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Abstract

Pose estimation is a crucial problem in several computer
vision and robotics applications. For the two-view scenario,
the typical pipeline consists of finding point correspon-
dences between the two views and using them to estimate
the pose. However, most available keypoint extraction and
matching methods were designed to work with perspective
images and may fail under not-affine distortions present in
wide-angle or omnidirectional media, which are becoming
increasingly popular in recent years. This paper presents
a comprehensive comparative analysis of different keypoint
matching algorithms for panoramas coupled to different lin-
ear and non-linear approaches for pose estimation. As an
additional contribution, we explore a recent approach for
mitigating spherical distortions using tangent plane pro-
jections, which can be coupled with any planar descriptor,
and allows the adaptation of recent learning-based meth-
ods. We evaluate the combination of keypoint matching and
pose estimation methods using the rotation and translation
error of the estimated pose in different scenarios (indoor
and outdoor), and our results indicate that SPHORB and
“tangent SIFT” are competitive algorithms. We also show
that tangent plane adaptations frequently present compet-
itive results, and some optimization steps consistently im-
prove the performance in all methods. We provide code at
https://github.com/Artcs1/Keypoints

1. Introduction

We are currently facing a growing popularization of de-
vices for capturing and visualizing 360◦ (also called spher-
ical, panoramic, or omnidirectional) media [21,36]. The in-
crease of available panoramic content – in particular related
to immersive navigation in virtual, augmented, and mixed
reality (VR/AR/MR) [9, 21] – motivates big companies to
design 360◦-based applications such as Facebook (360 pho-
tos), Google (Street View), and Snapchat (Local Lenses).

Omnidirectional images provide a full field of view
(FoV) [10] and are defined on the surface of a unit
sphere [7]. Most of the literature uses the standard spher-
ical representation on the plane, called the equirectangular
projection (ERP) [9, 13, 17]. However, any mapping to the
plane will introduce distortions [36], so that techniques de-
signed for perspective image might not perform as expected
when applied to the ERP and other representations.

Pose estimation using panoramas is a crucial step in sev-
eral applications such as 3D reconstruction [9], spherical
video edition or stabilization [18, 37], and robotic naviga-
tion [25], to name a few. For the generic two-view prob-
lem using perspective images, the typical pipeline involves
keypoint detection/matching and then estimating the pose
based on the putative correspondences. The latter stage
might involve the computation of epipolar matrices (fun-
damental and/or essential matrix), direct pose estimation
using non-linear approaches such as bundle adjustment,
or more often a combination of both [19]. The pipeline
for panoramas is similar, but the main steps (keypoint de-
tection/matching and pose estimation) must be adapted to
account for the distortions in spherical images. On the
other hand, degeneracy caused by the selection of co-planar
points is unlikely to arise in full-FoV imagery [42].

The main goal of this paper is to perform a thorough
comparison of existing keypoint detection and matching
(designed for perspective images or tailored to panoramas)
when combined with linear and non-linear pose estimation
methods. In particular, we evaluate the quality of estimated
poses regarding the different motion components individ-
ually (rotation and translation) and for scenarios with dif-
ferent characteristics (e.g., indoor vs. outdoor). We also
explore the recent tangent-plane mapping approach [13]
for adapting planar descriptors to the spherical domain, in-
creasing the range of tested methods. Unlike other works
that only evaluate a subset of approaches or use limited
datasets [8, 13, 17, 43], we perform extensive experiments
using several methods with a trade-off fair-optimal setup for
each technique in each tested scenario.
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2. Related Work

2.1. Keypoint Detection and Matching in Panora-
mas

Keypoint detection and matching for perspective images
present a consolidated literature [29]. Until the last decade,
hand-crafted methods such as SIFT [28], ORB [34], and
BRISK [24] were widely used in several applications. How-
ever, applying them directly to panoramas tends to pro-
duce poor results due to strong distortions caused by pla-
nar mappings such as the ERP [41]. Cubemap projection
involves six nearly planar projections with smaller FoVs,
producing less distortions. However, the FoV of each face
is larger than typical pinhole cameras, and the 90◦ con-
nections of the faces can generate artifacts at the bound-
aries, prone to outliers [43]. As such, adaptations to work
with spherical distortions have been proposed. As ex-
amples, we can cite approaches like SIFT on the sphere
(SSIFT) [7], spherical ORB (SPHORB) [43], and spheri-
cal BRISK (BRISKS) [17], inspired on their planar coun-
terparts but adjusting to the local geometry of the sphere.

It is worth mentioning the recent effort devoted to
learning-based approaches using deep neural networks for
sparse matching. Earlier methods such as LIFT [40] pre-
sented good results but with increased computational bur-
den, and more recent methods such as Superpoint [12]
present state-of-the-art accuracy with reduced cost. How-
ever, they might suffer from the generalization problem
(i.e., dataset dependency) as generic deep-learning meth-
ods, which is particularly increased in the cross-domain
experiments: they are trained on perspective images, and
some lack of accuracy is expected when directly applied on
panoramas.

As 360◦ media become popular, several authors present
deep networks tailored to the spherical geometry. In par-
ticular, Eder et al. [13] use tangent planes concerning the
barycenter points of a geodesic grid to mitigate distor-
tions in other sphere-to-plane mappings, which can be ex-
plored to adapt planar keypoint descriptors to panoramas.
Although an application with SIFT descriptor was shown
in [13], a minimal evaluation was performed. The cur-
rent paper tailors different traditional planar keypoint de-
scription and matching approaches [12,28,34] to work with
panoramas using tangent plane projections [13]. Fig. 1
illustrates keypoints extracted using the Superpoint algo-
rithm when applied to the ERP and tangent projections of
the sphere. We perform a thorough comparison of these
methods with and without the adaptation, including also ap-
proaches explicitly designed for panoramas [7, 43].

Note that a comparative study of keypoint descriptors for
pose estimation in panoramas was presented in [8]. How-
ever, their dataset was limited (a single scenario was used,
which might bias the analysis and conclusions), and they

did not explore the tangent-plane projection approach nor
consider learning-based keypoint matching methods.

2.2. Two-View Panorama Pose Estimation

The two-view pose estimation problem for perspective
images consists of estimating the extrinsic parameters1 (ro-
tation matrix R ∈ SO(3) and translation vector t ∈ R3) of
one camera relative to the other. A key concept in two-view
geometry is the epipolar matrix, which relates correspond-
ing points in two images [20]. In the uncalibrated cam-
era setup, we seek for the fundamental matrix F , whereas
the essential matrix E is estimated when the camera in-
trinsics are known. Estimating epipolar matrices requires
the computation of correspondence points between the two
views. The classical linear 8-Point Algorithm (8-PA) [27] is
known for solving for the fundamental matrix. Some stud-
ies [20,32,35] found that data normalization, data centering,
and non-linear optimization improve the robustness of the
“vanilla” 8-PA. Essential matrices have only 5 degrees-of-
freedom, allowing algorithms with fewer correspondence
points to be developed, such as the classical non-linear 5-
PA [31]. These “baseline” methods can also be coupled
with outlier removal methods such as Random Sample Con-
sensus (RANSAC) [15] or one of its many variants [2,3,33].

For two-view panoramas, the main results concern-
ing epipolar matrices hold [32], recalling that the spher-
ical model typically does not involve intrinsic parame-
ters (so that the essential and fundamental matrices coin-
cide) [1, 18]. However, specific schemes have been devised
to cope with the non-uniform sampling of the ERP [18,32].
Based on the theoretical results from [10], Solarte and col-
leagues [35] recently introduced the SK non-linear opti-
mization to deal with outliers and to improve the stability
of 8-PA (RobustPA) obtaining state-of-the-art results.

In the current study, we explore different strategies for
pose estimation. We first use the classical methods, i.e., the
8-PA [20] and 5-PA [31], from which we estimate the (ini-
tial) pose parameters. We then explore the non-linear refine-
ments from [32, 35]. All these pose estimation methods are
coupled with different keypoint matching approaches and
hence generate a wide range of combinations.

3. The Proposed Methodology

Our main goal is to evaluate different feature matching
algorithms coupled with pose estimation algorithms in the
context of panoramas. As noticed in [7,17,43], spherically-
adapted methods present better results than their planar
counterparts. However, such conclusion was based on lim-
ited datasets and using generic keypoint detection/matching

1The translation vector can be estimated up to a scalar factor when only
two views are present. The 5 degrees-of-freedom translation vector is also
referred as the translation direction.
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metrics, which might not directly correlate with pose esti-
mation. Hence, we also consider analyzing planar methods
either by applying them directly to ERP images or by lo-
cally adapting them with tangent plane projections.

3.1. Spherical Keypoint Detection and Matching

Comparing different keypoint detection and matching
approaches involves designing a fair setup, since each
method provides descriptors with different characteristics
that might require specific matching criteria. In this work,
we use the recommended parameters and keypoint match-
ing distance functions for each method. Unfortunately, we
were not able to evaluate BRISKS [17] due to the absence
of publicly available source code. Also, we do not eval-
uate SSIFT [7] because the official code provided by the
authors is limited to square ERPs (which implies that the
latitude angular sampling is not the same as the longitude),
and their inferior results compared to BRISKS [17] and
SPHORB [43]. We next briefly describe each approach
used in our analysis.

SIFT [28] is a hand-crafted planar algorithm. It consists
in: (i) defining a multi-scale space to detect possible key-
points; (ii) identifying keypoints; (iii) assigning the orienta-
tion of the keypoints; (iv) computing the descriptor for each
keypoint; and (iv) finding matches with the ℓ2 norm.

ORB [34] is hand-crafted planar algorithm that combines
modifications of the FAST detector and BRIEF [6] descrip-
tor, achieving a fast and a multi-scale keypoint detector.
ORB’s pipeline consists in: (i) building a pyramid to pro-
duce multi-scale features; (ii) applying the oriented FAST
detector with Harris score to sort them; (iii) computing the
rBRIEF descriptor with the top keypoints; and (iv) match-
ing features using the hamming distance.

Superpoint [12] is an end-to-end learning-based planar al-
gorithm. It can be summarized as: (i) building a base de-
tector with a synthetic dataset consisting of 2D triangles,
rectangles, ellipses and lines; (ii) applying the base detector
plus homography functions in the MS-COCO dataset [26]
to get ground truth keypoint for complex images; (iii) train-
ing the Superpoint architecture with the ground truth; and
(iv) matching features with ℓ2 norm. In the original pa-
per [12], Superpoint outperforms ORB [34], SIFT [28] and
LIFT [40] in the repeatability, which is a general-purpose
evaluation metric for keypoints [30].

SPHORB [43] is a hand-crafted spherical algorithm. It
adapts planar ORB to the spherical domain by discretizing
the unit sphere using a geodesic grid. SPHORB authors’
claims more effectiveness than SSIFT [7] and results were
comparable to BRISKS [17].

Tangent Plane Projection [13] is a “holistic” approach to
map functions defined on the unit sphere to several tangent

(a) (b)

Figure 1. Superpoint keypoints extracted from images represented
by (a) ERP and (b) tangent narrow-FoV projections.

planes, aiming to mitigate local distortions. In particular,
it can be used to adapt any planar descriptor to the spher-
ical domain in a seamless manner by exploring the tan-
gent planes. It was shown in [13] that “tangent SIFT” is
a competitive descriptor for panoramas, and in this work,
we extend the analysis for two other planar descriptors:
the handcrafted-based approach ORB [34] and the learning-
based approach Superpoint [12]. This strategy is better
suited than cubemap representations because the number
n of tangent planes can be controlled (opposed to the six
planes in cubemaps), and hence the distortion tends to be
smaller at each local projection as n increases.

As stated by Eder et al. [13], the tangent plane projection
consists in projecting a spherical image to n bounded planes
using multiple gnomonic projections. The number of pro-
jections is given by n = 20× 4b, where b is the subdivision
level of an icosphere. The tangent image dimension d is
given by d = 2s−b, where s relates to the sphere resolution,
i.e., the number of subdivisions of the icosphere that results
in more vertices than pixels in the ERP. Finally, the key-
point extraction step occurs on the narrow-FoV projections,
with the keypoint positions mapped back to the sphere us-
ing the inverse-gnomonic projection and the corresponding
descriptors kept unchanged. Here, we set s = 8 to deal with
512 × 1024 ERP images, and set b = 1 to have an accept-
able trade-off between distortion-handling and computation
time, which leads to n = 80, and d = 128.

3.2. Two-View Pose Estimation

The complete pose recovery problem involves the esti-
mation of six parameters: three of them related to the rota-
tion matrix R, and the 3D translation vector t. For the par-
ticular case of two-view imaging, the full pose estimation
problem is ambiguous, and we can only estimate the trans-
lation vector up to a scaling factor, leading to an unit vector
characterized by its direction. Next, we briefly describe the
two-view pose estimation methods used in our analysis.

Eight Point-Algorithm (8-PA) [20] is a linear algorithm
that requires at least eight correspondence points to retrieve
epipolar matrices. Its pipeline can be summarized as: (i)
building a linear system A8e = 0, where A8 is composed
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by the correspondences points; (ii) obtaining e by singu-
lar value decomposition (SVD) and unwarping it to a 3× 3
matrix E; (iii) enforcing rank-2 constraint to E with equal
singular values; and (iv) extracting R and t from the epipo-
lar matrix using Procrustes projection, as suggested in [18].

Five Point-Algorithm (5-PA) [31] is a non-linear algorithm
that requires at least five correspondences points to estimate
the essential matrix. It consists in: (i) building a system
A5e = 0, where A5 is composed by the correspondences
points; (ii) computing four matrices X,Y, Z and W that
span the null space of A5, and then writing the essential
matrix E as a linear combination of its basis elements; and
(iii) calculate the scalars by finding the root of cubic con-
straints of e. The pose parameters R and t can be extracted
from E as done in the 8-PA algorithm.

Non-linear least-squares optimization (NLR) [32] is re-
finement step. It receives the inliers produced by a pose
recovery algorithm, as the 8- or 5-PA, and obtains the
constant-weight least-squares solution. NLR refines the in-
liers in each iteration to pick the more “robust” points.

SK Non-linear optimization (SK) [35] is a precondition
step recently proposed to improve the robustness of the 8-
PA or 5-PA algorithms tailored to spherical images. The
method consist in: (i) finding a pre-conditional diagonal
matrix with entries N = (S, S,K) that transforms the fea-
tures from the unit sphere to an ovoid structure such that
the epipolar error is minimized; (ii) transforming original
keypoints according to N ; (iii) applying the 8-PA to the
transformed data and denormalizing based on N ; and (iv)
extracting the pose parameters as in the 8-PA algorithm.

In this work, we initially compute the epipolar matrix us-
ing either the 8-PA or the 5-PA as described above, supplied
by outlier detection and removal via RANSAC [15] with
proper spherical decision functions [32]. In some tests we
couple this “baseline” method with SK non-linear optimiza-
tion step [35] tailored to spherical images or a non-linear
least squares optimization [32] or both (called NLRSK), re-
sulting in a total of four combinations for each baseline.

3.3. Evaluation Metrics

Given the rotation matrix R and unit translation vector t
obtained by keypoint detection/matching and pose estima-
tion, we can define separate error measures for the individ-
ual pose components (rotation and translation). We com-
pute the angular rotation matrix error [38] defined as

Rerror = cos−1
( trace(RTR′)− 1

2

)
, (1)

where R and R′ are the ground truth and estimated rota-
tions, respectively. Since the translation estimates are ob-
tained up to a scale parameter, we compute the translation

angular error [39] given by

terror = cos−1
(
t · t′

)
, (2)

where t and t′ are the ground truth and estimated translation
unit vectors.

We propose to compute the precision of the error esti-
mates individually by defining an angular threshold Tθ. A
given component of the pose (rotation or translation) is con-
sidered correct if its error is smaller than Tθ. It may be use-
ful in applications where one can select a computationally
lighter approach that might not be the most accurate, but
matches at the desired threshold.

3.4. Evaluation Datasets

Comparing two-view pose estimation algorithms de-
pends on choosing suitable datasets with two views of the
same scene along with ground-truth poses. Despite the ex-
istence of publicly available datasets containing annotated
poses and pairs of perspective images such as KITTI [16],
we are not aware of annotated datasets with panoramas.

Due to data scarcity, we use open-source 3D modeling
softwares such as Blender2 and UnrealCV3 to generate re-
alistic synthetic panoramas from public 3D models (to ma-
nipulate UnrealCV scenes, we used the OmniSCV [4] pack-
age). Using synthetic data to train or evaluate models re-
lated to panoramas is a common practice [8, 22, 23, 32, 44],
and extrapolating the conclusions drawn based on synthetic
data to real-world images is highly dependent on the vari-
ability of the scenes. In our context, the variability strongly
relates to textural information (for keypoint matching) and
the the range of distances (pose estimation). Although we
do not have a large set of 3D models to explicitly evalu-
ate the impact of textural information, the use of indoor vs.
outdoor datasets capture the expected difference of depth
values.

For indoor scenes we used the Classroom4, Room5,
RealisticRendering6, Archinteriors1 and Archinteriors26

datasets. These indoors scenes (see Fig. 2, top row) present
finite distances except in windows areas. We choose mul-
tiple canonical view for each scene, then perform random
translations (within the scene 3D dimensions) and random
rotation (real or synthetic rotation depending of the exper-
iment) to generate pairs of panoramas with known relative
poses. Finally, we manually delete images where an object
overlaps most of the rendered scene (for instance, when the
virtual camera is very close to an object).

For outdoor scenes, we use the Urban7 (we selected three
2https://www.blender.org/
3https://unrealcv.org/
4https://download.blender.org/demo/test/classroom.zip
5http://rpg.ifi.uzh.ch/fov.html
6http://docs.unrealcv.org/en/latest/reference/model zoo.html
7http://rpg.ifi.uzh.ch/fov.html
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(a) Classroom (b) Archinteriors1 (c) Archinteriors2

(d) Realistic (e) Room (f) Urban1

(g) Urban2 (h) Urban3 (i) UrbanCity

Figure 2. Examples of 3D models in our dataset. In the top row,
we present canonical images for indoors scenes. In the bottom
row, we present canonical images for outdoor scenes.

subsets, named 1, 2, and 3) and UrbanCity6 models. Un-
like indoor scenes, they present objects farther away from
the camera and regions with unbounded distances (e.g., the
sky), as illustrated in the bottom row of Fig. 2. We se-
lect several canonical images and follow the methodology
used for the indoor dataset for generating pairs of panora-
mas. The presence of large (or unbounded) depth values
might be a challenge, since they might generate disparities
smaller than a pixel and hence small matching errors can
have a strong effect. As such, differences when analyzing
indoor and outdoor scenes are expected.

4. Experimental Results
As described before, we assess the results produced

by three planar (with and without adaptation with tangent
planes) and one spherical keypoint algorithm. More pre-
cisely, we use OpenCV’s implementation of SIFT [7] and
ORB [34], a third-party implementation8 of Superpoint [12]
(the official implementation failed to retrieve matched fea-
tures), named SPOINT in the experimental evaluation; and
the official source code from SPHORB [43]. Addition-
ally, we adapt SIFT, ORB and Superpoint for spherical im-
ages using the tangent plane procedure as described in Sec-
tion 3.1, calling them TSIFT, TORB and TSPOINT here-
after. In all our tests, we keep the default parameters sug-
gested in the papers, employing Lowe’s ratio [28] and an
adequate norm with a threshold γ = 0.75 for matching
the descriptors and finally selecting the maximum keypoints
produced for a given method (an average of obtained key-
points is presented in Table 1). Also, the next experiments

8https://github.com/rpautrat/SuperPoint

introduce random translation (within a fixed range accord-
ing to each scene) and a random rotation (where the three
Euler angles are randomly chosen).

ORB TORB SIFT TSIFT SPOINT TSPOINT SPHORB
Number of Keypoints 3893 1848 939 481 809 399 5034
Standard Deviation 94 60 34 36 16 12 120

Table 1. Average keypoints of each descriptors acroos our tested
images.

4.1. Interpolate rotation vs. Realistic rotation

In theory, a spherical image allows arbitrary 3D rota-
tions, meaning that a single panorama can be used to gen-
erate several rotated versions without the knowledge of the
3D scene (see [11] for more foundations). However, the
ERP representation provides a non-uniform sampling of the
sphere, so that performing rotations requires interpolation
and re-sampling. Hence, this “interpolate rotation” (IR)
process might generate artifacts that can affect keypoint de-
tection and matching. On the other hand, since we have
access to the 3D scene, we can perform the rotation on the
virtual camera, generating a synthetic view that emulates
the distortions of a real camera, and call this process “ren-
dering rotation” (RR).

(a) Interpolate Rotation (b) Realistic Rotation

Figure 3. Interpolate Rotation vs Realistic Rotation

We performed a preliminary analysis using a single
dataset (Room). For each canonical view, we generated
two rotated versions using IR and RR with the same ro-
tation matrix (see Figure 3), and estimate the pose rota-
tion component of both panorama pairs. Table 2 shows the
rotation accuracy for different angular acceptance thresh-
olds (Tθ ∈ {0.1◦, 0.2◦, 0.5◦, 1◦}) using the 8-PA RANSAC
strategy. For low acceptance thresholds, IR presents better
results in ORB, TORB, and SIFT, while RR outperforms
in the remaining techniques. However, when the threshold
is relaxed to 1◦, the accuracy gets close to 100% in both
IR and RR for all tested keypoint algorithms. This pre-
liminary experiment indicates that either IR or RR can be
used, except if we use very restrictive angular thresholds
(< 1◦). It also shows that all tested approaches perform
well for pure rotations. Hence, we incorporate translation
operations to understand the limitations of the techniques
as shown in [8]. Based on these results, we use IR in subse-
quent experiments, since it is much faster than RR.
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threshold ORB TORB SIFT TSIFT SPOINT TSPOINT SPHORB

0.1 ◦ RR 0.8 3.2 10.8 40.8 14.8 14.8 100
IR 10.8 100 13.6 6.0 8.8 4.4 3.2

0.2 ◦ RR 6.4 22 44 96.4 52 57.2 100
IR 43.6 100 50.8 28.4 46.0 16.0 20.4

0.5 ◦ RR 49.2 96.4 94.4 100 94.0 97.6 100
IR 97.2 100 97.2 100 97.2 92.4 95.2

1 ◦ RR 98.8 100 99.2 100 100 100 100
IR 100 100 99.6 100 100 100 100

Table 2. Accuracy (%) of rotation estimation using rendering ro-
tation (RR) vs. interpolate rotation (IR).

4.2. Pure rotation vs. pure translation

In this experiment, we compare the pose accuracy pro-
duced by the keypoint methods under only rotational9

or only translational movement. As noted by other au-
thors [31, 38], the translation errors tend to be larger than
rotation errors when perspective cameras are used, and this
behavior was corroborated for spherical images in [10].
Hence, the acceptance thresholds for translation were more
relaxed than those used in the rotation experiments.

Tables 3 and 4 show the individual accuracy for rota-
tions and translations, respectively, using a set of 1,000 im-
ages across all datasets. The poses were estimated with the
8-PA RANSAC pipeline – when rotation estimation is re-
quired the translation component is ignored, and vice-versa.
Overall, our results corroborate the findings of [10]: esti-
mating translation is (much) harder than estimating the ro-
tation. For the rotation-only experiment, we can see that the
baseline 8-PA can achieve an accuracy close (or equal to)
100% regardless of the keypoint algorithm at an acceptance
threshold Tθ = 1◦, which is already quite restrictive. TORB
shows a consistent performance even for very low thresh-
olds. As for the translation-only experiment, even for a rel-
atively loose threshold Tθ = 20◦ the top accuracy did not
reach 80%. We could not identify a clear pattern on which
keypoint method was better. For the translation-only exper-
iment, we identify TSIFT as the best method at Tθ ≥ 5◦.
However, for lower Tθ values, SPOINT and TSPOINT are
better.

4.3. Combined Rotation and Translation

In this section, we evaluate the generic pose estimation
problem that might contain both rotation and translation
components. Moreover, we provide a separate analysis for
indoor and outdoor datasets, since they present different
overall characteristics (mainly related to the range of depth
values present in the scene). We generated a total of 1,000
image pairs in each scenario, and evaluated the full-range
of pose estimation methods: 8-PA and 5-PA, each of them
either applied individually or combined with a refinement
step (least squares optimization, SK non-linear optimiza-

9The validity of using the essential matrix for pure rotation estimation
was recently justified in [5].

Rotation threshold
0.1 ◦ 0.2 ◦ 0.5 ◦ 1 ◦

ORB 15.2 55.7 95.8 99.4
TORB 94.2 100 100 100
SIFT 9.8 45.1 90.2 98.9

TSIFT 6.0 31.2 99.3 100
SPOINT 7.5 47.3 99.0 100

TSPOINT 3.5 17.6 94.1 100
SPHORB 3.8 20.6 99.7 100

Table 3. Accuracy (%) for different acceptance thresholds in a
rotation-only experiment.

Translation threshold
1 ◦ 2 ◦ 5 ◦ 10 ◦ 20 ◦

ORB 8.86 21.2 46.56 67.29 69.26
TORB 6.11 14.68 37.04 67.29 69.26
SIFT 5.71 16.59 41.14 61.54 70.62

TSIFT 7.51 22.10 52.18 69.36 76.99
SPOINT 14.62 25.55 47.87 60.04 68.19

TSPOINT 14.28 27.7 50.9 60.9 68.25
SPHORB 9.67 24.28 51.75 64.17 71.64

Table 4. Accuracy (%) for different acceptance thresholds in a
translation-only experiment.

tion, and a combination of both).

4.3.1 Indoor Scenes

Table 5 shows the accuracy achieved by all descriptors us-
ing all pose estimation methods for both translation and
rotation errors. Although the accuracy values for the ro-
tation component are still higher than the translation for
similar thresholds (corroborating the results in [10]), they
are considerable lower than those obtained when pure rota-
tions were applied. Regardless of the chosen pose estima-
tion method, the most competitive algorithms are SPHORB
and TSIFT for both rotation and translation estimates (see
the best and second best results highlighted in red and blue,
respectively, in Table 5). We also note a considerable ac-
curacy boost when comparing TSIFT with SIFT, meaning
that tangent plane adaptation plays an important role for ad-
justing the local geometry of the sphere. This also happens
when comparing TORB with ORB, but with a less notice-
able improvement. We can also see that SPOINT did not
produce good results, which could be expected since it was
trained with perspective images and tested with ERP im-
ages. To our surprise, its tangent adaptation (TSPOINT)
did not improve the results (on the contrary, they were actu-
ally worse). A possible explanation is that tangent images
for indoor scenes are different enough from those used to
train SPOINT, producing a domain shift.
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Rotation Translation
1 ◦ 2 ◦ 5 ◦ 10 ◦ 20 ◦ 1 ◦ 2 ◦ 5 ◦ 10 ◦ 20 ◦

5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA

ORB

20.6 20.6 43.2 38.28 67.7 56.51 81.7 73.35 92.5 89.38 13.4 10.42 25.8 23.25 51.3 46.29 70.3 61.92 83.9 76.95
SK 21.0 21.8 43.4 38.48 68.1 57.31 82.3 73.95 93.3 88.78 13.0 10.62 26.2 23.05 52.5 46.6 70.1 67.9 84.1 79.3

NLR 32.8 32.6 51.9 49.7 70.7 63.7 82.5 76.7 92.5 87.9 16.8 12.0 31.8 28.2 53.7 50.5 70.5 65.5 84.9 75.7
NLRSK 50.1 46.2 63.1 54.1 74.7 66.5 84.9 77.3 92.9 87.5 31.4 27.6 45.2 40.8 61.7 57.1 74.9 67.9 86.1 79.3

TORB

31.2 24.9 49.1 38.5 70.5 59.8 79.7 71.4 89.7 86.9 22.2 16.8 36.8 28.9 58.3 52.2 71.9 67.8 81.9 79.7
SK 32.0 25.3 49.3 38.5 71.5 59.8 80.1 71.4 89.5 87.3 22.6 16.8 37.8 28.9 58.7 52.0 71.5 68.1 81.5 79.9

NLR 44.6 37.8 60.5 50.5 74.7 65.3 81.7 77.5 90.1 87.1 24.4 21.8 42.6 33.6 61.5 52.0 72.3 68.1 83.7 78.3
NLRSK 56.9 47.7 65.7 55.9 75.5 67.9 82.5 78.5 89.9 87.7 40.4 33.2 52.7 47.0 68.1 61.7 76.1 70.5 84.1 78.9

SIFT

21.8 19.4 45.0 37.4 67.3 58.7 81.1 71.9 89.3 86.3 13.6 13.6 29.2 26.8 57.5 47.4 71.3 61.9 84.3 73.5
SK 23.6 20.0 46.4 38.2 68.5 59.3 82.3 72.1 89.3 86.5 14.2 13.4 29.8 26.6 57.5 48.1 71.7 61.8 84.5 73.9

NLR 34.8 29.6 54.7 46.8 71.5 61.7 81.3 74.5 89.9 86.9 15.4 14.4 35.4 28.0 58.3 47.7 71.9 61.9 83.3 72.7
NLRSK 50.1 43.49 60.1 52.1 72.9 65.1 81.5 75.9 89.7 86.3 32.8 28.2 45.2 40.2 62.3 54.9 73.7 62.7 84.5 74.5

TSIFT

33.8 31.6 56.9 51.9 78.1 74.3 85.7 82.5 94.3 90.7 22.2 19.4 42.0 41.8 69.1 65.7 82.1 79.9 89.9 86.5
SK 35.0 31.86 57.1 51.9 78.3 74.7 86.3 82.9 94.5 90.7 22.0 19.2 43.0 42.2 69.1 65.9 81.7 80.3 89.7 86.5

NLR 46.4 41.8 65.5 60.1 81.9 77.3 89.5 84.3 95.1 91.9 28.2 24.8 51.1 48.1 72.9 70.9 84.1 80.9 91.1 87.1
NLRSK 63.7 58.9 73.1 68.7 83.1 78.7 89.7 85.9 95.1 91.7 47.9 44.6 65.3 61.7 78.3 75.5 85.9 82.3 90.9 87.5

SPOINT

16.4 17.3 29.6 27.7 45.0 40.4 55.6 51.1 66.2 63.3 9.4 9.66 20.4 22.7 36.8 36.6 50.0 45.6 58.2 54.5
SK 17.4 17.1 30.4 29.5 46.2 41.6 56.0 54.5 66.4 65.6 10.8 9.66 21.2 22.7 39.2 37.4 51.8 46.0 59.0 55.3

NLR 27.2 27.1 41.4 37.1 54.0 47.6 59.2 54.5 66.6 65.5 15.0 12.9 29.2 29.2 47.4 43.2 56.8 50.9 61.4 58.8
NLRSK 33.0 30.4 44.0 38.7 54.6 46.2 60.2 54.9 67.2 65.3 22.0 19.2 35.4 32.2 49.4 44.8 57.0 50.3 62.0 58.8

TSPOINT

15.8 12.8 28.0 21.0 38.2 38.0 45.6 48.1 52.8 56.1 6.20 7.4 18.0 15.3 34.6 32.2 42.2 40.0 48.2 50.3
SK 16.6 12.8 28.6 22.4 39.0 38.4 47.2 48.1 54.0 56.9 6.8 7.6 19.2 15.2 34.8 32.2 42.8 40.2 48.8 50.5

NLR 25.6 20.0 37.4 32.3 46.8 45.0 50.4 52.3 56.0 58.9 13.2 9.9 28.0 23.8 44.0 41.6 49.2 49.2 54.8 56.5
NLRSK 29.4 26.0 38.6 34.9 47.0 45.66 50.4 52.5 56.2 58.3 18.0 15.9 29.6 29.0 45.0 41.8 49.6 49.4 54.6 55.5

SPHORB

37.2 33.2 57.7 47.2 76.7 68.4 88.7 80.6 93.1 90.6 22.0 20.8 46.4 36.6 68.7 65.0 80.1 76.4 89.7 86.0
SK 38.0 33.8 58.3 48.8 76.7 68.6 88.9 81.0 94.7 91.2 21.8 21.0 47.0 36.8 68.7 65.6 80.7 76.4 89.7 86.2

NLR 47.2 42.2 64.7 59.6 78.3 74.0 87.9 85.0 94.9 92.2 28.0 22.8 50.1 44.8 71.3 68.4 81.9 78.6 90.1 87.4
NLRSK 62.9 58.6 71.7 67.2 80.3 77.2 89.1 85.6 95.5 92.6 41.4 35.0 64.3 57.0 75.7 71.6 3.5 79.4 90.7 88.0

Table 5. Pose estimation accuracy (in %) on indoor scenes with mixed translation and rotation based on the 5PA and 8PA algorithms

When comparing different pose estimation methods, we
noted that the 5-PA method yields a slight improvement
over the 8-PA in lower thresholds (Tθ < 5.0). The SK opti-
mization did not show considerable accuracy gain over the
baseline methods, but NLR optimization and NLRSK opti-
mization improve the performance of all descriptors, partic-
ularly when lower thresholds are selected.

4.3.2 Outdoor Scenes

Table 6 is similar to Table 5, but relating to the results in the
outdoor scenes. Again, rotation results are better than trans-
lations ones for all angular thresholds, which also confirms
that translation is more challenging even in a mixed setup
for outdoor images. Both SPHORB and TSIFT are compet-
itive algorithms for rotation accuracy (as in the experiment
with indoor scenarios), but TSIFT outperforms SPHORB in
translation by a reasonable margin (in fact, TSIFT seems to
be in general better than SPHORB for translation).

As in the experiment with indoor scenes, different pose
recovery approaches present similar behavior, with a con-
sistent improvement when NLRSK is employed. Opposed
to indoor results, however, the use of tangent plane projec-
tions boost all methods (including SPOINT). Finally, our re-
sults indicate that recovering pose in outdoor scenes seems
to be more challenging than indoors, particularly for trans-
lation estimation using tighter thresholds. For example, the
best translation accuracy using Tt = 1◦ in indoor images is
almost 48%, compared to less than 23% for outdoor scenes.
We hypothesize that this behavior might be due to very large

or infinite depth values in outdoor scenarios.
Overall, the difference of performance between indoor

and outdoor datasets (see Tables 5 and 6) suggests that the
performance of a descriptor can be biased to a scenario or
dataset. On the other hand, improvements by refinement
steps (NLR and NLRSK) are consistent.

4.4. Computational Cost

In our experiments, we use a laptop with an Intel i7 pro-
cessor, 6 physical cores, 12 threads, 16GB DDR4 RAM,
and an RTX3060 GPU card that boosts the performance of
some methods, particularly SPOINT and the adaptations us-
ing tangent planes. An analytical comparison of the com-
putational complexity is difficult, since some methods (e.g.
SPOINT) can strongly benefit from specific hardware com-
ponents such as GPUs. In this work, we present an anal-
ysis of the running times based on the original codes pro-
vided by the authors. Most descriptors are implemented in
Python programming language; SPHORB’s source code is
provided in C++, but we add a Python wrapper to it. Table 7
shows the average time in seconds to process a single im-
age using different descriptors (including keypoint extrac-
tion and matching), as well the running times for pose es-
timation using different strategies (ran on CPU only). We
can observe that using GPUs did not impact planar hand-
crafted features (SIFT, ORB and SPHORB) in our tests, but
GPU-tailored implementations can be used (such as [14]).
We note that the tangent plane procedure incurs an overhead
that depends on the base descriptor, and choosing weather
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Rotation Translation
1 ◦ 2 ◦ 5 ◦ 10 ◦ 20 ◦ 1 ◦ 2 ◦ 5 ◦ 10 ◦ 20 ◦

5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA 5PA 8PA

ORB

6.25 6.25 24.0 17.2 54.7 42.7 72.5 66.5 85.0 85.5 3.00 1.00 7.75 6.25 25.2 20.5 42.7 33.2 63.2 54.2
SK 11.0 5.80 24.5 16.8 55.7 40.0 72.7 65.2 86.0 84.8 2.75 1.60 7.75 6.20 25.7 18.0 42.2 30.0 63.5 52.0

NLR 10.7 8.50 27.5 20.7 55.2 43.0 71.7 63.2 85.0 83.0 2.50 2.25 8.00 7.00 26.5 23.2 42.5 33.5 62.5 56.5
NLRSK 19.2 16.2 34.0 23.5 58.5 44.2 72.7 63.0 85.2 82.7 6.75 4.50 16.5 11.5 31.7 24.2 47.7 36.5 64.0 58.7

TORB

22.0 18.2 50.3 37.2 78.9 69.5 88.9 86.7 94.4 95.2 5.01 4.50 15.2 13.0 36.8 33.2 51.3 50.2 65.1 63.2
SK 24.3 20.0 51.6 37.2 80.2 69.6 89.2 86.4 94.7 94.4 4.51 4.20 14.5 12.4 36.5 33.0 51.6 48.8 65.1 60.6

NLR 31.0 24.5 55.1 48.2 81.7 75.7 90.4 88.2 94.4 95.5 5.51 5.75 15.0 13.7 37.5 36.0 51.6 50.7 65.6 64.2
NLRSK 44.6 39.2 63.9 61.5 82.9 80.5 90.4 90.0 94.4 95.2 16.5 14.0 29.8 28.0 44.3 43.2 56.6 55.0 67.9 66.2

SIFT

13.4 7.00 35.4 23.7 67.0 55.0 81.2 77.7 92.1 92.2 4.30 2.00 16.9 9.50 35.7 27.7 54.6 48.5 72.1 69.0
SK 14.4 6.20 36.9 23.2 68.6 53.0 82.2 77.4 92.9 91.8 5.32 2.80 18.9 9.20 37.4 26.8 55.9 46.2 72.1 66.0

NLR 18.9 12.5 40.2 30.0 68.1 56.7 81.5 78.2 91.9 89.7 5.3 3.00 16.7 8.75 37.9 29.7 55.1 48.5 72.1 68.2
NLRSK 30.8 24.0 50.8 38.7 70.6 56.7 82.7 77.0 91.9 90.2 12.9 9.2 25.3 17.7 43.5 36.0 58.9 53.5 73.1 68.0

TSIFT

29.9 20.4 63.4 50.7 89.2 81.3 94.8 93.4 96.6 97.4 9.46 8.59 21.2 25.0 56.5 53.2 76.7 72.4 84.4 84.0
SK 30.6 20.1 64.1 48.7 89.5 80.2 94.6 93.2 96.4 97.3 10.2 8.23 21.9 23.6 56.0 51.8 76.7 70.5 84.6 82.7

NLR 34.7 26.7 66.5 57.5 90.0 84.0 94.6 94.7 97.1 97.4 11.2 7.83 25.3 28.2 56.2 55.8 76.9 73.9 84.4 85.3
NLRSK 56.5 46.2 75.4 69.1 91.5 86.3 94.3 95.2 97.9 97.7 22.7 25.5 46.8 43.9 69.3 64.9 78.2 78.2 85.1 85.8

SPOINT

27.5 22.5 43.5 37.2 61.0 53.7 68.0 66.0 74.2 73.5 6.25 5.00 17.0 11.5 27.2 22.0 36.2 29.0 42.5 36.7
SK 28.0 24.0 43.7 38.7 60.7 55.5 68.7 65.5 75.2 73.5 6.25 5.25 16.2 12.2 27.5 23.5 36.7 30.0 42.7 36.7

NLR 44.0 36.5 57.5 50.7 69.2 62.2 73.2 69.0 77.7 75.5 10.7 8.25 21.7 16.0 33.7 28.0 40.5 34.2 47.0 40.0
NLRSK 47.7 40.2 60.0 53.5 69.5 63.0 74.2 69.2 78.2 75.0 15.2 12.7 26.5 22.0 36.5 30.7 43.0 36.2 49.2 41.2

TSPOINT

26.5 24.3 46.7 45.3 72.0 68.1 80.0 76.6 84.5 81.9 3.50 4.01 11.0 10.2 26.0 26.0 35.5 35.3 44.2 42.1
SK 27.7 25.8 48.5 48.6 72.0 68.6 81.0 78.2 85.0 82.2 4.7 3.76 12.2 10.2 27.5 25.3 36.5 35.8 44.5 43.3

NLR 46.0 42.8 67.2 64.6 78.7 77.1 85.2 82.2 86.7 84.4 6.50 6.77 16.7 16.7 33.5 33.0 42.5 40.6 48.7 48.1
NLRSK 53.2 50.8 70.7 67.4 80.2 79.2 85.7 82.7 87.5 83.9 10.0 11.7 22.7 22.5 36.7 35.3 44.2 43.1 51.2 51.6

SPHORB

28.3 23.2 61.1 47.7 87.9 80.0 94.7 94.7 96.7 97.7 6.77 5.50 18.0 17.5 37.3 40.5 49.1 53.5 64.4 66.5
SK 30.3 23.7 62.1 48.7 87.4 80.5 94.9 95.7 96.9 97.7 7.52 5.50 18.3 18.0 38.3 40.2 50.6 52.5 64.1 65.7

NLR 36.3 31.5 64.9 59.5 88.9 86.0 94.4 95.5 96.7 98.0 7.27 8.00 19.5 19.7 37.5 42.7 50.6 56.2 64.1 68.0
NLRSK 56.6 54.5 76.1 73.2 91.9 89.2 95.2 95.5 96.7 98.2 16.7 17.0 30.8 36.7 49.8 50.5 58.1 59.5 66.9 70.5

Table 6. Pose estimation accuracy (in %) on outdoor scenes with mixed translation and rotation based on the 5PA and 8PA algorithms

to use it or not must be based on an application-dependent
cost-benefit analysis. For the particular case of SIFT, the
overhead is around 30% in GPU but it yields considerable
accuracy boosts particularly for low acceptance thresholds.
Pose recovery running times are dominated by the 8-PA
(OpenCV implementation), which depends on the number
of matched points and outliers. Pre- and post-processing
strategies add a very small overhead.

ORB TORB SIFT TSIFT SPOINT TSPOINT SPHORB
Time (s) with GPU 0.54 1.00 1.03 1.35 1.21 5.23 1.29
Time (s) with CPU 0.54 1.17 1.03 1.46 2.45 10.33 1.29
Time (s) only 8PA 0.11 0.08 0.08 0.07 0.02 0.02 0.12
Time (s) only SK 0.12 0.08 0.08 0.07 0.02 0.02 0.13

Time (s) only NLR 0.12 0.08 0.08 0.07 0.02 0.02 0.13
Time (s) only NLRSK 0.13 0.09 0.09 0.08 0.02 0.02 0.14

Table 7. Average ruinng time (s) of keypoint extraction/matching
and pose estimation (with maximum number of keypoints returned
by each method, see Table 1.

5. Conclusions
In this paper, we presented a comparative analysis of

seven keypoint matching algorithms applied to 360◦ image
pairs using several pose estimation approaches. Three of
them are popular planar methods, which are also adapted to
the spherical domain using tangent projections. The other
was specifically designed to work on the spherical domain.

We generated thousands of pairs of synthetic panoramas
and assessed the methods under translation and rotation an-

gular errors. We experimentally showed that estimating the
translation is more challenging than rotation. We also noted
that TSIFT and SPHORB attained the most competitive re-
sults, but their performance can be affected by the dataset.
The running times for TSIFT are a little higher than those
for SPHORB, but this overhead might be compensated by
the accuracy increase for some scenarios (see Table 6). We
also noted that the tangent planarization procedure often im-
proves the accuracy over the baseline keypoint algorithm,
but at a computation overhead.

Our tests involved two baseline pose estimation methods
(8-PA and 5-PA) with or without coupling with pre- and
post-processing steps. Our results indicated that the tested
NLR optimization consistently improves the results in both
indoor and outdoor scenarios, but SK optimization only pro-
duces better results when jointly with NLR.
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