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1. Network Details

1.1. Depth and Pose Network

As the main focus of this work is to develop a training
methodology, we adopt the light-weight network architec-
ture from Monodepth2 [6] as our MDE and pose estima-
tion network. More specifically, we use ResNet18 [8] as
our depth as well as pose encoder, whereas a DispNet [11]
based decoder is used for the MDE model. The architec-
ture of our depth and pose decoders are explained in Tab. 1
and Tab. 2 respectively, these tables are taken directly from
Monodepth2 [6] and added here to make the material self-
contained.

1.2. ScaleNet Network

Our ScaleNet is a lightweight network with four convo-
lution layers. The first convolution layer takes the output of
the last encoder layer as input. Each of the first three con-
volution layers is followed by ELU [3] activation function.
The output of the last convolution layer is used to compute a
global mean which is followed by a SoftPlus [16] activation
function to output a global scale factor. The architecture of
our ScaleNet network is explained in Tab. 3.

1.3. Model Complexity

It must be noted that only MDE model and ScaleNet are
used during inference, while PoseNet is only used during
training. The total number of parameters of our model are
≈ 15.6 million to which ScaleNet network’s contribution
is only ≈ 1.33 million. As pointed out in the main pa-
per, PackNet-SfM [7] uses 128 million (≈ 8 times more)
parameters, and our model outperforms PackNet-SfM in al-
most all the metrics. Therefore, with complex network ar-
chitecture, the performance of MDE model trained with our
method can improve further.



Depth Decoder
layer k s chns res input activation
upconv5 3 1 256 32 econv5 ELU
iconv5 3 1 256 16 ↑upconv5, econv4 ELU
upconv4 3 1 128 16 iconv5 ELU
iconv4 3 1 128 8 ↑upconv4, econv3 ELU
disp4 3 1 1 1 iconv4 Sigmoid
upconv3 3 1 64 8 iconv4 ELU
iconv3 3 1 64 4 ↑upconv3, econv2 ELU
disp3 3 1 1 1 iconv3 Sigmoid
upconv2 3 1 32 4 iconv3 ELU
iconv2 3 1 32 2 ↑upconv2, econv1 ELU
disp2 3 1 1 1 iconv2 Sigmoid
upconv1 3 1 16 2 iconv2 ELU
iconv1 3 1 16 1 ↑upconv1 ELU
disp1 3 1 1 1 iconv1 Sigmoid

Table 1. Depth network architecture. k is the kernel size, s is the
stride, chns is the number of output channels for each layer, res is
the downscaling factor for each layer relative to the input image,
and input corresponds to the input of each layer where ↑ is a 2×
nearest-neighbor upsampling of the layer.

Pose Decoder
layer k s chns res input activation
pconv0 1 1 256 32 econv5 ReLU
pconv1 3 1 256 32 pconv0 ReLU
pconv2 3 1 256 32 pconv1 ReLU
pconv3 1 1 6 32 pconv3 -

Table 2. Pose network architecture. Abbreviations have same
meaning as explained in Tab. 1.

ScaleNet
layer k s chns res input activation
sconv0 1 1 256 32 econv5 ELU
sconv1 3 1 256 32 sconv0 ELU
sconv2 3 1 256 32 sconv1 ELU
sconv3 3 1 1 32 sconv3 Global Mean & SoftPlus

Table 3. ScaleNet architecture. Abbreviations have same mean-
ing as explained in Tab. 1. Global Mean & SoftPlus means that
we compute mean of the output channel of sconv3 layer and apply
a SoftPlus activation function [16] to get the global scale factor.

2. Ablation Studies: Extra Results and Discus-
sion

In addition to the quantitative results of our ablation stud-
ies presented in the main paper, we present detailed results
and discussion of our experiments and qualitative compar-
isons to show that the choices we make in our method
results in the best performing MDE model. All our ex-
periments are performed using KITTI Eigen split [4, 5] as
monocular videos dataset and VKITTI2 [2] as synthetic

dataset. The experimental results in the ablation study
show that the problem at hand is not a trivial task of train-
ing a MDE model jointly using self-supervised learning on
monocular videos and pixel-wise depth regression task on
synthetic dataset.

First, we clearly define different experiments in our ab-
lation study:

1. Baseline SS: This is the baseline model trained using
self-supervised training on monocular videos dataset.

2. Baseline Syn: This is the baseline model trained on
synthetic dataset using a pixel-wise regression loss.

3. Joint (Naı̈ve): This model is trained jointly on monoc-
ular videos and synthetic datasets with no-pretraining.

4. Joint (PT Syn): This model is trained jointly on
monocular videos and synthetic datasets after synthetic
dataset pre-training.

5. Joint (PT SS): This model is trained jointly on monoc-
ular videos and synthetic datasets after self-supervised
pre-training on monocular videos dataset.

6. Ours (L1): This model is trained using the proposed
method till Stage 2. However, for synthetic dataset
training in Stage 2, we use a pixel-wise regression loss
between d̃syn rel and d̂syn instead of domain specific
loss (as described in Eq.(8) in the main paper).

7. Ours (Grad): This model is trained in the same man-
ner as Ours (L1) except that we use a domain specific
(i.e., gradient) loss between d̃syn rel and d̂syn which
results in best performance.

8. Ours: This is the Ours (Grad) model trained using
the proposed method till Stage 3 and it performs scale-
aware (absolute) depth estimation.

As our pixel-wise regression loss for synthetic dataset in
Experiment 2-5, we use both, a trivial L1-norm error based
loss as well as the scale-invariant mean squared error based
loss (introduced by Eigen et al. [4], we denote it by SiLog).
SiLog constitutes both L2-norm term and a scale-invariant
term. We use SiLog loss in our experiments to quantita-
tively justify the Scale Alignment module in Stage 2 of our
training method. The results of our experiments are tabu-
lated in Tab. 4, whereas Fig. 1 shows the qualitative com-
parison of our experiments.

Please Note: In the main paper, we displayed results
of Joint (PT SS) model trained using L1 loss on synthetic
dataset, whereas the other experiments, viz., Baseline Syn,
Joint (Naı̈ve) and Joint (PT Syn) were trained using SiLog
loss on synthetic dataset. It was an error from our side.
However, here we provide well categorized and consoli-
dated results of all experiments trained with both types of
pixel-wise regression losses.

In Tab. 4 we compare methods which estimate relative
depth and scale-aware (absolute) depth estimation methods
separately. Since Joint (PT SS) is pre-trained on real world



data using self-supervision, we additionally evaluate it in
the relative depth estimation category to check its perfor-
mance after joint training.

First, it is clear that all trivial training combinations (i.e.,
Joint (Naı̈ve), Joint (PT SS) and Joint (PT Syn)) employ-
ing a L1-norm error based loss function on synthetic dataset
perform poorly in both relative as well as absolute depth
estimation categories. Instead, Baseline Syn performs rel-
atively better compared to these experiments. This shows
that competing loss functions during joint training (Section
3.2 in the main paper) also play a significant role apart from
synthetic dataset domain bias.

Second, we see that after employing SiLog loss, the
performance of Joint (Naı̈ve), Joint (PT SS) and Joint
(PT Syn) improves significantly, while the performance of
Baseline Syn remains same. It again establishes the above
point: Employing SiLog loss, which has a scale-invariant
term, reduces the contention between two training losses
during joint training and improves the performance. In
Baseline Syn experiment, there are no conflicting loss func-
tions (i.e., no conflict between self-supervised and synthetic
dataset training losses). Therefore, its performance remains
almost the same with both L1 and SiLog.

Third, we also see that after employing SiLog loss, the
performance of Joint (PT SS) improves significantly more
(80% improvement in Abs Rel error) than Joint (Naı̈ve),
Joint (PT Syn). In fact, the relative depth estimation per-
formance of Joint (PT SS) becomes acceptable after the
introduction of SiLog loss on the synthetic dataset. This
shows the benefit of pre-training on real world monocular
videos using self-supervision; the model learns feature rep-
resentations specific to real world data during pre-training.
During joint training, feature representations do not change
significantly, mainly when synthetic dataset training loss is
scale-invariant (or atleast has a scale-invariant term in the
case of SiLog). Joint (Naı̈ve) and Joint (PT Syn) which
are not pre-trained on real world data, do not show the same
kind of performance improvement as Joint (PT SS).

From the above observations and discussions, it can be
inferred why the model trained with the proposed method
till Stage 2, i.e., Ours (Grad) results in the best perfor-
mance. It employs a Scale Alignment module which does
not lead to the contention of losses during joint training.
Additionally, it employs a domain specific (i.e., gradient)
loss function, which improves performance.

Finally, Ours model that is trained till stage 3 of our
method is the only model which outputs accurate scale-
aware depth. None of the trivial training combinations lead
to a model whose absolute depth performance comes closer
to Ours.

Fig. 1 also shows the qualitative comparison of the re-
sults of our experiments. It can be easily inferred that the
results of Ours are superior compared to the results of other

models. The other models underperform because of domain
bias, unstable joint training, or both. On the other hand, our
approach of disentangling the task of relative depth estima-
tion with qualitative depth attributes from the scale-aware
depth estimation task results in the best performance.

3. ScaleNet: Additional Experiments
We conduct additional experiments to test the robustness

and domain bias of ScaleNet. In Tab. 5 we include a base-
line comparison with respect to using a fixed scale, i.e., the
mean scaling ratio between prediction and ground-truth de-
rived from the synthetic data. It can be seen that ScaleNet
performs better than using a fixed scaling ratio (FixSyn).

To analyze the domain bias, we train ScaleNet using
KITTI training samples with ground-truth (method δ-Real
in Tab. 5). ScaleNet trained on synthetic data performs al-
most similar to or better than δ-Real. Our intuitive under-
standing is that scale prediction uses the size and position
of objects in the scene, similar in both synthetic (VKITTI)
and real (KITTI) due to the same camera parameters.

4. Additional Evaluation: Make3D Dataset
Make3D [13] dataset is used to evaluate the generaliza-

tion capability of MDE models. The dataset is only used
for evaluation. It contains images from open urban areas
and comes with low-resolution ground-truth depth maps ac-
quired using a 3D scanner.

Tab. 6 shows the quantitative comparison of our method
on Make3D dataset. The Make3D dataset is only used for
evaluation to compare the generalization performance of
MDE models. It can be observed that our relative depth
has 4% better Abs Rel error, 16.1% better Sq Rel error,
and 6.8% better RMSE compared to Monodepth2 [6] (sec-
ond best in relative depth). Compared to scale-aware meth-
ods, our model has 27% better Sq Rel, and 9% better
RMSE than SharinGAN [12]. The state-of-the-art results
on Make3D show that the MDE trained with our method
has good generalization capability.

Fig. 2 shows the qualitative comparison of our model
against Monodepth2 [6]. The depth maps generated by our
model are accurate and have sharp boundaries and smooth
depth variations, which are the traits acquired from syn-
thetic dataset training.

5. Extra Qualitative Comparisons
5.1. Depth Map Comparisons

We have included additional qualitative results in Fig. 3
to show that the proposed method generates visually more
accurate, sharp, and smooth depth maps compared to other
methods, which have blur boundaries, holes in reflective
surfaces, and missing or bleeding depth for thin objects



Experiment Syn Loss Abs Rel Sq Rel RMSE RMSElog δ1.25 δ1.252 δ1.253

Relative

Baseline SS - 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Joint (PT SS) L1 0.430 8.967 12.203 0.462 0.481 0.729 0.854

Joint (PT SS) SiLog 0.109 0.748 4.456 0.183 0.882 0.965 0.984
Ours (L1) - 0.106 0.713 4.369 0.181 0.888 0.966 0.984
Ours (Grad) - 0.103 0.654 4.300 0.178 0.891 0.966 0.984

Absolute

Baseline Syn L1 0.209 1.828 6.897 0.318 0.664 0.851 0.932

Joint (Naı̈ve) L1 0.775 9.631 15.356 1.623 0.001 0.004 0.015

Joint (PT SS) L1 0.941 14.147 18.408 3.094 0.001 0.002 0.003

Joint (PT Syn) L1 0.900 12.326 16.908 2.618 0.000 0.001 0.002

Baseline Syn SiLog 0.200 1.588 6.853 0.323 0.663 0.855 0.933

Joint (Naı̈ve) SiLog 0.548 5.147 11.391 0.833 0.007 0.029 0.146

Joint (PT SS) SiLog 0.183 1.037 5.365 0.263 0.703 0.936 0.976

Joint (PT Syn) SiLog 0.588 5.820 12.041 0.930 0.005 0.018 0.080

Ours - 0.109 0.702 4.409 0.185 0.876 0.962 0.984

Table 4. Ablation study results. Quantitative results of our ablation study to demonstrate the efficacy of our method.

Method Abs Rel Sq Rel RMSE RMSElog δ1.25 δ1.252 δ1.253

FixSyn 0.164 0.897 4.573 0.207 0.831 0.959 0.985
δ-Real 0.104 0.685 4.468 0.186 0.880 0.962 0.983
Ours 0.109 0.702 4.409 0.185 0.876 0.962 0.984

Table 5. ScaleNet: Additional Experiments

Method Data Abs Rel Sq Rel RMSE
Zhou [20] M 0.383 5.321 10.470
Monodepth2 [6] M 0.330 3.453 7.253
Ours (relative) M + V 0.317 2.894 6.756
AdaDepth [10] M+D+V (DA) 0.647 12.341 11.567

Atapour [1] D+V (DA) 0.423 9.343 9.002
T 2Net [19] M+V (DA) 0.508 6.589 8.935
GASDA [17] S+V (DA) 0.403 6.709 10.424
SharinGAN [12] S+V (DA) 0.377 4.900 8.388
Ours (absolute) M + V 0.370 3.572 7.632

Table 6. Make3D results. Quantitative comparison with existing
state-of-the-art on Make3D dataset. Symbols and styles have same
meaning as described in Table 1 in the main paper.
(e.g., poles). We additionally include a qualitative compari-
son with PackNet-SfM [7] which is absent in the main paper
due to space constraints.

5.2. Point-cloud Comparisons

We have also included additional 3D point cloud com-
parisons in Fig. 4 to show that the proposed method gen-
erates accurate scale-aware depth, which preserves scene
geometry and shapes of objects much better than state-of-
the-art methods.

6. Human-centric Synthetic Depth Dataset
In the main paper, we demonstrated the practical use-

fulness of our method in developing an MDE model for
the task of applying DSLR like synthetic depth-of-field ef-
fect [15], popular as Portrait Mode on smartphones. We
also showed representative images from our in-house syn-
thetic depth dataset that we created using computer graphics
software Blender [9]. In Fig. 5, we show additional rep-
resentative images along with corresponding dense depth
maps. We generate 3000 synthetic RGB-D pairs for our
work, and we will make the dataset available to the com-
munity. We expect it to be helpful in human-centric vision
research, such as portrait effect, human segmentation, and
human depth estimation [14].
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(a) Input (b) Zhao [18] (c) SharinGAN [12] (d) Monodepth2 [6] (e) PackNet-SfM [7] (f) Ours

Figure 3. KITTI results. Additional qualitative comparison with state-of-the-art, we also include results of PackNet-SfM [7] which are
absent in the main paper. The proposed method leads to edge-consistent depth estimation, smooth depth variations, no bleeding object
edges and no holes within objects (particularly on reflective surfaces).



(a) Input (b) Monodepth2 [6] (c) PackNet-SfM [7] (d) Ours

Figure 4. KITTI results. Additional qualitative comparison with state-of-the-art, the reconstructed 3D point cloud using our accurate
scale-aware depth preserves scene geometry and shapes of objects much better than state-of-the-art methods.



Figure 5. Representative input images from our in-house synthetic depth dataset.


