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Abstract

Monocular omnidirectional depth estimation is receiv-
ing considerable research attention due to its broad appli-
cations for sensing 360◦ surroundings. Existing approaches
in this field suffer from limitations in recovering small ob-
ject details and data lost during the ground-truth depth
map acquisition. In this paper, a novel monocular om-
nidirectional depth estimation model, namely HiMODE is
proposed based on a hybrid CNN+Transformer (encoder-
decoder) architecture whose modules are efficiently de-
signed to mitigate distortion and computational cost, with-
out performance degradation. Firstly, we design a feature
pyramid network based on the HNet block to extract high-
resolution features near the edges. The performance is fur-
ther improved, benefiting from a self and cross attention
layer and spatial/temporal patches in the Transformer en-
coder and decoder, respectively. Besides, a spatial resid-
ual block is employed to reduce the number of parame-
ters. By jointly passing the deep features extracted from
an input image at each backbone block, along with the raw
depth maps predicted by the transformer encoder-decoder,
through a context adjustment layer, our model can pro-
duce resulting depth maps with better visual quality than
the ground-truth. Comprehensive ablation studies demon-
strate the significance of each individual module. Exten-
sive experiments conducted on three datasets; Stanford3D,
Matterport3D, and SunCG, demonstrate that HiMODE can
achieve state-of-the-art performance for 360◦ monocular
depth estimation. Complete project code and supplemen-
tary materials are available at https://github.com/
himode5008/HiMODE.

1. Introduction
Depth estimation is a fundamental technique to facilitate

3D scene understanding from a single 2D image for real-
world applications such as autonomous driving [21], virtual
reality (VR) [2], robotics [20], 3D reconstruction [22], ob-
ject detection [23], and augmented reality (AR) [19]. Ear-

Figure 1. An example of a panorama image with its corresponding
depth map and 3D structure generated by HiMODE. Our proposed
hybrid CNN+Transformer model provides highly accurate depth
map with fewer artifacts than even the ground-truth which contains
many holes.

lier depth estimation techniques utilized the sensor-based
or stereo vision-based approaches, with the passive stereo
vision systems gaining more attention due to their com-
paratively better performance in many real-world scenarios.
However, availability of standard multi-view stereo datasets
is scarce due to deferring alignment and camera settings.

This limitation inspired researchers to divert their atten-
tion to monocular depth estimation (MDE) as a desirable
alternative. Due to significant advances in GPUs and avail-
ability of large-scale 3D datasets, several deep learning-
based MDE methods were reported in the literature with
promising results [13, 16, 17]. The downside of these ap-
proaches is that the perspective images have limited FOV.

The emergence of modern 360◦ cameras presented an
appealing solution [8, 35]. Omnidirectional images provide
360◦ FOV, formed by extending a 3D spherical construc-
tion to a 2D 360◦ × 180◦ equirectangular map 1. Naive
extension of MDE methods (e.g. FCRN [16]) to 360◦ im-
ages may result in geometric distortion and image disconti-
nuity, leading to sub-optimal results [39]. This motivates
researchers to conduct further studies on omnidirectional
MDE. Several approaches based on Convolutional Neural
Networks (CNNs) have been proposed for omnidirectional

1In this paper, the terms omnidirectional, equirectangular, 360◦,
panoramic, and spherical refer to the same context.
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depth estimation. Although these methods could success-
fully estimate the depth map around the equator, their per-
formance declined sharply in regions with significant dis-
tortions (e.g., poles) due to their limited receptive field. Re-
cently, Transformer-based methods [28] have been shown
to surpass CNNs with their competitive performance in var-
ious vision tasks. However, due to the lack of inductive bias
in Transformers, dealing with small-scale datasets is chal-
lenging [7]. Several researchers attempted to make the per-
formance of the Transformers independent of data [27] but
it is still an open problem. Although HoHoNet in [25] had
a structure similar to Transformer attention, the approach
in [36] was the first in directly applying the Transformers
to the field of 360◦ MDE. It achieved good performance
when pre-trained on the large-scale dataset of traditional
rectilinear images (RIs) and fine-tuned for panoramic im-
ages. However, its performance was inferior in case it was
directly trained on the small datasets of panoramic images.

To address the above-mentioned challenges, we propose
HiMODE, a novel hybrid CNN-Transformer framework
that capitalizes on the strengths of CNN-based feature ex-
tractors and the power of Transformers for monocular om-
nidirectional depth estimation. Benefiting from combining
both low-level and high-level feature maps extracted by the
CNN-based backbone, along with the raw depth maps esti-
mated by the Transformer encoder-decoder via a context ad-
justment layer, HiMODE not only performs competitively
on the existing small-scale datasets, but can also accurately
recover the surface depth data lost in the G.T depth maps.
An example of a resulting depth map, with its correspond-
ing 3D structure, is illustrated in Figure 1 to demonstrate
the competitive performance and capabilities of HiMODE
in dealing with distortion and artifacts. This competitive
performance is accomplished via several mechanisms; i.e. a
feature pyramid network in the design of CNN-based back-
bone, and a single block of encoder and decoder in the
Transformer that comprises several modules - spatial and
temporal patches (STP), spatial residual block (SRB), and
self and cross attention (SCA) block, in place of the typical
multi-head self-attention (MHSA) in encoder. More specif-
ically, the key contributions of this paper include:

• A novel end-to-end hybrid architecture, that combines
CNN and Transformer for monocular omnidirectional
depth estimation, obtaining competitive performance
even when trained on small-scale datasets.

• A novel depth-wise CNN-based backbone network that
can extract high-resolution features near the edges to
overcome distortion and artifact issues (at object bound-
aries), and refine the predicted raw depth maps with low-
to high-level feature maps via context adjustment layer
to obtain results even better than G.T.

• A novel single encoder-decoder Transformer designed
with the SCA layer in place of the MHSA layer in the

Transformer encoder for better encoding the parameters,
and a STP layer along with the MHSA layer in the Trans-
former decoder to reduce the size of the training param-
eters while improving the depth map prediction.

• A spatial residual block (SRB) that is added after both
the encoder and decoder, for training stabilization and
performance improvement. The SRB allocates more
channels to high-level patches in deeper levels and re-
tains equivalent computation when resolution is reduced.

• Results of extensive experiments demonstrate that Hi-
MODE can achieve state-of-the-art performance across
three benchmarks datasets.

2. Related Works
Monocular depth estimation based on equirectangular

images (EIs) was first attempted in [26] and [39]. Tateno
et al. [26] minimized the distortion based on CNNs and
Zioulis et al. [39] proposed a pre-processing step includ-
ing simplistic rectangular filtering. Later in [38], the 360◦

view synthesis was investigated in a self-supervised man-
ner. As the left and right sides of the EIs are adjacent in
the panorama sphere format, Lai et al. [15] proposed a deep
network with a boundary loss function to minimize the dis-
tortion effects. In [6], the details of depth were preserved
by employing both perspective and 360◦ cameras.

In the BiFuse [30] method, a two-branch neural network
was proposed to use two projections of equirectangular and
cube map for imitating both human eye visions of periph-
eral and foveal. In [25], Sun et al. proposed HoHoNet,
a versatile framework for holistic understanding of indoor
panorama images based on a combination of compression
and self attention modules. These approaches achieved sat-
isfactory performance for the indoor scenarios. To deal with
outdoor scenes with wider FOV, Xu et al. [32] proposed a
graph convolutional network (GCN) with a distortion factor
in the adjacency matrix for real-time depth estimation.

Li et al [18] proposed a novel two-stage pipeline for om-
nidirectional depth estimation. In their method, the main
input was a single panoramic image used in the first stage
to generate one or more synthesized views. These synthe-
sized images, along with the original 360◦ image, were fed
into a stereo matching network with a differentiable spher-
ical warping layer to produce dense, high-quality depth.
To evaluate the methods based on two important traits of
boundary preservation and smoothness, an unbiased holis-
tic benchmark, namely Pano3D, was proposed in [1]. Ad-
ditionally, Pano3D evaluated the inter-dataset performance
as well as the intra-dataset performance. In a very recent
study in [36], a new 360◦ MDE system was proposed by
combining supervised and self-supervised learning. They
applied a Vision Transformer (ViT) for the first time in this
field and achieved competitive performance. In summary,
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Figure 2. The proposed HiMODE architecture consists of a CNN-based feature extractor and a Transformer encoder-decoder.

existing approaches have shown improvement in depth es-
timation, but there exists an obvious need for performance
precision and distortion minimization.

3. Proposed Network
The proposed HiMODE architecture, which comprises

of a CNN-based feature extractor and a Transformer
encoder-decoder, along with the linear projection (LP), po-
sitional encoding, spatial residual, and context adjustment
modules, is presented in Figure 2. The details of each mod-
ule are discussed in the following subsections.

3.1. Depth-wise CNN-based Backbone

Many CNNs, such as MobileNet, ResNet, etc., are used
as the backbone for feature extraction. The extracted fea-
ture maps are mostly ten to a hundred times bigger than the
model size in these backbones, particularly for high-level
feature extraction operations, resulting in high computation
cost and high dynamic RAM traffic. To diminish this high
traffic, the size of the feature maps is minimized with lossy
compression methods such as subsampling. Inspiring by
this, we design a novel depth-wise separable CNN-based
backbone with a feature pyramid network to decrease the
size of the extracted feature maps without sacrificing the
accuracy. It has an efficient structure for extracting high-
resolution features near the edges.

As illustrated in Figure 3, the proposed backbone is com-
posed of four single-layer convolution blocks, four HNet
blocks (each block with eight layers), and four concatena-
tion blocks for merging the feature maps generated from
two former blocks. The HNet is a lightweight block ex-
tracted from HardNet [5] and formed by two main sub-
blocks of dense harmonic and depth-wise convolution (as
the high-level feature extraction module) to reduce the
memory computation cost and to fuse the features (for com-
pression). Differing from HardNet which has 68 layers, our

Figure 3. The detailed architecture of the proposed feature extrac-
tor formed by concatenation of convolution and HNet blocks.

backbone consists of only 40 layers with superior perfor-
mance over the other pre-trained models.

3.2. Linear Projection and Positional Encoding

Generally, the input of a standard Transformer is re-
quired to be a 1D sequence of token embeddings. Hence,
the extracted feature maps of X ∈ RH×W×C from our
backbone are first split into patches, i.e., extracted feature
patches (EFP), with a fixed size of p × p (p = 8). These
patches are reshaped into a sequence of flattened 2D patches
Xp ∈ RN×(p2C) (N = HW

p2 is the sequence length). These
flattened patches are passed to a linear projection module
to generate lower-dimensional linear embeddings with less
computation cost. In the linear projection layer, each patch
is first unrolled into a vector multiplied with a learnable
embedding matrix to form the Patch Embeddings (PE),
which are then concatenated with the Positional Embed-
dings (PE′) to be fed into the Transformer.

Distinguishing the similarities and differences between
the pixels in vast texture-less regions is a challenging issue
which can be addressed by considering the relative loca-
tion of information. Thus, we find the spatial information
of the EFP using the positional encoding module. The ad-
equate positional information of the patches is encoded for
the irregular patch embedding. Consequently, the overall
performance is enhanced as the EFP is equipped with spa-
tial/positional information before being fed into the trans-
former encoder. Positional Embeddings (PE′) are obtained
via the positional encoding formulation as follows [28]:

PE′
(pos,2i) = sin(pos/100002i/D) (1)

where pos and i are respectively the position of the patches
and the dimensional position in the D-dimensional vector
(D = 256, is the dimension of the vector into which each
patch is linearly projected). The input of the Transformer
encoder, i.e. I , is the concatenation of the patch embed-
dings, PE, and positional embeddings, PE′:

I = Concat(PE,PE′) (2)

where Concat represents the concatenation layer.

3.3. Transformer

A novel Transformer architecture, as shown in Figure 4,
is designed with a single encoder and decoder block to gen-
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erate dense raw depth maps.
Transformer Encoder Block (TEB). The TEB consists

of the normalization, self-attention [7], cross-attention [11],
and feed-forward layers. It uses concatenated patch and po-
sitional embeddings (i.e. I ∈ RN×D) as queries (Q), keys
(K), and values (V ) which are obtained by multiplying I
with a learnable matrix, UQKV ∈ RD×3Dk , as follows:

[Q,K, V ] = I × UQKV (3)

Then, the self and cross attention (SCA) mechanism is used
to guarantee that the interconnections between pixels within
a patch, and the information flow between pixels in different
patches are captured. A single-channel feature map inher-
ently contains global spatial information, and splitting each
channel of feature maps into patches and employing self-
attention to gather global information from the full feature
map is task of SCA. This mechanism is first applied to cap-
ture global interactions between semantic features as con-
textual information and then make a fine spatial recovery by
omitting the non-semantic features. As such, self-attention
computes the attention between pixels in the same patches
while cross-attention computes the attention between pix-
els in different patches. The self-attention module uses the
three matrices of Q,K, V ∈ RN×Dk [28]:

Attention(Q,K, V ) = softmax(
QKT

√
Dk

)V = AV (4)

where Dk = 192 (set based on empirical observations as the
experimental results of Dk = 64, 128, 256, 320 are inferior)
and A ∈ RN×N is the attention matrix that represents the
similarity between each element in Q to all the elements in
K. The weighted average of V determines the interactions
between queries, Q, and keys, K, via the attention function.
With cross attention, irrelevant or noisy data are filtered out
from the skip connection features. The output of this self

Figure 4. The detailed architecture of the proposed Transformer
encoder-decoder, with the self and cross attention (SCA) modules,
and the spatial and temporal patches (STP).

attention layer, along with the positional embeddings and
Q, are fed into the cross attention layer followed by a linear
activation function. Unlike the standard attention layer, the
entire process is more efficient in cross attention as the com-
putation and memory complexity for producing the atten-
tion map are linear rather than being quadratic. The cross-
attention layer works in cooperation with the residual short-
cut connection and layer normalization as back-projection
and projection functions for dimension alignment.

A normalization layer (Add+Norm) is employed in an
alternating manner after each of the layers, through which
the outputs of the layers are generated as LayerNorm(x+
layer(x)), where layer(x) is the function of the specific
layer. To make the dimension of a single head equal to the
patch size, a patch-sized feed-forward network (FFN) is em-
ployed including two linear layers separated by GeLU.

Transformer Decoder Block (TDB). The TDB consists
of spatial and temporal patches (STP) [37], multi-head self
attention (MHSA), normalization, and feed-forward layers.
The encoded patches obtained from TEB are passed to the
SRB to speed up the training, improve the accuracy, and re-
duce the computation cost. Afterward, they are fed into STP
and MHSA layers, with positional embeddings. The STP
layer simplifies a challenging work into two straightforward
tasks: a temporal mechanism for finding the similarities of
the patches from a smaller spatial area along the temporal
dimensions and a spatial mechanism for searching similari-
ties of the patches. Moreover, the spatial patches match and
upsample the patches from the entire spatial zone, without
any other patches in the vicinity. These two tasks ensure
that all spatial and temporal locations are covered. A corre-
sponding encoded representation is created for each patch in
a target sequence, which now includes the attention scores
for each patch and the self-attention parameters of the Q,
K, and V . Similar to TEB, normalization and feed-forward
layers are used to achieve the decoder output.

3.4. Spatial Residual Block

By applying a spatial residual block in feature maps,
more channels are allocated to the features in the deeper
layers of the network to maintain similar computation for
the feature maps with decreased resolution. Inspired by this
fact and the spatial relationship in patch embeddings, af-
ter each TEB and TDB, a SRB is designed to improve the
system’s efficiency, while decreasing the number of the pa-
rameters, hence, the computation cost.

The whole SRB block is illustrated in Figure 5. The
1D patch embeddings are reshaped into 2D feature maps,
and fed into three sub-blocks. The first sub-block includes
a normalization layer, followed by a Linear layer that per-
forms linear transformation of the input patch embeddings
(input and output data sizes are 64 and 128 with the bias)
to preserve the channel size of all embeddings. The sec-
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Figure 5. The detailed architecture of the spatial residual block
with three sub-blocks.

ond sub-block is composed of a zero-padding layer (adding
zero pixels around the edges of the patch embeddings as
done in CNNs) to increase the embedding dimensions and
an average pooling layer to decrease the sequence length
of patch embeddings. Similarly, the embedding dimension
is enhanced while the sequence length of patch embed-
dings is again decreased by a layer of normalization with
strided convolution (kernel size of 1 × 1, 32 filters, and
stride of 2, followed by a ReLU) in the third sub-block.
As the sequence length changes after passing through these
sub-blocks, new positional embeddings are applied to up-
date the relative position information. Once the outputs
of all three sub-blocks are obtained, they are concatenated
through residual connections with their updated positional
embeddings, resulting in the training stabilization and per-
formance improvement.

3.5. Context Adjustment Layer

As the estimated raw depth maps from the Transformer
are effected by the ground-truth depth data, they may con-
tain some holes and distortions on the edges due to imper-
fect ground truth and data loss. Hence, the extracted feature
maps from each block of the proposed backbone and the ex-
tracted raw depth maps from the Transformer are concate-
nated through the context adjustment layer. Applying this
layer and making full use of both low- and high-level fea-
tures of input images, can efficiently compensate the lack
of the depth data in the raw depth maps generated by the
Transformer. Consequently, the distortion and artifacts are
reduced and more precise depth maps with sharper edges
are generated. The overall architecture of context adjust-
ment layer is illustrated in Figure 6. In the first step, the
feature maps of fm1, fm2, fm3, and fm4, which are ex-
tracted from the first (as low-level features) to the fourth
block (as high-level features) of the CNN backbone, and the
raw depth maps from the Transformer are merged to create
composite images.

The composite images are then passed through a convo-
lution block, followed by ReLU, to get the information of
the raw depth maps. There is also a residual block which
comprises two convolution layers with 3 × 3 kernel size, a

Figure 6. The detailed architecture of the context adjustment layer
with one convolution block, one residual block, and two activation
functions of ReLU and sigmoid.

ReLU in between, and a skip connection from the first con-
volution layer to the second convolution layer. This resid-
ual block, along with the sigmoid activation, amplifies the
channel dimensions and predicts the accurate depth maps.
The depth maps from these blocks are then concatenated
with the initial composite images to generate the final depth
maps with sharp edges. Interestingly, the network can re-
cover depth data which is lost due to imperfect scanning in
the ground-truth depth maps.

4. Experimental Results
4.1. Dataset and Evaluation Metrics

Experiments of our HiMODE are carried out on the
training and test sets of three publicly available datasets,
i.e. Matterport3D (10800 images) [4], Stanford3D (1413
images) [3], and PanoSUNCG (25000 images) [29]. The
Matterport3D and Stanford3D datasets were gathered using
Matterport’s Pro 3D Camera. In contrast, the depth maps
of Stanford3D are generated from reconstructed 3D mod-
els rather than from raw depth information. The images of
these datasets are resized to 256×512 pixels.

We follow the standard evaluation protocols as in ear-
lier works [9, 31] and adopt the following quantitative er-
ror metrics; Absolute Relative error (Abs-Rel), Squared
Relative difference (Sq-Rel), Root Mean Squared Error
(RMSE), and Root Mean Squared Log Error (RMSE-log),
in the experiments. We also compute the accuracy based
on Threshold, t: (%) of d⋆i , s.t. max

(
d⋆
i

d̃i
, d̃i

d⋆
i

)
= δ <

t
(
t ∈

[
1.25, 1.252, 1.253

])
.

4.2. Training Details

We implement HiMODE in PyTorch. Experiments are
conducted on an Intel Core i9-10850K CPU with a 3.60GHz
processor, 64GB RAM, and NVIDIA GeForce RTX 2070
GPU. The number of respective modules in the Trans-
former, i.e. T-blocks, size of hidden nodes, self-attention,
cross-attention and MHSA, are set as 2, 128, 1, 1, and 1, re-
spectively. We applied Adam optimizer with a batch size of
4 and 55 epochs. The learning rates of 0.00001 and 0.0003
are selected for the real-world and synthetic data.

4.3. Performance Comparison

Quantitative Results. The performance of HiMODE
is compared quantitatively with state-of-the-art methods
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Table 1. Quantitative performance comparison of the proposed
HiMODE with the state-of-the-art methods on Stanford3D, Mat-
terport3D, and PanoSunCG datasets.

Datasets Approaches Abs-Rel Sq-Rel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

St
an

fo
rd

3D

Omnidepth [39] 0.1009 0.0522 0.3835 0.1434 0.9114 0.9855 0.9958
SvSyn [38] 0.1003 0.0492 0.3614 0.1478 0.9296 0.9822 0.9949
Bifuse [30] 0.1214 0.1019 0.5396 0.1862 0.8568 0.9599 0.9880

HoHoNet [25] 0.0901 0.0593 0.4132 0.1511 0.9047 0.9762 0.9933
NLDPT [36] 0.0649 0.0240 0.2776 0.993 0.9665 0.9948 0.9983

HiMODE 0.0532 0.0207 0.2619 0.0821 0.9711 0.9965 0.9989

M
at

te
rp

or
t3

D

Omnidepth [39] 0.1136 0.0691 0.4438 0.1591 0.8795 0.9795 0.9950
SvSyn [38] 0.1063 0.0599 0.4062 0.1569 0.8984 0.9773 0.9974
Bifuse [30] 0.139 0.1359 0.6277 0.2079 0.8381 0.9444 0.9815

HoHoNet [25] 0.0671 0.0417 0.3416 0.1270 0.9415 0.9838 0.9942
NLDPT [36] 0.0700 0.0287 0.3032 0.1051 0.9599 0.9938 0.9982

HiMODE 0.0658 0.0245 0.3067 0.0959 0.9608 0.9940 0.9985

Pa
no

Su
nC

G

Omnidepth [39] 0.1450 0.1052 0.5684 0.1884 0.8105 0.9761 0.9941
SvSyn [38] 0.1867 0.1715 0.6965 0.2380 0.7222 0.9427 0.9840
Bifuse [30] 0.2203 0.2693 0.8869 0.2864 0.6719 0.8846 0.9660

HoHoNet [25] 0.0827 0.0633 0.3863 0.1508 0.9266 0.9765 0.9908
NLDPT [36] 0.0715 0.0361 0.3421 0.1042 0.9625 0.9950 0.9989

HiMODE 0.0682 0.0356 0.3378 0.1048 0.9688 0.9951 0.9992

in Table 1 (for the fair comparison, we use the pre-
trained models of the mentioned approaches and the pre-
dicted depths for all methods are aligned before measur-
ing the errors similar to the technique applied in [36]).
We can observe that HiMODE outperforms the other meth-
ods on all benchmark metrics across the three datasets, ex-
cept for the RMSE and RMSElog scores on Matterport3D
and PanoSunCG datasets, where NLDPT [36] performs
marginally better than HiMODE. Normally, Transformers
need to be trained on large datasets. However, the size of the
three selected datasets, with 10800, 1413, and 25000 im-
ages, are considered small. To deal with this issue, the pre-
vious Transformer-based approach [36] used a pretrained
model (initially trained on large datasets of RIs) and then
fine-tuned on these small-scale datasets. In contrast, by
combining Transformers with a CNN-based feature extrac-
tor and making full use of the feature maps extracted from
CNN (via context adjustment layer), our proposed model
trained directly on the small-scale datasets, not only results
in highly accurate depth maps, but also alleviates the burden
of pretraining, leading to efficient results.

Additionally, to prove that our proposed HiMODE can
perform well not only in MDE of EIs, but also in MDE of
the RIs, further analyses are conducted on the NYU Depth
V2 dataset [24] to illustrate the effectiveness and accuracy
of HiMODE in recovering the edge pixels and the details
of objects. The results are obtained based on three evalu-
ation metrics of Precision, Recall, and F1 scores, follow-
ing the technique applied in [10]. Comparing the results
with other recent MDE approaches in Table 2, HiMODE
achieves state-of-the-art performance for all evaluation met-
rics, validating its capability in estimating highly accurate
depth maps with sharp edges.

Qualitative Results. Figure 7 compares the visual re-
sults of HiMODE Bifuse [30] and HoHoNet [25]. In com-
parison, HoHoNet generates more stable results than Bi-
fuse. Although Bifuse and HoHoNet achieve satisfactory
results, they are not able to recover all the details completely
and accurately (e.g. the shelves, the picture frame, and the

Table 2. Performance comparison on edge pixels recovery for
MDE on NYU Depth V2 dataset (non-panoramic images) under
three different thresholds.

Approaches Threshold Recall Precision F1-Score

Laina et al. [16]
0.25 0.435 0.489 0.454
0.50 0.422 0.536 0.463
1.00 0.479 0.670 0.548

Xu et al. [16]
0.25 0.400 0.516 0.436
0.50 0.363 0.600 0.439
1.00 0.407 0.794 0.525

Fu et al. [33]
0.25 0.583 0.320 0.402
0.50 0.473 0.316 0.412
1.00 0.512 0.483 0.485

Hu et al. [10]
0.25 0.508 0.644 0.562
0.50 0.505 0.668 0.568
1.00 0.540 0.759 0.623

Yang et al. [34]
0.25 0.518 0.652 0.570
0.50 0.510 0.685 0.576
1.00 0.544 0.774 0.631

HiMODE
0.25 0.598 0.703 0.634
0.50 0.569 0.720 0.605
1.00 0.641 0.815 0.656

curtains/objects on the shelf in the first, third, and fifth ex-
amples). They also suffer from the limitations in dealing
with small objects. Comparatively, HiMODE produces ac-
curate depth maps with higher quality, sharper edges, and
minimum distortion/artifacts on the object boundaries. It
managed to recover the surface details similar to ground-
truth. Interestingly, for some regions, it can even recover
some distortions that exist in the ground-truth due to imper-
fect scanning. This good performance could be attributed to
the design of concatenating the low- and high-level feature
maps of the input images from the CNN-backbone with the
estimated raw depth maps from the Transformer, through
the context adjustment layer.

4.4. Ablation Study

Backbone. To evaluate the proposed CNN-based feature
extractor as the backbone module and prove its superiority
to the other pre-trained models, the depth estimation perfor-
mance is investigated based on four backbones of ResNet34
[12], ResNet50 [12], DenseNet [14], and HardNet [5] in Ta-
ble 3. The bold numbers indicate the best performance. In
term of the errors (i.e., Abs-Rel, Sq-Rel, RMSE, RMSE-
log) and accuracy (δ, δ2, δ3) on the three datasets, the
proposed CNN backbone ranks first by a large margin in
all evaluation metrics, except in Abs-Rel and δ3 for Stan-
ford3D, Sq-Rel for Matterport3D, and δ for PanoSunCG.
Our proposed system ranks second with only a slight differ-
ence for these few cases. Additionally, our proposed CNN-
based backbone can qualitatively recover the accurate sur-
face details and object boundaries (the qualitative results are
not presented here for brevity).

Spatial Residual Block. To investigate the effective-
ness of SRBs, HiMODE is evaluated with and without us-
ing SRBs for all datasets. Results are presented in Table 4
in terms of errors and accuracy. We can observe that SRBs
contribute significantly to improve the accuracy. In terms
of error-based evaluation metrics, HiMODE attains the best
results on the Stanford3D dataset. For Abs-Rel, the per-
formance is better in the absence of SRBs on Matterport3D
and PanoSunCG. On the PanoSunCG dataset, the RMSElog
value remains almost the same before and after applying
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Figure 7. Qualitative performance comparison of our proposed HiMODE and state-of-the-art methods on Matterport3D, Stanford3D, and
PanoSunCG datasets. HIMODE can accurately recover surface details similar to or in some regions even better than the ground-truth, as
there are some holes, distortion and artifacts due to imperfect scanning (red and blue rectangles highlight some examples).

Table 3. A quantitative comparison between the proposed CNN-
based backbone with four pre-trained models on three datasets.

Errors Accuracy
Datasets Backbones Abs-Rel Sq-Rel RMSE RMSElog δ δ2 δ3

St
an

fo
rd

3D

ResNet34 [12] 0.1128 0.0635 0.3665 0.1873 0.9149 0.9884 0.9880
ResNet50 [12] 0.0509 0.0682 0.3177 0.1185 0.9349 0.9906 0.9923
DenseNet [14] 0.1045 0.0624 0.3358 0.1621 0.9076 0.9839 0.9889

HardNet [5] 0.0789 0.0352 0.3041 0.1215 0.9234 0.9947 0.9992
Proposed 0.0532 0.0207 0.2619 0.0821 0.9711 0.9965 0.9989

M
at

te
rp

or
t3

D ResNet34 [12] 0.1078 0.1139 0.4587 0.1786 0.8946 0.9792 0.9800
ResNet50 [12] 0.1014 0.0856 0.4189 0.1251 0.9257 0.9755 0.9945
DenseNet [14] 0.0935 0.0472 0.3548 0.1547 0.9138 0.9668 0.9829

HardNet [5] 0.0769 0.0244 0.3628 0.1174 0.9415 0.9831 0.9902
Proposed 0.0658 0.0245 0.3067 0.0959 0.9608 0.9940 0.9985

Pa
no

Su
nC

G ResNet34 [12] 0.1353 0.1471 0.4823 0.2379 0.9183 0.9947 0.9926
ResNet50 [12] 0.1094 0.1043 0.3847 0.2149 0.9524 0.9918 0.9989
DenseNet [14] 0.0949 0.0987 0.4283 0.1958 0.9245 0.9909 0.9895

HardNet [5] 0.0726 0.0557 0.3985 0.1305 0.9693 0.9897 0.9877
Proposed 0.0682 0.0356 0.3378 0.1048 0.9688 0.9951 0.9992

SRBs. Apart from these few exceptions, HiMODE per-
forms better on most other error metrics on Matterport3D
and PanoSunCG in the presence of SRBs, proving the ef-
fectiveness of SRB block.

Self and Cross Attention. In a typical ViT architecture,
long-range structural information is extracted from the im-
ages through the MHSA layer that aims to connect every el-
ement in the highest-level feature maps, leading to a recep-
tive field with all input images patches. In this mechanism,
the lower-level feature maps are enhanced after passing the
skip connections. A cross-attention mechanism causes suf-
ficient spatial information to be recovered from rich seman-
tic features. It ignores the irrelevant or noisy areas achieved
from the skip connection features and emphasizes the vital
regions. In the proposed Transformer, the SCA layer is de-
signed in the TEB to take advantage of the strengths of both
mechanisms to provide contextual interactions and spatial
dependencies. The effectiveness of this module is investi-
gated in Table 4. By applying the SCA instead of MHSA,

Table 4. Quantitative results of the HiMODE for ablation study of
SRB (1st and 2nd rows of each dataset results) and SCA (1st and
3rd rows of each dataset results) on three datasets.

Datasets SRB Attention Abs-Rel Sq-Rel RMSE RMSElog δ δ2 δ3

Stanford3D
✓ SCA 0.0532 0.0207 0.2619 0.0821 0.9711 0.9965 0.9989
× SCA 0.0698 0.0395 0.2846 0.1028 0.9574 0.9898 0.9787
✓ MHSA 0.0746 0.0590 0.3548 0.1529 0.9358 0.9748 0.9695

Matterport3D
✓ SCA 0.0658 0.0245 0.3067 0.0959 0.9608 0.9940 0.9985
× SCA 0.0514 0.0358 0.3108 0.1073 0.9480 0.9799 0.9891
✓ MHSA 0.0629 0.0854 0.4098 0.1889 0.9466 0.9709 0.9770

PanoSunCG
✓ SCA 0.0682 0.0356 0.3378 0.1048 0.9688 0.9951 0.9992
× SCA 0.0540 0.0541 0.3586 0.1038 0.9555 0.9869 0.9902
✓ MHSA 0.0640 0.0849 0.3928 0.1044 0.9497 0.9672 0.9816

significant improvements are achieved on all three datasets.
HiMODE also attains the best performance in terms of all
error-based evaluation metrics on the Stanford3D dataset.
On two other datasets of Matterport3D and PanoSunCG,
applying SCA instead of MHSA results in a noticeable re-
duction in all error metrics, except for Abs-Rel on Matter-
port3D and Abs-Rel and RMSElog on PanoSunCG. These
significant enhancements in the performance prove the su-
periority of SCA over MHSA.

Computation Cost. Table 5 depicts the results of more
ablation studies to evaluate each proposed module in terms
of computation cost (number of parameters), and three
accuracy-based evaluation metrics. We can observe that the
proposed HiMODE, with the SRBs, SCA and STP modules,
has the least number of parameters with a value of 79.67M.
At the same time, it obtains the highest performance accu-
racy at 0.9711, 0.9965, and 0.9989, for δ, δ2, and δ3, respec-
tively. The results also reveal that the absence of SCA, SRB,
STP, both SRB and SCA, and both SRB and STP, brings ad-
ditional computation burden (parameters) of 4.92M, 8.8M,
1.7M, 13.92M, and 15.69M, respectively. Besides, accu-
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Table 5. Results of the ablation study on different modules in terms
of computation cost and accuracy (on Stanford3D dataset). Bold
and underlined numbers indicate the first and second best results.

SRB TEB TDB Computation Cost Accuracy
SCA MHSA STP #Parm δ δ2 δ3

1 ✓ ✓ × ✓ 79.67M 0.9711 0.9965 0.9989
2 ✓ × ✓ ✓ 84.59M 0.9358 0.9748 0.9695
3 × ✓ × ✓ 88.47M 0.9574 0.9898 0.9787
4 ✓ ✓ × × 81.37M 0.9623 0.9746 0.9877
5 × × ✓ ✓ 93.59M 0.9398 0.9655 0.9629
6 × ✓ × × 95.36M 0.9238 0.9481 0.9642

racy also decreases. The two highest degradation in per-
formance are observed by simultaneously removing both
SRB and STP, and both SRB and SCA, proving the crucial
role of these modules in HiMODE. It is worth mentioning
that the performance and computation cost of HiMODE is
also investigated for both low (256 × 512 pixels) and high
(512 × 1024 pixels) resolution images (the results are not
presented here for brevity). It performs almost the same
when the resolution of the input images varies, demonstrat-
ing its independence and robustness to the input image size.
Consequently, our HiMODE is proposed based on the low
resolution input images so that the number of the parameters
is reduced without sacrificing the performance accuracy.

4.5. 3D Structure

Estimating 3D structures from monocular omnidirec-
tional images is a vital task in VR/AR and robotics applica-
tions. The proposed HiMODE successfully reconstructs the
3D structure (e.g., room) by finding the corners and bound-
ary between walls, floor, and ceiling. The qualitative results
on three datasets are illustrated in Figure 8. Quantitatively,
3D intersection over union (IoU) values for 4, 6, 8, and more
than 10 corners are obtained as 79.86%, 80.09%, 73.46%,
and 71.52%, respectively, with an average value of 76.23%.

4.6. Limitations

Despite the competitive performance of the proposed Hi-
MODE, it produces some unsatisfactory results in challeng-
ing situations. Figure 9 demonstrates some examples where
HiMODE fails to generate an accurate depth map. As there
are too many fine details and small objects in the complex
environment of Figure 9(a), it is challenging to produce a
depth map with accurate surface details. In Figure 9(b) and
9(c), extreme illumination (very bright or dark) is shown to
degrade the performance of HiMODE.

5. Conclusion
In this paper, we proposed a monocular omnidirectional

depth estimator, namely HiMODE. It was designed based
on a hybrid architecture of CNN+Transformer to effectively
reduce the distortion and artifacts, and recover the surface
depth data. The high-level features near the edges were ex-
tracted by using a pyramid-based CNN as the backbone,
with the HNet block inside. Further performance improve-

Figure 8. Qualitative results of depth map estimation with the re-
constructed 3D structures. The first and second rows represent the
input images and the corresponding depth maps, respectively, and
the last two rows shows the 3D structures from different angles.

Figure 9. Example of failure cases. HiMODE fails to recover
the depth data for complex scenes with (a) many tiny objects, (b)
overexposed illumination, and (c) underexposed illumination.

ment was achieved by designing SCA block in the Trans-
former encoder, and STP in the decoder. The sequence
length of patch embeddings was reduced when the dimen-
sion increased, due to applying the novel structure of SRB
after each encoder and decoder. Interestingly, by combin-
ing the multi-level deep features extracted from the input
images with the depth maps generated by Transformers
via the context adjustment layer, HiMODE demonstrated
the capability to even recover the lost data in the ground-
truth depth maps. Extensive experiments conducted on
three benchmark datasets; Stanford3D, Matterport3D, and
PanoSunCG, demonstrate that HiMODE can achieve state-
of-the-art performance. For future work, we plan to extend
HiMODE for real-time monocular 360◦ depth estimation,
making it robust to illumination changes and efficiently ap-
plicable for complex environments. In addition to improv-
ing the 3D structure for indoor settings, we would also ex-
tend HiMODE for depth estimation and 3D reconstruction
for outdoor settings.
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