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Abstract

Tracking by natural language specification in a video is
a challenging task in computer vision. Distinct from ini-
tializing the target state only by the bounding box in the
first frame, language specification has a strong potential to
assist visual object trackers to capture appearance varia-
tion and eliminate semantic ambiguity of the tracked ob-
ject. In this paper, we carefully design a unified local-
global-search framework from the perspective of cross-
modal retrieval, including a local tracker, an adaptive re-
trieval switch module, and a target-specific retrieval mod-
ule. The adaptive retrieval switch module aligns seman-
tics from the visual signal and the lingual description of the
target using three sub-modules, i.e., object-aware attention
memory, part-aware cross-attention, and vision-language
contrast, which achieve an automatic switch between lo-
cal search and global search. When booting the global
search mechanism, the target-specific retrieval module re-
localizes the missing target in the image-wide range via
an efficient vision-language guided proposal selector and
target-text match. Numerous experimental results on three
prevailing benchmarks show the effectiveness and general-
ization of our framework.

1. Introduction

Tracking by natural language specification is one of the
most challenging tasks in computer vision, which was first
introduced to the tracking field by [26]. Classical box-query
based visual object tracking aims at estimating sequential
states of an arbitrary target only by means of a bounding box
around the object in the first video frame [31, 32], whereas
the goal of tracking by natural language is to initialize the
tracker with natural language specification or assist classical
visual trackers with the template to cope with tricky states
of the target [41]. In spite of extensive application demand,
this topic area of research has not provoked tremendous re-
search interest. In contrast to box-query based tracking
methods [1,3,20,21,42] developed in recent years, the intro-
duction of language specification provides clear semantics

T Corresponding author (harryjun@ustc.edu.cn)

Intermediate Frame Current Frame

First Frame

the whole body of the woman with yellow hair

the head of the female with glasses

the third pcrsn from left to right

Figure 1. Examples of different challenges for tracking by nat-
ural language. The target to be tracked is annotated with a red
bounding box. (a)-(b) The visual appearance of the target dra-
matically changes, but the semantics of the language specification
never changes. (c) The target is occluded by the other foreground
object. When the local tracker misses the target, we boot the global
search. (d) There exists some similar distractors around the target.

of the target and alleviates certain failures in object track-
ing caused by abrupt appearance variation, object occlu-
sion, and distractors, as shown in Fig. 1. Generally, visual
information keeps dynamic throughout a video. The tar-
get appearance and the background distribution might dra-
matically change along the video stream. On the contrary,
the semantic information from language is static and does
not drastically vary with visual signals. The visual trackers
can take advantage of this invariance to adapt to appear-
ance variation, discriminate similar objects and avoid box
drift. Moreover, language description is a natural and con-
venient manner for human-computer interaction, especially
in multi-modal scenarios.

However, how to exploit high-level semantics from lan-
guage description to improve the performance of visual
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trackers is still an open problem. Several previous proposal-
based works [12, 13, 26] consider language specification
as auxiliary semantic information. They fuse this infor-
mation with visual signals and attempt to generate numer-
ous object proposals related to lingual semantics, hoping
to suppress the proposals containing similar objects so that
they can decrease incorrect localization caused by distrac-
tors. Other grounding-based methods [4 1,4 5] refer to visual
grounding algorithms that take as input natural language de-
scription to directly regress the bounding box of the target.
Both prevalent paradigms adopt a global search strategy in
frame images for localizing the target. Nevertheless, this
scheme takes into account too much clutter background and
inevitably causes box drift. In the recent method, wang
et al. [41] introduced a local-global-search strategy. They
design a switch module to adaptively change search strat-
egy between local tracking and global grounding, which
makes a significant improvement over all previous meth-
ods. To automatically boot the global grounding when the
local tracker loses the target, they model the switch pro-
cedure as anomaly detection. However, they fuse histor-
ical target image embedding from the local tracker with
language embedding in a naive manner and feed this em-
bedding into a simple bi-directional GRUs [5]. This pro-
cedure does not explicitly consider the semantic alignment
between language description and historical target images,
which leads to substantial unreasonable decisions and post-
pones booting global grounding mechanism. As a result,
the target is out of tracking completely. Furthermore, their
model has a heavy reliance on the performance of the cho-
sen grounding algorithm. Once the global grounding mod-
ule feeds back incorrect clues to the local tracker, the target
can no longer be captured in the following frames. Un-
fortunately, a powerful grounding algorithm is extremely
time-consuming and data-hungry. We are not able to train
a strong grounding model with both high speed and good
generalization in tracking by language.

Knowledge acquired from cross-modal retrieval inspires
us to solve the problems above. The semantic align-
ment of multi-modality has been researched for years in
cross-modal retrieval where researchers focus on measur-
ing semantic similarity between two different types of
data [18]. Substantial mature algorithms on image-text re-
trieval/match have been designed in recent years. This pro-
vides a novel perspective for us to reconsider how to design
an effective system for tracking by natural language.

In this paper, considering cross-modal retrieval has
reached a relatively applicable level, we address local-
global switch and global search in tracking by language as
cross-modal retrieval. We design a unified system to match
the language description of the target with proposal images
from local search and retrieve the target from these pro-
posals. Figure 2 shows our framework. More specifically,

to align the semantics in visual proposals with language
description, we first suppress the background and retain
the foreground target using object-aware attention mem-
ory module. Then the following part-aware cross-attention
module extracts different parts of the foreground object.
These adaptive part semantics will match with different lo-
cal semantics from language description by using improved
transformer decoders with learnable semantic prototypes in
vision-language contrast module. We also abandon visual
grounding scheme for global search and present a target-
specific retrieval module. This module allows us to use lan-
guage as query to retrieve the target from candidates gen-
erated by the proposed vision-language guided proposal se-
lector.

The contributions of this work can be summarized in 3
aspects:

* A novel adaptive retrieval switch module is proposed.
Equipped with object-aware attention memory, part-
aware cross-attention, and vision-language contrast,
this module can robustly discriminate whether the tar-
get is out of the local search region.

* A target-specific retrieval module is developed to pre-
cisely capture the tracked object in a global search re-
gion. In this module, we adopt the sliding window
techniques and retrieve the most possible candidates
using the proposed vision-language guided proposal
selector.

* Numerous experimental results on 3 prevailing bench-
marks show the effectiveness and generalization of our
proposed system.

2. Related Work
2.1. Tracking By Bounding Box

Given the target template in the first frame image by
bounding box only, classical visual object trackers estimate
the states of the target in a serious of local search regions
cropped from the subsequent frames. Most existing al-
gorithms construct a robust object appearance model for
guiding deep neural networks to understand what the tar-
get looks like. One successful research branch is Siamese-
network-based trackers. The pioneering work, namely
siamFC [1], first exposed the advantage of siamese net-
works by introducing similarity learning to the tracking.
Inspired by siamFC, a series of works have sprung out in
recent years. SiamRPN [21] introduced Region Proposal
Network(RPN) [27] to regress precise bounding boxes of
the target. SiamRPN++ [20] reached higher performance by
applying a spatial-aware sampling strategy. With the rise of
vision transformers [8], researchers begin to explore more
powerful appearance models with the attention mechanism.
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STARK [42] and TransT [3] achieved state of the art by
modeling long-range dependency of the target and relation-
ship between background and foreground with transform-
ers. Even though tracking by bounding box has made great
progress, the currently developed trackers can still not be
straightly applied in the real world. Because these trackers
constantly miss the target because of target occlusion and
appearance variation.

2.2. Tracking By natural Language

Li et al. [26] first proposed the task of tracking by natu-
ral language and designed a Lingual Specification Attention
Network (LSAN) for tracking. They encoded the language
query with an RNN model and extracted the visual infor-
mation with a CNN model to generate two independent dy-
namic filters. However, the huge computational burden of
the RNN module may greatly slow down the tracking speed.
Unlike this, Wang et al. [40] and Feng et al. [14] embed-
ded the natural language with a CNN to generate global
proposals for tracking, among them Wang et al. [40] re-
garded the language cues as the extra information alongside
with bounding box for tracking and Feng et al. [14] pro-
posed to solve the problem by one-shot detection approach.
Yang et al. [45] decomposed the problem into three sub-task
modules: Grounding, Tracking, and Integration. With the
key task “Integration”, they proposed an “RT-integration”
to synergistically combine the grounding and tracking and
achieved effective results. In the most recent work, [41] re-
leased the TNL2K dataset and provided a baseline method
based on the local-global-search strategy. Although Our
framework is based on this method, the accuracy surpasses
it by a large margin.

2.3. Cross-modal Retrieval

Cross-Modal Retrieval is the most basic task in cross-
modal understanding. It takes one type of data as a query
to retrieve another type [38], which is a very challeng-
ing task. Generally speaking, there are two solutions for
common cross-modal retrieval [18]. The first idea is to
fuse graphic and text features, and then learn a function
that can measure cross-modal similarity through the hid-
den layer [19,39]. The other method is to imply images
and texts into a common feature space and obtain multi-
modal representations respectively so that the similarity can
be directly calculated to learn an excellent multimodal rep-
resentation [9, 15, 16, 33]. Rasiwasia et al. [33] followed
the latter idea and proposed a method based on canonical
correlation analysis(CCA) that embeds image-text pairs as
single feature vectors in a common representational space.
Furthermore, Gu et al. [ 15] Used the Generative Adversarial
Network to construct a generative adversarial task to learn a
common representation across modalities, which provided
a new idea for cross-modal retrieval. Unlike this, Lee et al.

[19] presented a Stacked Cross Attention Network(SCAN),
they used the attention interaction to get a better feature rep-
resentation of the local textual-visual information and con-
structed the similarity function to learn under the common
sorting loss. Compared with this, Wang et al. [39] designed
a Scene Graph Matching(SGM) model and introduced the
visual scene graph(VSG) and textual scene graph(TSG) to
represent images and texts respectively, and transformed the
traditional image and text retrieval problem into the match-
ing problem of the two scene graphs. Chen et al. [2] pro-
posed generalized pooling Operator(GPO). This operator
automatically discovers the best pooling function for both
image and text.

2.4. Cross-modal Transformer

Transformer [37] was first introduced by Vaswani et
al and was widely used in computer vision and natural
language processing. The transformer-based methods for
cross-modal tasks can be roughly divided into two cate-
gories [34]: single-stream transformers [4, 23, 24, 35] and
multi-stream transformers [22, 28, 36, 46, 47,49]. As for
a single-stream model, the multi-modal features are input
into a single transformer block to catch the cross-modal
information. VisualBERT [24] and VideoBERT [35] are
the classic transformers of the single-stream models. ViL-
BERT [28] is a representative two-stream structure of the
transformer-based model, in which they proposed a co-
attention transformer layer to process both image content
and natural language in separate streams. Since then, Some
excellent multi-stream structures such as ActBERT [49] and
DeVLBERT [47] are also followed ViLBERT by the co-
attentional transformer layer.

3. Methodology

In this paper, we propose the Adaptive Retrieval
Switch module(AdaRS) and Target-specific Retrieval mod-
ule(TSR) from the perspective of vision-language retrieval
for efficient local-global search switch and global target
search in object tracking by natural language specification.
Figure 2 shows the framework of our proposed system.

3.1. Local Proposal Generation

In our framework, we adopt SiamRPN++ [20] as the
local tracker. The original SiamRPN++ only outputs the
bounding box with the highest confidence score. However,
the confidence score system in SiamRPN++ is not reliable.
To further elevate the recall, we retain top-k outputs as the
target proposals. All these proposals will be assessed by our
designed modules.

3.2. Adaptive Retrieval Switch

Our AdaRS is comprised of the object-aware at-
tention memory module(OAM), the part-aware cross-
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Figure 2. Overall framework of our proposed method. It consists of a adaptive retrieval switch module and target-specific retrieval module.

attention module(PC) and the vision-language contrast
module(VLC). The first two modules jointly discover dis-
criminative part semantics of the foreground object and the
last module measures semantic similarity between tracking
proposals and language description as vision-language re-
trieval among all the proposals.

For each proposal from the siamRPN++, we first obtain
its representation using PROI Pooling. Then we extract the
foreground information by our OAM and further obtain the
part information by the PC. Here we get part features of
each proposal, then we use languange description to retrieve
the most possilble target.

Object-aware Attention Memory(OAM). In tracking
by natural language, although objects to be tracked are ar-
bitrary and have a tremendous discrepancy in appearance,
they adhere to similar patterns which are significantly dis-
tinct from background regions. These particular patterns
can be learned from data and recorded by the attention-
based foreground memory. Following [30], the foreground
memory stores IV learnable key-value pairs { (K, vyn) 0,
in order to cover various appearances of the foreground ob-
ject. Each key represents a specific appearance pattern and
the corresponding value denotes a foreground classifier, as
shown in Fig. 3.

Given the local search region Sy in the frame t, the fea-
ture maps F = [f1, f2,..., fi,. .., fag] € RM*XHXWXC
of the proposals B = [by,ba,...,b;, ..., bps] € RM*4
from the local tracker are extracted by using PrROI Pooling
proposed by [17]. For the feature map f; € RHXWxC|
we read from memory and attain a set of classifiers for
each pixel. These foreground classifiers are adaptive to ap-
pearance variation and can be used to compute the fore-
ground confidence scores with which we retain the fore-

g N - —
s A
Foreground

Figure 3. The architecture of OAM. This module can suppress the
background features.

Pixel Feature Query

ground pixels and suppress the background pixels. To
read from memory, we first compute query set Q =
(@51 G20 Qiker - Qiyrxw] € RUDWIXC/IG for
each pixel in f; = [®;1,%i2,.. . Tiks ...  Ti,HxwW]| €
R XW)XC by linear projection. The similarity s ; be-
tween each query g; ; and the n-th key k., is given as

st = —vt—, B _ ighn €]
Z 1ﬁ C’/l
wheren =1,2,... ,N,e=1,2,... . M,5=1,2,... HX

W, and T represents transport operator. Then we can obtain
the foreground classifiers and identify the foreground pixels
in f; as

— T . R
MiJ - w‘L ] w"fi]’ w"'?] -
sJ

N
> st cvn (@)
n=1
where x; ; denotes j-th pixel in f;. We can repeatedly per-
form the same operation on each pixel to get M; € R7*W
indicating the foreground map of f; and compute the fea-
ture of the foreground object as

% = fi 0 o(M;) 3)
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where © represents element-wise multiplication and o (-)
denotes the sigmoid function. In this process, the back-
ground pixels are adaptively suppressed.

Part-aware Cross-attention(PC). A couple of propos-
als from the local tracker might only contain similar objects
with the target. The object-aware attention memory module
is not target-specific, and it will also highlight those simi-
lar foreground objects in proposals. Our goal is to distin-
guish the target from the similar objects with the help of
language description. Although these foreground objects
share a great many of appearance features, there exist a
small amount of discriminative local parts that play a criti-
cal role in distinguishing the target from foreground objects.
Moreover, the part-level features benefit the alignment be-
tween visual semantics and lingual semantics in the region-
phrase manner. Inspired by [25], we design A learnable part
prototypes P = [p1,P2,...,Di;--.,Pa] € RAXC. Each
of them denotes a local part pattern. To get different part
features from the foreground, we adopt the modified trans-
former decoder.

In the previous work, Li et al. [25] retain the self-
attention layer in the transformer decoder and hold the view
that the self-attention layer allows the local context infor-
mation propagation between prototypes during part proto-
type learning. However, our experiments show that the self-
attention layer causes the collapse of part features. More
specifically, different part prototypes generate the same part
feature. Based on this observation, we abandon the self-
attention layer in the transformer decoder, as shown in
Fig. 4.

In cross-attention layer, each prototype aims to extract
a part feature from the foreground object. By computing
the similarity between each adaptive prototype and pixels
in the foreground, we can decompose the spemﬁed object
into different parts. Given the feature map f; bj , queries
arise from part prototypes P, keys and values arise from
pixels of the foreground feature map. Formally,

Q=PW? K; = f{"W", Vv, = f"W"4)
where i = 1,2,...,M and W@ ¢ R4 WK ¢
RE*d WV € RE*4 are linear projections.

For each foreground object f"bJ , we illustrate how to

compute the part-aware masks by attention mechanism. We

Cross-
Atention
J

rig.. Weighted |__ (7 9 -
Pooling FEN | 5:

type Part Maps

Figure 4. The architecture of PC. We use this module extract the
part features of the candidates.

use these masks to obtain the part features. Formally,

S = Softmax(ijT) 5

where \/d is a scaling factor. The corresponding part feature
F?*"" is given as:

F’"' = FFN(SV;) (6)
where FFN denotes the linear layers.

Vision Language Contrast(VLC). The semantic simi-
larity between specified natural language and visual propos-
als from the local tracker is a useful clue. With this clue, we
can precisely select the target from numerous proposals. To
measure the similarity, we position this problem as cross-
modal retrieval and retrieve the target with natural language
from proposals. We adopt GPO [2] to obtain the visual rep-
resentation and the lingual representation due to its good
performance. However, GPO computes features from the
global view, which does not take into account the local se-
mantic alignment between image and text. We improve it
by adding a novel module as shown in Fig. 5

o]

T R
=t
!

Local = ) =
Semantc :—-{Cmss-attentlon i

',‘ I:]
) =
3 =

Figure 5. The proposed vision-language contrast module.

The words in language description first are embedded
into feature representation using a pretrained BERT [7],
which is widely used as word embedding model in natural
language related task. The module takes as input part fea-
tures and word features simultaneously. To capture the local
semantic alignment between part features F?*™* ¢ RA*C
of i-th object proposal and word embedding E € R7*¢ of
the corresponding language specification, where the H de-
notes the length of the sentence, we need to discover com-
mon information in two modalities first. We design a shared
learnable global semantic prototype p,,to inquiry the com-
mon semantics between part features and word features as

Semantic :I—' Cross-attention

Qgs =Py W, ™

K% =F/""WE, Vi =Fr""W,; (8
K" =EWL, VY =EW/, 9)

SU9* = Qs (KT glos _ Qs (K'9*)T (10)

vd Vd
VI = VI 6 0 (817), VI = VI9° 0 0(819) (1)
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where i = 1,2,..., M, W& € RO WE € RE*¢ and
WY, € RO are linear projections. V9% and V9% are
shared semantics extracted by the shared global semantic
prototype.

Then we feed V'9* and V%% into the following stan-
dard transformer decoder with L local semantic prototypes
P, = [pls,17pls,27 EREY U PRINEE 7pls,L} € R"*C to fur-
ther extract common local semantics in two modalities for
region-phrase alignment.

Qi = P, WY, (12)

K/ = VIPWE, Vil = VoWl (13)
Klls — Vlgswlfg, Vlls — \A/lgswl\g (14)

Qus (K7™)T
Vd

Fi's = o YVouis (15)

F'* = o( WVus (16)
where W € RO WK ¢ RO*? and WY, € RE*4
are linear projections. Two local semantic features from the
same semantic prototype should be treated as a semantic
pair. We will restrict each pair to get similar during training.

Ultimately, We concatenate the local semantic features
with the global feature from GPO f%° < R© along
the dimension C for each modality and obtain the fine-

tuned global representation f e RIEXO)IH0 gpd f”S
REXE)HO by fully connected layers. By computing the
semantic similarity scores between each proposal and lan-
guage description, AdaRS select the proposal with the high-
est score as the result of local search. Once the highest score
is lower than the threshold, AdaRS boots the global search
mechanism.

3.3. Target-specific Retrieval

Visual grounding is a common module as global search
in tracking by language, whereas it is not easy to obtain
a grounding model with both excellent accuracy and high
speed in the scenario of tracking which requires the lim-
ited computation. Instead, we adopt the widely used slid-
ing window techniques [29,48] to conduct global searches.
However, this manner is too time-consuming and it is al-
most impossible to verify each window with our AdaRS.
Inspired by [43], we present a vision-language guided pro-
posal selector to efficiently retrieve the most possible can-
didates from a large number of sliding windows with the
information from the language description and the target
image.

As shown in Fig. 6, we adopt the pretrained transformer
encoder to encode target-language information. By intro-
ducing the learnable guided token, we get the semantic fea-
ture from the target template and the language specification.

Global
Max Pooling

Figure 6. The proposed vision-language guided proposal selector.
Here we use tiny transformer encoders to reduce the computation
of this module.

Then we multiply the semantic feature and the features of
window regions in the element-wise manner after the se-
mantic feature is expanded. This operation is equivalent to
attention mechanism. To improve the speed of selecting, we
utilize the global max pooling to reduce computation.

When our AdaRS boots global search mechanism, we
apply the selector to return top-k candidates. We average
these coordinates of the selected windows as the result of
global search. More importantly, this result guides the local
tracker to search in the region that contains the target in the
subsequent frames.

4. Training and Inference

Both of the proposed modules are trained offline. When
optimizing the AdaRS, each sub-module has a correspond-
ing loss. For object-aware attention memory, we opti-
mize it with the binary cross-entropy loss as foreground-
background classification which is different from [30], de-
noted as Ly... Following [25], to diversify part features and
local semantic features, we adopt diversity loss as bellow.

A
(fLf)
L div— (17)
= AT Z 2 LA
L
(£ f5)
£div—l,v = pr
Tﬂ;l)};j 123751 Hfl ||2 ||f H2

(18)
where f7 and f;f represent the part features from the same

proposal, fé and fé- denote the local semantic features from
the same language specification. The alignment similarity
is introduced to restrict the semantic alignment as Eq. (19).

~lls ~wls v
<f i > Z < - Fi >
~lls ~vls

AN
where i+ = 1,2,..., M. Once we get S.o, We calculate
the hinge-based triplet ranking loss with online hard nega-

tive mining proposed by VSE++ [10], denoted as L,;,,. We
jointly optimize the following loss.

‘Ctotal = Laln + Adiv (‘Cdivfp + ‘Cdivfl,'u) + )\Kbec (20)

Scorr = 19)

2
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When training TSR, We sample training data from gen-
erated windows and only optimize vision-language guided
proposal selector with the binary cross-entropy loss as
foreground-background classification. We also add the
object-aware attention memory module to the TSN. This
module is trained jointly with the vision-language guided
proposal selector.

In tracking by joint language and bounding box, the ini-
tial bounding box of the target is specified by a human. In
tracking by natural language only , we first localize the tar-
get in the first frame using a powerful grounding model
[6] and abandon this grounding model in the subsequent
frames., which do not influence the speed of our tracker.
The inference is listed in Algorithm 1.

Algorithm 1: Inference
Input: The language specification L, the initial
bounding box By, the input image sequence
{I,}£ ,, the threshold T%"*
Output: Bounding box sequence {B;}
1 E; + BERT(L,);
2 Lingual semantics F}'* «— VLC(E});
3 The GPO feature F/*° < GPO(E,);
4 B+ {}h
s for:=1,2,3,...,Fdo

6 | Generate G candidates {C}}$_, via By, I;
using the local tracker in the local region I;.;
7 S+ {}h
8 forj =1,2,3,...,Gdo
9 The foreground feature FjObj — OAM(C}));
10 The part features F7*"* « PC(F;bj )
1 Visual semantics F''* <~ VLC(FP*");
12 The GPO feature F7? = GPO(FP*™);
13 S]’-’l — cossz’m(Ft”s,F;’ls,thpo,Fjgpo ;
14 S« Su{sy}
15 end
16 id < arg max; S}’l;
17 | ifSY > T then
18 Bl < {Cui}
19 B+ BU{B;};
20 else
21 B; < TSR(I,);
2 B+ BU{B;};
23 end
24 end
25 return B

5. Experiments
5.1. Results and Comparisons

We evaluate our proposed tracker on OTB-Lang, LaSOT
and TNL2K. Li et al. [26] presented two different settings of
tracking by natural language only, i.e., tracking by language
only and tracking by joint language and box, respectively
denoted as NL and NL+BBox. The former initializes the
target with language only, while the latter initializes the tar-
get with bounding box and language description only pro-
vides auxiliary semantics. We validate the effectiveness of
our tracker in two settings. All results are showed in Tab. 1.
Experiments are also conducted using MindSpore.

Results on OTB-Lang Benchmark. Following track-
ing by nature language setup, Li et al. [26] in their early
work annotated OTB-100 with natural language for the tar-
get, and the dataset consists of 99 videos. Only with lan-
guage specification, Feng et al. [12] attain 0.78 |0.54, which
is higher than other previous trackers. Our method achieves
a comparable result of 0.72 |0.53. Even though our tracker
does not outperform that designed by Feng et al. [12] in the
NL setting, we reach state of the art in the NL+BBox set-
ting. These experimental results on OTB-Lang demonstrate
the effectiveness of our method.

Results on LaSOT Benchmark. LaSOT [11] contains
1,400 videos with auxiliary language annotation. Follow-
ing the original split, we use 1,120 videos for training and
280 videos for testing. This benchmark is more challenging
than OTB-Lang. The foreground objects constantly suffer
occlusion and the background contains various distractors.
Compared with all previous methods, our tracker achieves
the best result of 0.51]0.52 in the NL setting. It also outper-
forms all other trackers by a large margin in the NL+BBox
setting, which shows the advance of our tracker.

Results on TNL2K Benchmark. TNL2K [41] is the
most recent benchmark, containing 2000 long video se-
quences. Each video has one sentence to describe the tar-
get and one bounding box to indiacte the localization of
the target. This benchmark is more challenging than the
other two benchmarks. However, our tracker still surpass
all previous trackers in both tracking settings. These exper-
iments demonstrate the effectiveness and generalization of
proposed method.

5.2. Ablation Study

In this section, we conduct ablation analysis of our
framework on the TNL2K dataset in the NL+BBox setting.

Effectiveness of different parts of our AdaRS. We
evaluate Object-aware Attention Memory Module(OAM),
Part-aware Cross-attention Module(PC) and Vision Lan-
guage Contrast Module(VLC). Each module of our AdaRS
acts an important role. The results are shown in Tab. 2
which shows the contribution of different modules.
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Table 1. Performance on the OTB-Lang, LaSOT, TNL2K dataset. We report the results as [Prec.|Norm. Prec.|Succ. Plot].

Method OTB-Lang LaSOT TNL2K
NL NL+BBox NL NL+BBox NL NL+BBox
Lietal. [26] | 029 025 0.72 | 0.55 - - - -
Fengetal. [13] | 0.56 | 0.54  0.73 | 0.67 - 0.56 | 0.50 - 0.27 | 0.34 | 0.25
Fengetal. [12] | 0.78 | 0.54 0.79 | 0.61 | 028 | 028 035 ] 0.35 - 0.27 | 0.33 | 0.25
Wang et al. [10] - 0.89 | 0.65 - 0.30 | 0.27 - -
GTI [45] - 0.73 | 0.58 - 047 | 0.47 - -
Wangetal. [41] | 024 [ 0.19 088 | 0.68 | 049 | 0.51 0.55|0.51 | 0.06|0.11 | 0.11  0.42 | 0.50 | 0.42
Ours 072|053 0.910.69 | 0.51 | 0.52 0.56 |0.53 | 0.09 | 0.15 | 0.14 0.45 | 0.52 | 0.44

Table 4. Recall comparisons. TSN-OAM denotes the TSN without

OAM.
Method Recall@50
baseline 0.67
TSN-OAM 0.71
TSN 0.73

Table 2. Performance comparison with different components.

Index \ OAM PC VLC \ Prec.
1 0.410
2 v 0.418
3 v v 0.432
4 v v v 0.451

Effectiveness of different losses of our AdaRS. We in-

6. Conclusion

To solve the challenging issues in tracking by natural lan-
guage specification, we propose a unified tracking frame-
work from the perspective of cross-modal retrieval, which
significantly improves the performance of the cross-modal
trackers. First, we discriminate whether the local tracker
loses the target or not via the adaptive retrieval switch. Once
the target is out of the local search region, we then start up
the target-specific retrieval to re-localize the target and up-
date the search region for the local region. Numerous exper-
iments on prevalent benchmarks show the strong potential
of our framework in handling tracking by natural language,
which can be widely used in real-world applications.

. GT

[ Ours [ Baseline

troduce four different losses to guide the AdaRS. In Tab. 3,
the index-1 represents the baseline method where we only
use the features from GPO to compute the hinge-based
triplet ranking loss [10]. By analyzing the table, we can
draw a conclusion that each loss plays an integral role when
we train our AdaRS.

Table 3. Performance comparison with different losses.

Index \ Latn  Laiv—p Laiw—t,0 Lbce \ Prec.
1 0.418
2 v 0.439
3 v v v 0.447
4 v v v v 10451

Impact on recall with our TSN. To fairly compare, we

Figure 7. Visualization of the results of baseline and our method.

only replace the TSN module in our tracker with the visual
grounding model [44] which is adopted by Wang et al. [41]
in their method as the global search module. The results
are shown in Table 4. Our TSN significantly improves the
recall of the target in the image-wide range at the cost of
increasing limited computation. When the OAM is added
to TSN, the recall is further elevated. Figure 7 shows results
of visualization.
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