models

During these years, many lightweight networks have

been working on SR problem. They can be approximately

divided into three classes: the architectural design-based

methods [2, 19, 23], the knowledge distillation-based meth-

ods [15], and the NAS-based methods [6, 7]. The first class

mainly focuses on the recursive operation and channel split-

ting. Deeply-recursive convolutional network (DRCN) [21]

and deep recursive residual network (DRRN) [34] are pro-

posed to share parameters via introducing the recursive lay-

ers. However, the reduction of computational operation and

the amount of parameters are still unsatisfying. Ahn et al.

design a cascading residual network (CARN) [2], that ac-

complishes a cascading mechanism based on residual learn-

ing. Lightweight feature fusion network (LFFN) [8] uses

multi-path channel learning to incorporate multi-scale fea-

tures. NAS [53], which is an emerging approach to auto-

matically design efficient networks, is introduced to the SR

task [6,7]. However, the performances of NAS-based meth-

ods are limited by the search space and strategies. IMDN

[18] extracts hierarchical features step by step through split-

ting operations and further improves the efficiency of the

model. On this basis, RFDN [28] has further improved the

information multi-distillation block in IMDN and won the

first place at the Efficient Super-Resolution Challenge in

AIM 2020 [47]. Inspired by SCNet [29], Zhao et al. [51]

employ a self-calibrated convolution with pixel attention

block, which further reduces the network parameters and

improves the network operation speed. Therefore, we em-

ploy the self-calibrated convolution scheme in our SCET

network for efficient SR.

2.3. Vision Transformer

The breakthroughs from Transformer in the NLP area

lead to sigificant interest in the computer vision commu-

nity. It has been successfully applied in image recogni-

tion [13, 24, 38], object detection [4, 10] and segmentation

[40,43]. Currently, most Vision Transformer split the image

into a sequence of patches and then flatten them into vec-

tors to learn their interrelationships through self-attention.

Therefore, the Vision Transformers possesses the strong

capability to learn long-term dependencies between image

pixel. Owing to its powerful learning capabilities, Trans-

former is introduced to low-level vision tasks [5, 26, 39, 44]

and obtained excellent performance recently. However, the

self-attention mechanism in the Transformer introduces a

huge amount of computation and GPU resource consump-

tion, which is not friendly to lightweight networks. There-

fore, building efficient Vision Transformer has become a hot

research topic in recent years.

3. Self-Calibrated Efficient Transformer

In this section, we present the overall architecture of

the proposed Self-Calibrated Efficient Transformer (SCET)

firstly. Then, we introduce the lightweight self-calibrated

(SC) module, which consists of several stacked self-

calibrated convolutions with pixel attention (SCPA) blocks

to efficiently extract texture information from images. Fi-

nally, we describe the efficient transformer module.

3.1. Overview of Network Framwork

Considering that complex network structure blocks may

bring a large number of parameters and complexity, we

choose a simple network structure, as shown in Figure 2.

Our SCET mainly consists of two parts: SC module and

efficient transformer module. Specifically, the SC module

is used to efficiently extract image texture features and the

Efficient Tranformer module is used to recover similar tex-

tures across long ranges.

Given an input low-resolution image ILR ∈ R
H×W×3,

SCET first applies a convolution to obtain shallow feature

F0 ∈ R
H×W×C , where H ×W denotes the spatial dimen-

sion and C is the number of channels. It can be formulated

as:

F0 = Hconv(ILR), (1)

where Hconv denotes 3 × 3 convolution operation. Next,

inspired by PAN [51], we employed an SC module com-

posed of SCPA blocks to efficiently extract the deep texture

feature. It can be expressed as:

FSC = HSC(F0), (2)

where HSC denotes SC module, FSC denotes the out-

put of SC module. To obtain global similarity informa-

tion, we use the efficient transformer module to further re-

cover similar textures across long distances. Inspired by

Restormer [45] that the amount of computation can reduce

from O(W 2H2) to O(C2) by applying self-attention to

compute cross-covariance across channels, we employ the

multi-Dconv head transposed attention (MDTA) to gener-

ate an attention map encoding the global context implic-

itly. Besides, we adopt a gated-Dconv feed-forward net-

work (GDFN) to focus on the fine texture details compli-

mentary. It can be written as:

Fout = HET (FSC) = HGDFN (HMDTA(FSC)), (3)

where HET , HMDTA, and HGDFN denote the efficient

transformer, MDTA and GDFN, respectively. Fout denote
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(a). Self-Calibrated convolutions with Pixel Attention (SCPA) (c). Gated-Dconv feed-forward network (GDFN)

(b). Multi-Dconv Head Transposed Attention (MDTA)
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Figure 2. The architecture of self-calibrated efficient transformer (SCET) network. Here, the core modules of network are: (a) Self-

calibrated convolution with pixel attention (SCPA), (b) Multi-Dconv head transposed attention (MDTA), and (c) Gated-Dconv feed-forward

network (GDFN).

the output of efficient transformer. Finally, we utilize the

pixel-shuffle to upsample the features to the HR size. In ad-

dition, we added a global residual path to make full use of

the shallow feature information. It can be expressed as:

ISR = H1

up(Fout) +H2

up(F0) = HSCET (ILR), (4)

where H1

up and H2

up denote the upsampling operation of

the backbone network and the upsampling operation of the

global residual path. HSCET denotes the proposed SCET

network. ISR denotes the final restored image.

3.2. Self­Calibrated Module

Most CNN-based lightweight SR networks extract hi-

erarchical features step-by-step to reduce parameters and

computational effort, making the insufficient use of low-

frequency information resulting in poor image recovery. We

employ the SC module constructed from SCPA for feature

extraction and recovery. Instead of the step-by-step ap-

proach, the SC module allows the network to purposefully

recover missing textures through pixel attention. As de-

picted in Figure 2, our SC module consists of several SCPA

blocks. It can be expressed as:

Fout = Hn
SCPA(H

n−1

SCPA(· · ·H
0

SCPA(Fin) · · · )), (5)

where Hn
SCPA denotes the function of the n-th SCPA

blocks. Fin and Fout denote the input and output of the

SC module, respectively. Next, we describe specifically the

SCPA block in the SC module, as shown in Figure 2 (a).

We define Fn−1 and Fn as the input and output of the n-

th SCPA blocks, respectively. The SCPA block consists of

two branches, one for the computation of pixel attention in-

formation and the other for the recovery of spatial domain

information directly. Specifically, the SCPA block first uses

pixel convolution of the two branches to reduce the half

number of channels. It can be written as:

F ′

n−1
= H1

pconv(Fn−1), (6)

F ′′

n−1
= H2

pconv(Fn−1), (7)

where H1

pconv and H2

pconv denote the pixel convolution of

upper and lower branch, respectively. F ′

n−1
and F ′′

n−1
only

have half of the channel number of Fn−1. Then, the up-

per branch computes the attention information by a pixel

933



attention, and the lower channel branch through a 3×3 con-

volution to recover the spatial domain information. It can

be expressed as:

FPA = Hconv(F
′

n−1
)⊙ σ(Hpconv(F

′

n−1
)), (8)

F ′

n = H1

conv(FPA), (9)

F ′′

n = H2

conv(F
′′

n−1
), (10)

where σ and ⊙ denote the function of sigmoid and element-

wise multiplication, respectively. FPA denotes the pixel at-

tention map. Finally, the output features of the two branches

are concatenated together, and then the attention informa-

tion and spatial domain information are fused together by a

pixel convolution to recover the missing texture information

in a targeted manner. It can be expressed as:

Fn = Hpconv(concat(F
′

n, F
′′

n )) + Fn, (11)

where concat denotes the operation of concatenation. In

order to accelerate training, local residual path is used to

produce the final output feature Fn.

3.3. Efficient Transformer

To further improve the performance of our network, we

use the efficient transformer module to obtain global con-

textual information, allowing the network to recover more

high frequency texture details. Our efficient transformer

consists of MDTA and GDFN. Next, we introduce each

module in the efficient transformer in detail.

The major computational overhead in the Transformer

lies in the self-attention layer and tends to grow quadrati-

cally with the input size. To alleviate this problem, we em-

ploy MDTA to compute the cross-covariance over the chan-

nel dimensions, as shown in Figure 2 (b). Specifically, we

use pixel convolution and depth-wise convolution in three

branches to generate query (Q), key (K) and value (V) from

the input features X ∈ R
H×W×C . It can be expressed as:

Q = H1

dconv(H
1

pconv(LN(X))), (12)

K = H2

dconv(H
2

pconv(LN(X))), (13)

V = H3

dconv(H
3

pconv(LN(X))), (14)

where Hdconv , Hpconv and LN denote depth-wise convo-

lution, pixel convolution, and the layer normalization, re-

spectively. Then, we apply the reshape operation to ob-

tain Q̂ ∈ R
HW×C , K̂ ∈ R

C×HW and V̂ ∈ R
HW×C .

Next, their dot-product interaction generates a transposed-

attention map A of size R
C×C . It can be defined as:

A = V · Softmax(K · Q/α), (15)

Y = Hpconv(A) + X, (16)

where Softmax denotes the function of softmax to gener-

ate probability map. α is a learnable scaling parameters to

control the magnitude of the dot product of K and Q. Un-

like the existing Transformer which calculates self-attention

on the spatial domain, MDTA can effectively reduce the

amount of computation.

To further recover the accurate structural information,

we also adopt the gated-Dconv feed-forward Network. In-

stead of the feed-forward network in the existing Trans-

former, GDFN has more operational operations to help the

network focus on recovering high frequency details using

contextual information, as shown in Figure 2 (c). Given the

input feature X ∈ R
H×W×C , GDFN can be formulated as:

X1

G = φ(Hdconv(Hpconv(LN(X)))), (17)

X2

G = Hdconv(Hpconv(LN(X))), (18)

YG = X1

G ⊙ X2

G, (19)

Y = Hpconv(YG), (20)

where LN and φ denote layer normalization and the func-

tion of GELU. GDFN controls the information flow through

the respective hierarchical levels in our method, thereby al-

lowing each level to focus on the fine details complimentary

to the other levels.

Overall, our efficient transformer effectively helps the

network to obtain global contextual information to recover

high frequency texture details.

3.4. Loss Function

Our SCET is optimized with mean absolute error (MAE,

also known as L1) loss function for a fair comparison.

Given a training set {IiLR, I
i
HR}, that contains N LR in-

puts and their HR counterparts. The goal of training SCET

is to minimize the L1 loss function:

L(Θ) =
1

N

N∑

i=1

||HSCET (I
i
LR)− IiHR||1, (21)

where Θ denotes the parameter set of SCET and || · ||1 is L1

norm. The loss function is optimized by using stochastic

gradient descent (SGD) algorithm. More training details of

our method are presented in Section 4.

4. Experiments

4.1. Settings

In this subsection, we clarify the experimental setting

about datasets, degradation models, evaluation metrics, and

training settings.

Dataset. Following the previous methods [18, 19, 28,

42, 51], we conduct the training process on a widely used

dataset, DIV2K [36] and Flickr2K [37], which contains
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Table 1. Average PSNR/SSIM for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, B100, Urban100, and Manga109. Best and second

best results are red and blue

Method Scale Params
Set5 Set14 B100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN [11] 8K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

VDSR [20] 666K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750

DRRN [34] 298K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749

DRCN [21] 1,774K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732

IDN [19] 553K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749

CARN [2] 1,592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

IMDN [18] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

PAN [51] 261K 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773

RFDN [28] 534K 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773

A2F-M [42] 999K 38.04/0.9607 33.67/0.9184 32.18/0.8996 32.27/0.9294 38.87/0.9774

SCET (Ours) 683K 38.06/0.9615 33.78/0.9198 32.24/0.9006 32.38/0.9299 39.86/0.9821

Bicubic

×3

- 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN [11] 8K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

VDSR [20] 666K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340

DRCN [21] 1,774K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343

DRRN [34] 298K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379

IDN [19] 553K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

CARN [2] 1,592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440

IMDN [18] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

PAN [51] 261K 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448

RFDN [28] 541K 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449

A2F-M [42] 1003K 34.50/0.9278 30.39/0.8427 29.11/0.8054 28.28/0.8546 33.66/0.9453

SCET (Ours) 683K 34.53/0.9278 30.43/0.8441 29.17/0.8075 28.38/0.8559 34.29/0.9503

Bicubic

×4

- 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [11] 8K 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

VDSR [20] 666K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

DRCN [21] 1,774K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854

DRRN [34] 298K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946

IDN [19] 553K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

CARN [2] 1,592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

IMDN [18] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

PAN [51] 272K 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095

RFDN [28] 550K 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

A2F-M [42] 1010K 32.28/0.8955 28.62/0.7828 27.58/0.7364 26.17/0.7892 30.57/0.9100

SCET (Ours) 683K 32.27/0.8963 28.72/0.7847 27.67/0.7390 26.33/0.7915 31.10/0.9155

3450 LR-HR RGB image pairs. We augment the training

data with random horizontal flips and rotations. For test-

ing, we use five standard benchmark datasets: Set5 [3],

Set14 [46], B100 [30], Urban100 [17], and Manga109 [31].

Degradation models. We downscale HR images with

the scaling factors (×2, ×3, and ×4) using Bicubic degrada-

tion models [48, 49].

Evaluation metrics. The SR images are evaluated with

PSNR and SSIM [52] on Y channel of transformed YCbCr

space. Besides, we use Multi-Adds (the size of a query im-

age is 1280 × 720) and model parameters to evaluate the

computational complexity of a model.

Training Settings. We give the implementation details

of the proposed SCET. The numbers of the SCPA blocks

and feature channels in the self-calibrated module are flex-

ible and configurable, which set 16 and 64, respectively.

During training, We train our model SCET on the crop train-

ing dataset with LR and HR, the ground turth patch size is

random crop into 416 × 416. We use the Adam [22] opti-

mizer with the 2× 10−4 learning rate to training 1,000,000

iteration and decay the learning rate with the cosine strategy.

Weight decay is 10−4 for all the training periodic. We im-

plement our model on the PyTorch platform. Training the

SCET roughly takes two days with one RTX2080Ti GPU

for the whole training.

4.2. Comparisons with State­of­the­art Methods

Results with Bicubic degaradation. It is widely used

to simulate LR images with Bicubic degradation in image

SR settings. To verify the effectiveness of our SCET, we

compare SCET with 10 SOTA image SR methods: SR-

CNN [11], VDSR [20], DRCN [21], DRRN [34], IDN [19],

CARN [2], IMDN [18], PAN [51], RFDN [28], and A2F-

M [42]. All the quantitative results for various scaling fac-

tors are reported in Table 1. Compared with other methods,

our SCET, with fewer parameters and computation com-

plexity, performs the best results on five datasets with vari-

ous scaling factors.

Visual Results of Recent Methods. To further illustrate

the superiority of SCET, we also show the visual results

of various methods (Bicubic upsampling, SRCNN [11],

VDSR [20], CARN [2], IDN [19], IMDN [18], PAN [51],

RFDN [28], and our SCET) in Figure 3. We can see that

most baseline models cannot reconstruct the lattices accu-
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Figure 3. Qualitative comparison with the leading algorithms: SRCNN [11], VDSR [20], CARN [2], IDN [19], IMDN [18], PAN [51],

and RFDN [28] on ×4 task. From the figure, we can see that our method can generate finer details of the image and achieve outstanding

performance.

rately and thus suffer from serious aliasing. In contrast,

our SCET obtains sharper results and recovers more high-

frequency details. Take the image img 093/Urban100 for

example, most compared methods output heavy aliasing.

The early developed methods, i.e., Bicubic upsampling, SR-

CNN [11], VDSR [20] and CARN [2] lose most of the

structure due to the limited network depth and abundant in-

efficient features. More recent methods, such as IDN [19],

IMDN [18], PAN [51], and RFDN [28], can recover the

main outlines but fail to recover shaper details. Compared

with that, our SCET can restore more details and sharper

edges and gain higher visual quality. That should be at-

tributed to more efficient feature extraction and the ability

to access global information.

Model Complexity. To further prove the ascendency

of SCET in terms of complexity, we compare performance

in the matter of parameters and computational complexity.

As shown in Figure 1, SCET with limited operations and

performance, achieves better performance than other large

models. This shows that SCET has a good balance between

model complexity and performance.

4.3. Ablation Study

In this subsection, we design a series of ablation exper-

iments to analyze the effectiveness of each of the modules

we propose. We use the DIV2K validation dataset for eval-
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Table 2. Model Policy with deep and wide on network perfor-

mance. The ‘d’ denotes the number of SCPA blocks. The ‘w’

denotes the number of feature channels.

Model Params Multi-Adds PSNR SSIM

d = 8, w = 32 98k 11.46G 28.32 0.7741

d = 8, w = 64 388k 44.85G 28.64 0.7894

d = 16, w = 32 172k 19.9G 28.58 0.7869

d = 16, w = 64 683k 78.72G 28.72 0.8158

Table 3. Ablation studies of different backbone. We report the

PSNR (dB) values on DIV2K validation datasets (×4).

Backbone Params Multi-Adds PSNR SSIM

ResBlock 1274k 146.87G 28.29 0.7965

RCAB 1284k 146.87G 28.32 0.7984

IMDB 920k 106.05G 28.49 0.8033

RFDB 1336k 145.9G 28.57 0.8042

SCPA 683k 78.72G 28.72 0.8158

Table 4. Ablation studies of different transformer. We report the

PSNR (dB) values on DIV2K validation datasets (×4).

Transformer Component Params Multi-Adds PSNR

Baseline SCPA blocks 629K 72.59G 28.54

Self-Attention
MTA+FN 1002K 129.65G 28.62

MDTA+FN 929K 107.09G 28.69

Feed-forward

Network

MDTA+Resblock 721K 83.14G 28.59

MDTA+RCAB 722K 84.21G 28.61

Overall MDTA+GDFN 683K 78.72G 28.72

uation and performed 1,000,000 iterations of training on an

input image patch of size 32 × 32.

Model Design Policy. We explore the impact of differ-

ent depths and widths on network performance, as shown in

Table 2. The depth represents the number of SPCA blocks

and the width represents the numberof channels in our in-

termediate features. As can be seen from the experimental

results, the width affects network performance and param-

eters more than the depth. Our model works best at d = 16

and w = 64. Therefore, our final model is set to d = 16 and

w = 64.

Comparison of different backbone schemes. To il-

lustrate the effectiveness of the SCPA as a backbone, we

used the residual block, residual channel attention block

(RCAB), information multi-distillation block (IMDB) and

residual feature distillation block (RFDB) to replace the

original SCPA blocks for the ablation experiments.

In Table 3, we give the comparison in terms of parame-

ters, Multi-Adds, and the performance in PSNR. Note that

all results are the mean values of PSNR calculated by 100

images on DIV2K validation dataset. Mult-Adds is com-

puted by assuming that the resolution of HR image is 720p.

It is observed that SCPA could achieve the best performance

with the fewest parameters and Multi-Adds. SCPA can re-

duce parameters and calculations by nearly half in com-

parison to RFDB, obtaining a performance improvement

of 0.15dB. This indicates that SCPA is more effective than

traditional basic modules which employ a step-by-step ap-

proach to extract hierarchical features.

Comparison of different Transformer schemes. To il-

lustrate the effectiveness of MDTA and GDFN in efficient

transformer, we compare the effects of different approaches

to self-attention and different feed-forward networks on the

model. Note that our baseline model is set up as a residual

network of cascading multiple SCPA blocks.

As shown in Table 4, it demonstrates that the MDTA

provides favorable gain of 0.18 dB over the baseline. The

MDTA can reduce the amount of computation by 20% com-

pared to traditional self-attention. Moreover, it is shown

that deep convolution can effectively improve the robust-

ness of the efficient transformer. For feedback networks,

the gating mechanism in GDFN that controls the informa-

tion flowing can effectively help the network to obtain bet-

ter performance. Compared to other feedforward network

designs, the GDFN can improve performance by about 0.1

dB.

5. Conclusion

In this paper, we propose a lightweight SCET network

for efficient super-resolution. In particular, we design a new

Efficient Transfomer framework, which effectively com-

bines the efficient pixel attention mechanism with the trans-

former to achieves excellent results with few parameters.

Additionally, numerous experiments have shown that the

proposed method achieves a commendable balance between

visual quality and parameters amount, which are the vital

factors that affect practical use of SISR.
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