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Abstract

Due to the continuous growth of large-scale multi-modal
data and increasing requirements for retrieval speed, deep
cross-modal hashing has gained increasing attention re-
cently. Most of existing studies take a similarity matrix as
supervision to optimize their models, and the inner product
between continuous surrogates of hash codes is utilized to
depict the similarity in the Hamming space. However, all
of them merely consider the relevant information to build
the similarity matrix, ignoring the contribution of the irrel-
evant one, i.e., the categories that samples do not belong
to. Therefore, they cannot effectively alleviate the effect of
dissimilar samples. Moreover, due to the modality distri-
bution difference, directly utilizing continuous surrogates
of hash codes to calculate similarity may induce subopti-
mal retrieval performance. To tackle these issues, in this
paper, we propose a novel deep normalized cross-modal
hashing scheme with bi-direction relation reasoning, named
Bi NCMH. Specifically, we build the multi-level semantic
similarity matrix by considering bi-direction relation, i.e.,
consistent and inconsistent relation. It hence can holisti-
cally characterize relations among instances. Besides, we
execute feature normalization on continuous surrogates of
hash codes to eliminate the deviation caused by modality
gap, which further reduces the negative impact of binariza-
tion on retrieval performance. Extensive experiments on
two cross-modal benchmark datasets demonstrate the supe-
riority of our model over several state-of-the-art baselines.

1. Introduction

With the increasing prevalence of portable digital de-
vices and the popularity of social media platforms, it has
become the daily habit for most netizens to record and share
massive amounts of data in various modalities. For exam-
ple, users can upload images with textual descriptions on

Instagram1. Accordingly, obtaining the relevant informa-
tion via cross-modal retrieval has become a great demand
of users when surfing the Internet. For instance, users may
seek the desired images or videos by textual queries. To-
wards improving the retrieval efficiency, cross-modal hash-
ing [2,5,11,20–23,25,30,31,42] that maps the multi-modal
data into a unified Hamming space with similar binary hash
codes for semantically similar data has become a promising
topic recently.

Existing cross-modal hashing techniques can be broadly
categorized into unsupervised methods [9,10,15,24,28,38,
42, 43] and supervised ones [4, 7, 16, 17, 29, 35, 36, 41]. The
former focus on exploring the semantic affinities of train-
ing data to learn the hash projection function, yet neglect-
ing the importance of semantic labels, resulting in the in-
ferior performance. To bridge this gap, the latter mainly
incorporate the similarity matrix built by semantic labels
of instances to supervise the hash code learning. In this
way, the similarity between instances can be better retained
by the learned hash codes. Despite the promising perfor-
mance of supervised cross-modal hashing, there are still
several critical shortcomings. 1) Most of supervised meth-
ods [4, 16, 17, 29, 35, 41] simply treat two instances similar
as long as they share a common relevant category, and dis-
similar otherwise. As each instance may belong to multi-
ple categories, this naive binary similarity assessment may
not precisely reflect the complex relations between two in-
stances. For example, in Fig. 1a, compared with image I3,
image I2 shares more common relevant and irrelevant cate-
gories with I1. Therefore, the similarity between images I1
and I2 should be higher than that between I1 and I3. 2) Al-
though some pioneering approaches [7,36] have considered
the multiple categories in defining the similarity between
instances, they merely focus on how similar two instances
are, while thoroughly overlooking the dissimilarity between
them. The dissimilar information in fact delivers pivotal
cues regarding the complex relation between instances. As
shown in Fig. 1b, both image I5 and I6 have no shared cate-
gory with image I4. However, I5 has more non-overlapped

1https://www.instagram.com/.
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(b) Inconsistent direction.

Figure 1. Illustration of bi-direction relation reasoning according to multi-labels, where 1 and 0 separately represent the relevant and
irrelevant category. As for the consistent direction, overlapped information between two instances is considered to measure their similarity
score. Apparently, I2 is more similar to I1 compared to I3, i.e., S12 >S13 >0. As to the inconsistent direction, non-overlapped information
is concerned. Obviously, I5 is more dissimilar to I4 compared to I6, i.e., S45 <S46 <0.

category information with I4 compared to I6, and hence
more dissimilar to I4. And 3) existing deep hashing meth-
ods commonly treat the last layer output of the deep neural
network as the hash representation of each instance, and di-
rectly adopt the inner product between them as the similar-
ity between two instances. Nevertheless, due to the distribu-
tion difference between heterogeneous modalities, this kind
of measurement may hurt the model performance. Specifi-
cally, if the magnitudes of hash representations vary greatly
between different modalities, the similarity will be deter-
mined by the one with larger magnitude. Thereby, the sim-
ilarity determination of hash codes is adversely affected,
causing poor retrieval performance ultimately.

To address the aforementioned issues, we propose a
novel deep normalized cross-modal hashing scheme with
bi-direction relation reasoning (Bi NCMH), as shown in
Fig. 2. In particular, on the one hand, to take full advantage
of multi-labels, we design a bi-direction relation modeling
method to construct the multi-level semantic similarity ma-
trix, with values ranging from −1 to 1. Among them, the
positive value represents the similarity degree of two simi-
lar instances sharing at least one relevant category, while the
negative one depicts the dissimilarity extent of two samples
without category shared. In this way, the semantic similarity
can be expressed more precisely. On the other hand, we in-
troduce the normalization operation to bridge the modality
distribution gap and compress hash representations range
from −1 to 1, while modules of them are 1. By this means,
we can further reduce the binarization loss. In addition,
we consider three loss indicators, namely inter-modal, intra-
modal and regularization loss, to respectively constrain the
inter-modal, intra-modal, and relaxation similarity.

The key contributions of this work are three-fold:

• We design a novel bi-direction relation reasoning
scheme to capture the complex multi-level semantic
similarity relying on multi-labels. Moreover, under
this supervision, hash codes could preferably maintain
original similarity relations.

• To the best of our knowledge, this is the first attempt

to execute the feature normalization on the hash repre-
sentation. It can effectively reduce the modality distri-
bution gap and binarization penalization.

• Extensive experiments on two multimodal benchmark
datasets demonstrate the superiority of our model over
several state-of-the-art methods.

2. Related Work
2.1. Unsupervised Cross-modal Hashing

Unsupervised cross-modal hashing methods [10, 13, 15,
28, 42], similar to conventional subspace learning methods,
generally aim to learn a feature projection function by con-
structing correlations between different modalities. In par-
ticular, Ding et al. [9] employed the collective matrix fac-
torization technology to learn cross-view hash functions.
To capture the high-level latent semantic information and
bridge the semantic gap, Zhou et al. [42] proposed a novel
latent semantic sparse hashing by combining the sparse cod-
ing and matrix factorization. This model can well capture
the salient information of images and latent concepts of text.
Moreover, as the quantization quality is very essential for
improving retrieval performance, Irie et al. [15] presented
an alternating co-quantization scheme. It alternately seeks
the binary quantizer for each modality to minimize quanti-
zation errors. Different from previous approaches, to pre-
serve the fusion similarity among different modalities, Liu
et al. [19] put forward fusion similarity hashing by con-
structing an undirected asymmetric graph and explicitly em-
bedding it into a common Hamming space. However, the
performance of all above models are far from satisfactory
since they thoroughly overlook the label information.

2.2. Supervised Cross-modal Hashing

Supervised cross-modal hashing methods [16–18,26,39,
40] work on leveraging semantic labels as the supervision
to guide hash codes learning and boost the retrieval perfor-
mance. Thereinto, Zhang et al. [36] proposed a novel super-
vised multimodal hashing method, named semantic correla-
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Figure 2. Pipeline of our proposed cross-modal hashing scheme. Under the supervision of a pre-defined bi-direction multi-level similarity
matrix, we simultaneously consider the inter-modal, intra-modal, and regularization loss to learn the optimal hash codes. In this way, the
inter-modal, intra-modal, and relaxation similarity could be well preserved.

tion maximization (SCM), where semantic labels are seam-
lessly integrated into the hash learning procedure. In addi-
tion, given semantic affinities of training data, Lin et al. [18]
formulated a semantic-preserving hashing paradigm. They
first transformed semantic affinities into a probability dis-
tribution, and then approximated it with to-be-learnt hash
codes via minimizing the KL-divergence. Furthermore, to
achieve discriminative binary codes while retaining discrete
constraints, Xu et al. [34] introduced discrete cross-modal
hashing (DCH) by formulating a linear classification frame-
work. It is worth noting that above methods mainly rely
on hand-crafted features, where feature extraction and hash
codes learning procedures are separate.

Recently, deep hashing has attracted more and more at-
tention due to its strong representation ability. For exam-
ple, Jiang et al. [16] established an end-to-end cross-modal
hashing (DCMH) framework with deep neural networks,
to perform the feature learning from scratch. Besides, to
exploit the hierarchical correlation among labels, Sun et
al. [29] introduced a new supervised hierarchical cross-
modal hashing method to unify the hierarchical discrimi-
native learning and regularized cross-modal hashing. Al-
though compelling successes have been achieved by these
supervised methods, they excessively focus on the relevant
information to build the modality relation, throughly ignor-
ing the contribution of irrelevant one. Furthermore, reduc-
ing the binarization loss is also an important issue to be con-
sidered. To this end, we propose a novel normalized cross-
modal hashing with bi-direction relation reasoning.

3. Problem Formulation
Suppose that we have N multi-labeled instances E =

{ei}Ni=1, where ei refers to the i-th instance. Each instance
is comprised of an image, a text, and a label vector, i.e., ei =
(vi, ti,yi), i ∈ {1, 2, . . . , N}, where yi ∈ {0, 1}K and K
denotes the number of categories. In particular, if instance
ei is labeled with the k -th category, the k-th element of yi

is 1; otherwise is 0. Besides, according to label vectors, we
construct a N×N pair-wise similarity matrix S, with values
ranging from −1 to 1, by bi-direction relation reasoning.

In this work, we aim to devise a deep normalized cross-
modal hashing learning scheme, with S as the supervi-
sion information, to learn the hash projection function.
It could map the visual and textual data of the input in-
stance into L-bit hash codes, namely, bvi ∈ {−1, 1}L and
bti ∈ {−1, 1}L, i ∈ {1, 2, . . . , N}, and well maintain
their similarities. In light of this, we can conduct the cross-
modal retrieval via measuring the Hamming distance, i.e.,
disH(bvi

,btj ) =
1
2 (L− bT

vibtj ).

4. The Proposed Model
As Fig. 2 illustrates, our proposed cross-modal hashing

scheme comprising four components: 1) a hash represen-
tation extraction module; 2) a hash representation normal-
ization module; 3) a bi-direction relation reasoning module;
and 4) the model training and optimization. In what follows,
we will introduce each module in detail.

4.1. Hash Representation Extraction

Inspired by the huge success of deep representation
learning, we adopt deep networks to extract powerful image
and text hash representations, which are continuous surro-
gates of image and text hash codes. Regarding the visual
modality, we exploit the classical deep convolution neu-
ral network (CNN), such as CNN-F [3] and VGG19 [27],
to extract image features. In this work, both CNN-F and
VGG19 are considered, and analyses of them can be found
in the experiment section. Specifically, we choose the out-
put of the last layer as the image hash representation. As for
the textual modality, we first construct a word bag by filter-
ing words that appear below the specific word frequency2.
And then we obtain text representations based on the bag-

2In our work, the word frequency is set to 20.
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of-words (BoW) model. Afterwards, we employ a fully-
connected neural network to transform them into text hash
representations.

Formally, the above process can be summarized as fol-
lows, {

gvi = fv(vi;Θv),

gti = f t(ti;Θt),
(1)

where fv and f t respectively refer to the image encoder and
text encoder with parameters Θv and Θt to be learned; gvi
and gti

denote the image hash representation and text hash
representation of the i-th instance, separately.

4.2. Hash Representation Normalization

Having obtained hash representations for visual and tex-
tual modalities, most existing studies [16,17] directly adopt
the inner product to measure the similarity between them.
However, due to the modality gap and distribution dif-
ference, this kind of measurement may lead to deviation.
Specifically, if magnitudes of these multi-modal hash rep-
resentations vary greatly, the similarity will be determined
by the one with the larger magnitude. This may dramat-
ically affect the similarity calculation between target hash
codes, therefore causing poor retrieval performance. To
mitigate this issue, we execute normalization on the learnt
hash representations to compress them ranging from −1
to 1, while keeping the modules of them with 1. By this
means, hash representations of two modalities play the same
role, which effectively alleviate the influence of the modal-
ity with higher magnitude. Particularly, the normalization
operation can be formally represented as,

hvi =
gvi∥∥gvi

∥∥
2

,

htj =
gtj∥∥gtj

∥∥
2

.
(2)

Afterwards, we feed the normalized hash representa-
tions to the sign function, and hence obtain hash codes for
visual and textual modalities (i.e., bvi = sgn(hvi) and
bti = sgn(hti)), respectively.

4.3. Bi-direction Relation Reasoning

The goal of cross-modal hashing is to learn the hash
function that maps original features into binary hash codes,
while preserving the cross-modal similarity. By using the
similarity matrix to guide the model training, relations be-
tween samples can be well maintained in the Hamming
space. However, most of existing supervised methods
merely consider the relevant information to build the sim-
ilarity matrix, ignoring the contribution of irrelevant one,
i.e., the categories that samples do not belong to. In fact,

multi-level complex relations can be reasoned by fully ex-
ploring all available label information, whether belong to or
do not belong to.

To this end, we introduce the bi-direction relation rea-
soning module to construct the similarity matrix. Con-
cretely, to better depict the complex multi-level relations
between two similar instances that share at least one cat-
egory, we adopt the consistent direction reasoning, i.e., the
overlapped information is utilized for similarity estimation.
Moreover, if two instances do not share any category, we se-
lect another direction reasoning to infer their scores. Note
that in the similarity matrix, the positive score denotes the
similarity degree of two instances in the consistent direc-
tion, while the negative one represents the dissimilarity ex-
tent in the inconsistent direction.

Consistent Direction: Let Sij denote the similarity
score between instances ei and ej , whose label vectors are
yi and yj . As analyzed before, categories that they both
belong to and do not belong to play the same role when es-
timating the similarity. In light of this, we resort to the XOR
operation to obtain the overlapped label information of two
instances. Thereby, the label information is maximumlly
utilized to model the similarity relation between two simi-
lar instances. Besides, the quotient operation is adopted to
constrain the similarity score ranging from 0 to 1. Formally,
we summarize the above process as follows,

Sij =
K − (yi ⊕ yj)

K
, (3)

where ⊕ is the XOR operation and K is the number of cat-
egories. Apparently, the maximum value of yi ⊕ yj is K,
and Sij hence is non-negative, representing the similarity
degree between instances ei and ej .

Inconsistent Direction: As the irrelevant information
plays a critical role in estimating the dissimilarity score, we
assume that the more non-overlapped label information two
instances have, the more dissimilar they are. Inspired by
this, we define the score as follows,

Spq = −yp ⊕ yq

K
, (4)

where Spq ranges from −1 to 0, representing the dissimilar
extent between instances ep and eq .

4.4. Model Training and Optimization

Preserving similarity among instances, i.e., generating
similar binary hash codes for semantically similar data, is
the major concern of cross-modal hashing [12,26,29,32,33,
37]. However, as hashing is essentially a discrete learning
problem, we thus adopt the inner product between normal-
ized hash representations to model the similarity between
two instances in the training phase. Accordingly, we con-
struct three similarity matrices C∗, Cv , and Ct as follows,
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C∗

ij = hT
vihtj ,

Cv
ij = hT

vihvj ,

Ct
ij = hT

tihtj ,

(5)

where C∗
ij denotes the inter-modal similarity between vi

and tj . Likewise, Cv
ij and Ct

ij respectively refer to the intra-
modal similarity between vi and vj , as well as ti and tj . In
the training phase, by narrowing the gap between the sim-
ilarity matrix S and each of these three matrices, similarity
between data can be well maintained in the Hamming space.

4.4.1 Inter-modal Similarity Constraint

To ensure the cross-modal retrieval performance, the most
important thing is to eliminate the semantic gap between
different modalities. In light of this, the inter-modal simi-
larity matrix C∗ should be consistent with the ground truth
similarity S. Therefore, to effectively capture correlations
across different modalities, we regularize the difference be-
tween the ground truth similarity S and the inter-modal sim-
ilarity C∗, formulating the inter-modal loss Ψ1 as follows,

Ψ1 =

N∑
i,j=1

∥∥Sij −C∗
ij

∥∥2
F
, (6)

where C∗
ij denotes the inter-modal similarity score between

vi and tj.

4.4.2 Intra-modal Similarity Constraint

Obviously, the similarity retention of unimodal data is the
premise of maintaining the cross-modal similarity. Particu-
larly, only when similarities of images and texts themselves
are respectively maintained, cross-modal retrieval perfor-
mance can be guaranteed. Therefore, we define the intra-
modal loss Ψ2 in the same way as follows,

Ψ2 =

N∑
i,j=1

(∥∥Sij −Cv
ij

∥∥2
F
+
∥∥Sij −Ct

ij

∥∥2
F

)
, (7)

where Cv
ij and Ct

ij represent intra-modal similarity scores
between instance ei and ej , regarding the visual modality
and textual modality, respectively.

4.4.3 Relaxation Similarity Constraint

Apart from the inter- and intra-modal similarity constraint,
we further regularize binarization differences between nor-
malized hash representations and hash codes of two modal-
ities, so as to derive optimal continuous surrogates of hash
codes. Specifically, we first normalize hash code vectors
of visual and textual modality, and then directly utilize the
inner product of normalized hash representation and hash

codes to estimate the similarity between them. In this way,
we could obtain 1 × N self-supervised similarity matrices
for the visual and textual modality, i.e., Cbv and Cbt. The
details of them are as follows,{

Cbv
1i = hT

vih
b
vi ,

Cbt
1j = hT

tjh
b
tj ,

(8)

where hb
vi and hb

tj separately represent normalized image
and text hash codes of instance ei and ej , derived via the
following formulations,

hb
vi =

bvi∥∥bvi

∥∥
2

,

hb
tj =

btj∥∥btj

∥∥
2

,

(9)

where bvi = sgn(hvi) and btj = sgn(htj ).
For each image and text, the ground truth similarity be-

tween its normalized hash representation and hash codes is
1. Therefore, we define following regularization loss Ψ3,

Ψ3 =

N∑
i,j=1

(∥∥1 −Cbv
1i

∥∥2
F
+
∥∥1 −Cbt

1j

∥∥2
F

)
, (10)

where 1 ∈ {1}1×N is a matrix whose elements are 1.
In conclusion, we devise the objective function Ψ con-

sisting of above three loss components and reach the final
objective function as follows,

min
Θv,Θt

Ψ = αΨ1 + βΨ2 + γΨ3, (11)

where α, β, and γ are balancing parameters, Θv and Θt

respectively refer to parameters of the image encoder and
text encoder. Once the model has been trained, we can di-
rectly use fv and f t, combining with the element-wise sign
function sgn(·), to generate hash codes and fulfill the cross-
modal retrieval task. Moreover, it is worth noting that al-
though we assume that both modalities of each instance are
observed in the training phase, our scheme can also be eas-
ily extended to handle other scenarios, where some training
instances miss certain modality.

5. Experiment
5.1. Datasets

For evaluation, we adopted two widely used cross-modal
datasets: MIRFLICKR-25K [14] and NUS-WIDE [6],
where images are assigned to multiple category labels.

MIRFLICKR-25K. This dataset includes 25, 000 im-
ages with the fixed size of 224 × 224 × 3, which are origi-
nally collected from the Flickr website3. And each image is

3http://www.flickr.com/.
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manually annotated with several textual tags and at least one
of the 24 labels. In our experiments, we merely utilized im-
ages that are associated with at least 20 textual tags. There-
fore, there are 20, 015 images retained. Afterwards, we split
these images into two subsets: query and gallery. Specif-
ically, 2, 000 images are randomly selected as the query
subset, and the remaining ones are set as gallery set. To
learn the hash function, 10, 000 images are randomly cho-
sen from the gallery subset as training data. Moreover, to
reduce too noisy tags, we removed tags that appear below
20 from those retained images. We hence obtained 1, 386
unique tags, constituting a word bag. Based on the BoW
strategy, the textual modality of each instance is represented
by a 1, 386-d vector.

NUS-WIDE. It is a large-scale social image dataset in-
cluding 269, 648 images associated with 5, 018 unique tags,
where the image size is 224× 224× 3. Moreover, each im-
age is manually annotated by a predefined set of 81 labels.
In our work, we retained 195, 834 images that are associ-
ated with at least one of the 21 most frequent labels. we
formed a query set of 2, 100 images, while the training set
and gallery set of 10, 500 and 193, 734 images, respectively.
And we removed those tags that appear below 20 to con-
struct the word bag and obtained 1, 000 unique tags. In this
way, the textual modality of each instance is represented by
a 1, 000-d vector.

5.2. Experimental Settings

Evaluation Protocols. In this work, we evaluated our
proposed model on two classic cross-modal retrieval tasks:
querying the image database with given textual vectors
(“Text→Image”) and querying the text database with given
image examples (“Image→Text”). For each cross-modal re-
trieval task, we adopted two widely utilized performance
metrics, i.e., Hamming ranking and hash lookup, to com-
pare the retrieval performance of our method with other
state-of-the-art methods. In particular, mean average preci-
sion (MAP) [34], a representative method to measure the ac-
curacy of Hamming ranking, is adopted in our work. Mean-
while, the precision-recall (P-R) curve is utilized to measure
the accuracy of hash lookup protocol. Notably, to be con-
sistent with baseline methods, two instances are considered
to be similar if and only if they share at least one label in
the testing phase.

Baselines. To justify the effectiveness of our pro-
posed Bi NCMH, we chose five state-of-the-art methods as
baselines, including four supervised methods: SCM [36],
DCH [34], DCMH [16], and SSAH [17], and one unsu-
pervised one: CCA [13]. As SCM presents two learn-
ing models, i.e., orthogonal projection and sequential one,
we respectively denoted them by SCM-Or and SCM-Se.
Among these baselines, CCA, SCM-Or, SCM-Se, and DCH
are shallow learning methods, namely they rely on hand-

crafted image features. Meanwhile, we resorted to CNN-F
and VGG19 networks as image encoders for deep learning
based methods. For fairness, we also separately extracted
image features from CNN-F and VGG19 networks that are
pre-trained on the Imagenet [8], for shallow learning ap-
proaches. Note that the source codes and involved parame-
ters of above baselines are kindly provided by correspond-
ing authors, we tried our best to tune the models and re-
ported their best performance as that in their papers.

Implementation Details. We implemented Bi NCMH
with the open source deep learning software library Ten-
sorflow, and adopted the stochastic gradient descent (SGD)
as the optimizer [1]. Besides, we initialized deep networks,
i.e., CNN-F and VGG19, with parameters pre-trained on the
ImageNet, while other parameters are initialized randomly.
To determine hyper-parameters, i.e., α, β and γ, we first
performed the grid search in a coarse level within a wide
range using an adaptive step size. Once we obtained the ap-
proximate scope of each parameter, we then performed the
fine tuning within a narrow range using a small step size.
In addition, we empirically set the batch-size to 128 and the
maximum number of iterations as 500 to ensure the conver-
gence.

5.3. Model Comparison

To justify the effectiveness of our proposed model, we
first compared it with baseline methods by setting four dif-
ferent lengths of hash codes (i.e., 16, 32, 64, and 128 bits)
and two types of image features. Table 1 and 2 display
the performance comparison w.r.t. MAP on two datasets.
By jointly analyzing them, we have the following observa-
tions. (1) Compared with shallow learning methods, deep
learning ones generally achieve better performance. Be-
cause they integrate the feature learning and hash func-
tion learning into an end-to-end framework, therefore mak-
ing the learnt features optimally match with hash codes.
(2) Among deep learning approaches, our proposed model
Bi NCMH shows consistent improvements over DCMH
and SSAH. This is because we built a multi-level semantic
matrix via bi-direction relation reasoning, rather than uti-
lizing the binary similarity matrix as supervision informa-
tion to train the network. Moreover, we adopted the nor-
malization operation to bridge the semantic gap and elimi-
nate the negative effect caused by modality distribution dif-
ference. (3) Although the gallery set of the NUS-WIDE
dataset is relatively larger than that of the MIRFLICKR-
25K dataset, the performance improvement of our proposed
model Bi NCMH is more stable on it. This demonstrates
that our method is more suitable for the large-scale cross-
modal retrieval.

In addition, we further evaluated our method on two
datasets using the P-R curve with 64 bits hash code, where
CNN-F and VGG19 networks are both utilized. Specifi-
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Table 1. The MAP performance comparison between our proposed model and the state-of-the-art baselines on two datasets. The CNN-F
features are utilized for shallow learning models, and the best results are highlighted in bold.

Method
MIRFLICKR-25K NUS-WIDE

Image→Text Text→Image Image→Text Text→Image
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.553 0.545 0.548 0.547 0.554 0.583 0.549 0.548 0.306 0.299 0.294 0.290 0.301 0.295 0.290 0.287
SCM-Or 0.594 0.580 0.572 0.560 0.605 0.590 0.567 0.555 0.330 0.311 0.300 0.289 0.313 0.298 0.286 0.281
SCM-Se 0.686 0.691 0.691 0.694 0.698 0.727 0.713 0.716 0.428 0.434 0.442 0.449 0.362 0.364 0.362 0.363

DCH 0.638 0.642 0.662 0.669 0.636 0.643 0.659 0.638 0.331 0.330 0.339 0.347 0.397 0.399 0.419 0.424
DCMH 0.730 0.741 0.748 0.726 0.759 0.767 0.775 0.749 0.426 0.413 0.440 0.446 0.477 0.491 0.498 0.524
SSAH 0.767 0.775 0.782 0.772 0.767 0.774 0.753 0.739 0.486 0.501 0.512 0.529 0.506 0.520 0.525 0.531

Bi NCMH 0.770 0.781 0.796 0.780 0.760 0.776 0.780 0.781 0.511 0.528 0.540 0.557 0.526 0.542 0.545 0.546

Table 2. The MAP performance comparison between our proposed model and the state-of-the-art baselines on two datasets. The VGG19
features are utilized for shallow learning models, and the best results are highlighted in bold.

Method
MIRFLICKR-25K NUS-WIDE

Image→Text Text→Image Image→Text Text→Image
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.603 0.586 0.574 0.565 0.599 0.583 0.571 0.562 0.351 0.336 0.319 0.308 0.377 0.354 0.332 0.316
SCM-Or 0.621 0.602 0.587 0.569 0.617 0.590 0.573 0.560 0.352 0.329 0.312 0.301 0.380 0.343 0.318 0.304
SCM-Se 0.728 0.741 0.746 0.750 0.710 0.727 0.733 0.737 0.457 0.482 0.486 0.494 0.485 0.510 0.507 0.516

DCH 0.725 0.719 0.756 0.749 0.637 0.632 0.654 0.652 0.496 0.515 0.515 0.574 0.386 0.397 0.412 0.428
DCMH 0.690 0.697 0.742 0.735 0.722 0.722 0.744 0.745 0.453 0.465 0.488 0.501 0.442 0.473 0.464 0.486
SSAH 0.790 0.799 0.754 0.748 0.760 0.771 0.759 0.750 0.503 0.501 0.468 0.378 0.543 0.560 0.560 0.522

Bi NCMH 0.790 0.800 0.808 0.881 0.750 0.760 0.765 0.771 0.515 0.526 0.555 0.562 0.550 0.573 0.574 0.583
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Figure 3. The P-R curves of different methods on two datasets, where CNN-F and VGG19 networks are utilized and the hash code length
is 64 bits.

cally, we calculated the precision of returned retrieval re-
sults given different recall rate, ranging from 0.1 to 0.9 with
a step size of 0.1. From Fig. 3, we can easily find that
the performance are consistent with those in Table 1 and
2. Our proposed model Bi NCMH generally surpasses all
baselines and always obtains the highest precision for the
specific recall rate, which justifies the validity of our pro-
posed model from another perspective.

6. Conclusion And Future Work
In this paper, we present a novel deep normalized cross-

modal hashing approach with bi-direction relation reason-
ing. Specifically, we explore the irrelevant information, i.e.,

the categories that samples do not belong to, and build the
multi-level semantic similarity matrix by considering the
consistent and inconsistent directions, separately. To bridge
the modality gap and eliminate the negative effect caused by
modality distribution difference, we devise a normalization
operation on hash representations so as to better represent
similarity relations among instances. Moreover, we inte-
grate three loss indicators, named inter-modal, intra-modal
and regularization loss, to respectively constrain the inter-
modal, intra-modal and relaxation similarity. Extensive ex-
periments have been conducted on two datasets and the re-
sults demonstrate the effectiveness of the proposed scheme.

In this work, we assume that each label is independent
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when modeling the bi-direction relation. However, it is pos-
sible that there are semantic associations among semantics
of labels, which may influence the estimation of similar-
ity. In the future, we plan to explore such potential cor-
relations among labels, therefore constructing the relation
among samples more precisely. Moreover, we will design
new objective functions from multiple perspectives to opti-
mize the training process of the model.
Acknowledgements. This research was partially supported
by NSF SCH-2123521, NeTS-2109982 and the gift dona-
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