# VFHQ: A High-Quality Dataset and Benchmark for Video Face Super-Resolution

Liangbin Xie<sup>\* 1,2,3</sup> Xintao Wang<sup>3</sup> Honglun Zhang<sup>3</sup> Chao Dong<sup>†1</sup> Ying Shan<sup>3</sup>

<sup>1</sup>Shenzhen Key Lab of Computer Vision and Pattern Recognition,

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

<sup>2</sup>University of Chinese Academy of Sciences <sup>3</sup>ARC Lab, Tencent PCG

{lb.xie, chao.dong}@siat.ac.cn {xintaowang, honlanzhang, yingsshan}@tencent.com

## Abstract

In this supplementary file, we provide more quantitative results (Section 1) and qualitative results (Section 2) of the benchmarking study in bicubic degradation and blind degradation settings. Specifically, we report the results for scale  $\times 4$ ,  $\times 8$  in bicubic degradation setting and  $\times 4$  in blind degradation setting.

## **1. Quantitative Results**

As mentioned in the main text, in order to comprehensively evaluate the performance of existing methods towards different levels of face motion, we test them with different sampling intervals (i.e,  $\{1, 3, 5, 10, 15\}$ ).

In Tab. 1 and Tab. 2, we evaluate the performance of existing methods in bicubic degradation with scale  $\times 4$  and  $\times 8$ . For different sampling intervals, we can observe that BasisVSR achieves the best performance in both PSNR and SSIM metrics.

In Tab. 3, we list the results of selected algorithms in blind degradation with a scale  $\times 4$ . We can find that in the blind degradation setting, the performance gap between EDVR [3] and BasicVSR [1] are smaller than bicubic degradation.

#### 2. Qualitative Results

The qualitative results of bicubic degradation with scale  $\times 4$  and  $\times 8$  are shown in Fig. 1 and Fig. 2, respectively. It can be found that in the  $\times 4$  bicubic degradation setting, current methods are capable of restoring high-quality face videos. For the  $\times 8$  bicubic degradation setting, there is still a clear gap between the output of BasicVSR and GT, which indicates that VFSR with large scale ratio in bicubic degradation setting (e.g,  $\times 8$ ,  $\times 16$ ) is a challenge for further investigation.

Fig. 3 and Fig. 4 show the results of four state-of-the-art methods in slight and severe blind degradation settings. As shown in Fig. 3, when the degradation contained in the input

sequence is slight, BasicVSR-GAN can restore more visualpleasing results than the other three methods. There are two reasons, 1) Although the adopted blind degradation model is implemented by following the practice in GFPGAN [4], there still exists bias due to the different compression types between video and image. 2) BasicVSR-GAN can use the temporal information between neighboring frames, which helps to mitigate the inconsistency in the restored videos.

However, when the degradation of the input video is relatively severe (Fig. 4), BasicVSR-GAN can not restore realistic faces. For DFDNet [2], we find that the restored faces of this method contain strange artifacts. Although GPEN [5] and GFPGAN can output better result for each input frames, the neighboring frames among the restored video are inconsistent (e.g, face identity, eye). This phenomenon of inconsistency is severe in videos with large motion. All these observations indicate that VFSR in blind degradation setting needs further investigation, especially for videos with large motion, video compression and large pose.

#### References

- Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Basicvsr: The search for essential components in video super-resolution and beyond. In *CVPR*, 2021.
- [2] Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo, and Lei Zhang. Blind face restoration via deep multi-scale component dictionaries. In *ECCV*. Springer, 2020.
- [3] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration with enhanced deformable convolutional networks. In *CVPR Workshops*, 2019.
- [4] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. Towards real-world blind face restoration with generative facial prior. In *CVPR*, 2021.
- [5] Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face restoration in the wild. In *CVPR*, 2021.

<sup>\*</sup>Liangbin Xie is an intern in ARC Lab, Tencent PCG. <sup>†</sup>Corresponding author.

| Interval | Metrics | MSE-based |        |               |          | GAN-based |           |              |  |
|----------|---------|-----------|--------|---------------|----------|-----------|-----------|--------------|--|
|          |         | Bicubic   | RRDB   | EDVRM         | BasicVSR | ESRGAN    | EDVRM-GAN | BasicVSR-GAN |  |
| 1        | PSNR    | 31.959    | 35.317 | 36.259        | 36.391   | 32.790    | 33.663    | 32.315       |  |
|          | SSIM    | 0.8938    | 0.9301 | <u>0.9416</u> | 0.9429   | 0.8960    | 0.9100    | 0.8868       |  |
| 3        | PSNR    | 31.955    | 35.319 | 36.207        | 36.364   | 32.795    | 33.664    | 32.317       |  |
|          | SSIM    | 0.8939    | 0.9302 | <u>0.9412</u> | 0.9425   | 0.8961    | 0.9102    | 0.8869       |  |
| 5        | PSNR    | 31.964    | 35.332 | 36.090        | 36.258   | 32.803    | 33.592    | 32.327       |  |
|          | SSIM    | 0.8939    | 0.9302 | <u>0.9399</u> | 0.9412   | 0.8961    | 0.9089    | 0.8869       |  |
| 10       | PSNR    | 31.960    | 35.353 | 35.885        | 36.135   | 32.813    | 33.461    | 32.334       |  |
|          | SSIM    | 0.8944    | 0.9308 | <u>0.9378</u> | 0.9399   | 0.8969    | 0.9070    | 0.8876       |  |
| 15       | PSNR    | 32.004    | 35.389 | <u>35.846</u> | 36.068   | 32.862    | 33.450    | 32.369       |  |
|          | SSIM    | 0.8946    | 0.9308 | <u>0.9365</u> | 0.9386   | 0.8969    | 0.9058    | 0.8878       |  |

Table 1. Benchmarking results with **bicubic** degradation model (evaluated on VFHQ-Test). Average PSNR/SSIM values for scaling factor  $\times$ 4. **Red** and <u>blue</u> indicates the best and second best performance. The selected sampling intervals are {1, 3, 5, 10, 15}.

Table 2. Benchmarking results with **bicubic** degradation model (evaluated on VFHQ-Test). Average PSNR/SSIM values for scaling factor  $\times$ 8. **Red** and <u>blue</u> indicates the best and second best performance. The selected sampling intervals are {1,3,5,10,15}.

| Interval | Metrics | MSE-based |        |               |          | GAN-based |           |              |  |
|----------|---------|-----------|--------|---------------|----------|-----------|-----------|--------------|--|
|          |         | Bicubic   | RRDB   | EDVRM         | BasicVSR | ESRGAN    | EDVRM-GAN | BasicVSR-GAN |  |
| 1        | PSNR    | 28.125    | 31.210 | 31.913        | 32.014   | 28.113    | 29.311    | 28.861       |  |
|          | SSIM    | 0.8182    | 0.8728 | <u>0.8817</u> | 0.8838   | 0.8055    | 0.8208    | 0.8152       |  |
| 3        | PSNR    | 28.12     | 31.204 | 31.963        | 32.129   | 28.102    | 29.360    | 28.953       |  |
|          | SSIM    | 0.8182    | 0.8729 | 0.8829        | 0.8858   | 0.8056    | 0.8249    | 0.8187       |  |
| 5        | PSNR    | 28.124    | 31.203 | <u>31.888</u> | 32.095   | 28.113    | 29.360    | 28.993       |  |
|          | SSIM    | 0.8183    | 0.8730 | 0.8820        | 0.8853   | 0.8058    | 0.8260    | 0.8200       |  |
| 10       | PSNR    | 28.119    | 31.213 | <u>31.747</u> | 31.992   | 28.108    | 29.366    | 29.014       |  |
|          | SSIM    | 0.8186    | 0.8735 | <u>0.8800</u> | 0.8842   | 0.8062    | 0.8275    | 0.8212       |  |
| 15       | PSNR    | 28.146    | 31.255 | <u>31.730</u> | 31.964   | 28.150    | 29.421    | 29.063       |  |
|          | SSIM    | 0.8190    | 0.8736 | <u>0.8789</u> | 0.8831   | 0.8068    | 0.8280    | 0.8216       |  |

Table 3. Benchmarking results with **blind** degradation model (evaluated on VFHQ-Test). Average PSNR/SSIM/LPIPS values for scaling factor  $\times 4$ . Red and <u>blue</u> indicates the best and second best performance. The selected sampling intervals are  $\{1, 3, 5, 10, 15\}$ .

| Interval | Metrics | MSE-based |               |          |           | GAN-prior based |        |        |        |
|----------|---------|-----------|---------------|----------|-----------|-----------------|--------|--------|--------|
|          |         | Bicubic   | EDVRM         | BasicVSR | EDVRM-GAN | BasicVSR-GAN    | DFDNet | GFPGAN | GPEN   |
| 1        | PSNR    | 26.482    | 29.283        | 29.356   | 26.008    | 25.740          | 25.013 | 25.936 | 26.503 |
|          | SSIM    | 0.7868    | 0.8409        | 0.8423   | 0.7435    | 0.7486          | 0.7521 | 0.7704 | 0.7742 |
|          | LPIPS   | 0.4121    | 0.3289        | 0.3306   | 0.3186    | 0.3252          | 0.4006 | 0.3439 | 0.3634 |
| 3        | PSNR    | 26.690    | 29.383        | 29.425   | 26.311    | 25.940          | 25.220 | 25.931 | 26.502 |
|          | SSIM    | 0.7915    | <u>0.8436</u> | 0.8444   | 0.7593    | 0.7560          | 0.7561 | 0.7704 | 0.7742 |
|          | LPIPS   | 0.4053    | 0.3277        | 0.3301   | 0.3090    | <u>0.3217</u>   | 0.3979 | 0.3439 | 0.3637 |
| 5        | PSNR    | 26.842    | 29.457        | 29.472   | 26.682    | 25.813          | 25.178 | 25.978 | 26.672 |
|          | SSIM    | 0.7909    | 0.8428        | 0.8430   | 0.7638    | 0.7410          | 0.7560 | 0.7723 | 0.7768 |
|          | LPIPS   | 0.4098    | 0.3288        | 0.3309   | 0.3076    | 0.3214          | 0.4008 | 0.3446 | 0.3607 |
| 10       | PSNR    | 26.342    | 28.988        | 29.014   | 26.301    | 25.658          | 25.144 | 25.913 | 26.500 |
|          | SSIM    | 0.7827    | 0.8365        | 0.8370   | 0.7617    | 0.7498          | 0.7528 | 0.7697 | 0.7743 |
|          | LPIPS   | 0.4235    | 0.3371        | 0.3396   | 0.3119    | 0.3265          | 0.4090 | 0.3406 | 0.3603 |
| 15       | PSNR    | 26.433    | 29.052        | 29.060   | 26.274    | 25.664          | 25.038 | 25.949 | 26.532 |
|          | SSIM    | 0.7839    | 0.8369        | 0.8374   | 0.7621    | 0.7508          | 0.7516 | 0.7701 | 0.7745 |
|          | LPIPS   | 0.4148    | 0.3354        | 0.3390   | 0.3112    | 0.3257          | 0.4069 | 0.3405 | 0.3603 |



Figure 1. Qualitative comparison by different models in  $\times 4$  bicubic degradation setting. From top to bottom, the sampling intervals are 1, 3, 5, 10, 15. Zoom in for best view.



Figure 2. Qualitative comparison by different models in  $\times 8$  bicubic degradation setting. From top to bottom, the sampling intervals are 1, 3, 5, 10, 15. Zoom in for best view.



Bicubic









BasicVSR-GAN



DFDNet



GPEN



GFPGAN

Figure 3. Qualitative comparison by different models in  $\times 4$  blind degradation setting. The degradation contained in the input sequence is slight. From top to bottom, the sampling intervals are 1, 3, 5, 10, 15. Zoom in for best view.



Bicubic











BasicVSR-GAN



DFDNet



GPEN



GFPGAN

Figure 4. Qualitative comparison by different models in  $\times 8$  blind degradation setting. The degradation contained in the input sequence is severe. From top to bottom, the sampling intervals are 1, 3, 5, 10, 15. Zoom in for best view.