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Abstract

In this supplementary file, we first present more experimental details and more analysis on classical and practical blind SR.
Then, we provide more quantitative and visual experimental results by comparing the proposed baselines with state-of-the-art
methods.

1. A Comprehensive Analysis of Blind SR with Performance Upper Bounds
1.1. Datasets and Implementation Details

Datasets. Following existing blind SR methods [2, 6, 9, 10, 12, 13], we use DIV2K (800 images) [1] and Flickr2K (2650
images) [8] dataset for training. The training images are randomly cropped to 128×128 patches. Following the setting of
IKC [2], DAN [6] and DASR [9], the HR images are blurred by isotropic Gaussian blur [0, 3.0] for the analysis of classical
blind SR. The down-sampling adopts ×4 bicubic in the RealESRGAN version. For testing, we use benchmark datasets
BSD100 [7] and Urban100 [3]. As the training dataset includes isotropic Gaussian blur [0.1, 3.0], we adopt a Practical5 test
dataset to quantitatively evaluate the blind SR network. Practical5 consists of {bic, 0.6, 1.2, 1.8, 2.4}. The evaluation metric
employs PSNR to evaluate the blind SR network. We adopt the same training settings for the analysis of the practical blind
SR.

Training. Similar to FAIG [11], we adopt the representative RRDBNet with 5 blocks as the BSRNet named BSRNet-
FAIG. The Adam [4] optimization method with β1 = 0.9 and β1 = 0.99 is used for training. The initial learning rate is set to
2× 10−4, which is reduced by a half for multi-step [25× 104, 50× 104, 75× 104, 100× 104]. A total of 100× 104 iterations
are executed by PyTorch. The loss function adopts L1 loss between SR results and HR images. We use the same setting for
the analysis of the classical and practical blind SR.

Table 1. Average PSNR of BSRNet-FAIG with classical degradation models for ×4 super-resolution on BSD100 [7] and Urban100 [3].

Method BSD100 Urban100
bic 0.6 1.2 1.8 2.4 bic 0.6 1.2 1.8 2.4

Bicubic 24.63 25.51 26.01 25.60 24.99 21.89 22.72 23.2 22.75 22.1
BSRNet-FAIG [11]) 26.26 26.69 27.20 27.48 27.52 24.53 25.15 25.67 25.84 25.73

Upper bound 26.36 26.81 27.43 27.65 27.69 25.13 25.71 26.41 26.41 26.22
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1.2. Analysis of Classical Blind SR

Table 1 shows the performance of BSRNet-FAIG on two test datasets - BSD100 [7] and Urban100 [3]. Firstly, we find
that BSRNet-FAIG is only 0.2 dB lower than the upper bound on the BSD100 test dataset and 0.4 - 0.6 dB lower than that
on Urban100, which is acceptable. Figure 1 shows that BSRNet-FAIG can achieve promising visual results although the
quantitative results on the Urban100 test dataset is slightly lower. Both quantitative and qualitative results show that a blind
SR network can well handle the classical blind SR problem.

Bicubic b0.6 b1.2 b1.8 b2.4

23.73/0.58 28.65/0.80 29.28/0.79 29.08/0.78 28.71/0.76
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Figure 1. Visual comparisons of the BSRNet-FAIG with upper bound.



1.3. Analysis of Practical Blind SR

We provide more visual results to further compare BSRNet-PD/GD with the upper bounds. Figure 2 shows that BSRNet
with our proposed GD model can achieve comparable visual results with the PD model on the most complicated degradation
case b2.0n20j60 while performing much better on the other corner degradation cases. This shows that our proposed GD
model can handle a broad set of degradation cases.
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Figure 2. Visual comparisons of BSRNet-PD/GD with the upper bounds.



2. More Experimental Results
2.1. The Upper Bounds of SwinIR

In Table 2 of the main paper, we quantitatively evaluate the performance of RRDBNet [10, 12] and the performance
upper bounds. For comparison, here we evaluate the performance of a stronger network SwinIR [5] and the corresponding
performance upper bounds. The results on BSD100 [7] and Urban100 [3] are provided in Table 2. It can be observed that the
average PSNR of the proposed baselines (RRDBNet-GD and SwinIR-GD) is much closer to the corresponding upper bound
than RRDBNet and SwinIR respectively.

Table 2. Average PSNR of different methods for ×4 super-resolution on BSD100 [7] and Urban100 [3]. Note that the parameters of all
networks are consistent, thus the comparison is fair.

Dataset Method Degradation Types
bic b2.0 n20 j60 b2.0n20 b2.0j60 n20j60 b2.0n20j60 Average

BSD100

RRDBNet 25.62 26.76 24.58 25.13 24.33 25.32 24.34 24.11 25.02
RRDBNet-GD (ours) 26.25 27.31 25.31 25.23 24.95 25.32 24.38 24.07 25.35

Upper bound (RRDBNet) 26.36 27.68 25.46 25.30 25.34 25.49 24.45 24.15 25.53
SwinIR 25.84 27.05 24.77 25.27 24.48 25.44 24.44 24.18 25.18

SwinIR-GD (ours) 26.61 27.58 25.64 25.30 25.30 25.39 24.44 24.14 25.55
Upper bound (SwinIR) 27.10 27.83 25.76 25.37 25.56 25.55 24.50 24.20 25.73

Urban100

RRDBNet 23.53 24.46 22.89 23.28 22.48 23.17 22.75 22.24 23.10
RRDBNet-GD (ours) 24.51 25.39 23.57 23.67 23.05 23.18 22.92 22.13 23.55

Upper bound (RRDBNet) 25.13 26.38 23.91 23.97 23.56 23.62 23.18 22.44 24.02
SwinIR 24.16 25.10 23.34 23.73 22.86 23.62 23.09 22.53 23.55

SwinIR-GD (ours) 25.55 26.12 24.40 24.11 23.83 23.56 23.26 22.42 24.16
Upper bound (SwinIR) 26.16 27.03 24.65 24.55 24.13 23.94 23.58 22.68 24.59

2.2. Light vs. Hard Degradation Models

We apply the proposed GD model to light and hard degradation scenarios to further explore its effectiveness of the pro-
posed GD model. The light degradation model used the section 5.1 includes isotropic Gaussian blur [0.1, 3.0], additive Gaus-
sian noise [1, 30] and JPEG [40, 95]. The order of light degradation model is set to {blur, down-sampling, noise, JPEG}.
Based on the light degradation model, the hard degradation model further adds multiple degradation types (RealESRGAN
version [10]) consists of multiple blurs: anisotropic Gaussian blur [0.1, 3.0], generalized isotropic/anisotropic Gaussian blur
[0.1, 3.0] and plateau isotropic/an-isotropic Gaussian blur [0.1, 3.0]; multiple noises: additive grey/color Gaussian noise [1,
30] and Poisson grey/color noise [0.1, 3.0]. Table 3 shows that the performance of RRDBNet-GD-hard has a slight drop on
the light cases, while it has a more significant improvement on the new cases. Figure 3 shows that the RRDBNet-GD-hard
can generate the right textures on the an-isotropic degradation type, while RRDBNet-PD-light fails to generate promising
results. These results demonstrate that the proposed GD model has the ability to handle complex degradation scenarios.

Table 3. Average PSNR of RRDBNet-GD with light and hard degradation models for ×4 super-resolution on BSD100 [7] and Urban100
[3]. The PSNR distance is the distance between RRDBNet-GD-hard and RRDBNet-GD-light.

Dataset Method Degradation Types

bic b2.0 n20 j60 b2.0n20 b2.0j60 n20j60 b2.0n20j60 color-n20 poisson-n20

BSD100
Bicubic 24.63 25.40 21.56 24.06 21.90 24.65 21.22 21.72 22.90 22.82 25.51 25.50

RRDBNet-GD-light 26.25 27.31 25.31 25.23 24.95 25.32 24.38 24.07 24.62 24.46 26.45 26.49
RRDBNet-GD-hard 26.20 27.25 25.21 25.24 24.98 25.32 24.33 24.02 25.17 25.11 26.61 26.60

PSNR distance -0.05 -0.06 -0.10 0.01 0.03 0.00 -0.05 -0.05 0.55 0.65 0.16 0.11

Urban100
Bicubic 21.89 22.54 19.99 21.50 20.36 22.02 19.74 20.19 20.89 20.80 22.64 22.62

RRDBNet-GD-light 24.51 25.39 23.57 23.66 23.05 23.18 22.92 22.13 23.14 22.98 24.06 24.20
RRDBNet-GD-hard 24.45 25.20 23.44 23.66 22.91 23.16 22.89 22.06 23.70 23.62 24.29 24.33

PSNR distance -0.06 -0.19 -0.13 0.00 -0.14 -0.02 -0.03 -0.07 0.56 0.64 0.23 0.13



2.3. More Visual Results

In this section, we provide additional visual results (×4 scale) to demonstrate the high effectiveness of our proposed gated
degradation model. We compare the proposed baselines RRDDBNet-GD and SwinIR-GD with state-of-the-art blind SR
networks. Figure 4 shows our model can achieve much better results than existing methods on various corner degradation
cases, such as b2.0 and b2.0n20 while achieving comparable results on the complicated degradation b2.0n20j60. The same
observation can be made for GAN-based methods, as shown in Figure 5. These visual results demonstrate the clear advantage
of the proposed baselines in dealing with different degradation cases.
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Figure 3. Visual results comparisons of RRDBNet-GD on light and hard degradation model. Please zoom in for a better view.
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Figure 4. Visual results comparisons of our model with existing works on ×4 super-resolution. Please zoom in for a better view.
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Figure 5. Visual results comparisons of our model with existing GAN-based works on ×4 super-resolution. Please zoom in for a better
view.
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