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Abstract

A new non-central model suitable for calibrating fisheye
cameras is proposed. It is a direct extension of the popu-
lar central model developed by Scaramuzza et al., used by
Matlab Computer Vision Toolbox fisheye calibration tool.
It allows adapting existing applications that are using this
central model to a non-central projection that is more ac-
curate, especially when objects captured in the images are
close to the camera, and it makes it possible to switch eas-
ily between the more accurate non-central characterization
of the fisheye camera and the more convenient central ap-
proximation, as needed. It is shown that the algorithms pro-
posed by Scaramuzza et al. for their central model can be
modified to accommodate the angle dependent axial view-
point shift. This means, besides other, that a similar pro-
cess can be used for calibration involving the viewpoint shift
characterization and a user-friendly calibration tool can be
produced with this new non-central model that does not re-
quire the user to provide detailed lens design specifications
or an educated guess for the initial parameter values. Sev-
eral other improvements to the Scaramuzza’s central model
are also introduced, helping to improve the performance of
both the central model, and its non-central extension.

1. Introduction
Fisheye lenses are attractive for many applications be-

cause of their huge field of view. In past their use was lim-
ited by the large image distortion that they cause. But as
image data processing has become faster and cheaper, this
no longer is a major obstacle and their use has become in-
creasingly popular. They are now commonly used in secu-
rity surveillance systems, automotive applications, robotics,
360º immersive still image and video capture devices, etc.

For performing 3D computer vision and computational
photography tasks, camera systems need to be carefully cal-
ibrated. However, traditional methods used for calibrat-
ing regular cameras are generally not suitable for fisheye
lenses with their large geometric distortion and the field
of view that can exceed 180º. A number of special mod-

Figure 1. Our 360° camera array comprising 16 fisheye cameras

Figure 2. An example of the set of 16 images captured simultane-
ously by our 360° fisheye camera array, depicting the calibration
chart at a single position.

els and algorithms thus have been developed for calibrating
fisheye and other omnidirectional cameras. See, for exam-
ple, [4, 18, 19, 24, 25, 30, 32, 38] and the references within.

One of the most popular tools for calibrating fisheye
cameras is the one included in Matlab Computer Vision
Toolbox, introduced in version 2017b, [1]. It is based on
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Figure 3. Nikkor 16mm f/2.8D fisheye lens – apparent viewpoint shift between 0º (blue), 15º (green), and 80º (red) incident angle.

Figure 4. Characteristics of Nikkor 16mm f/2.8D fisheye lens obtained from the lens design by ray tracing: image point radial distance
(left) and apparent viewpoint shift amount (right) as the function of ray incident angle.

the OCamCalib package [31] developed by Scaramuzza et
al., [32, 33], and some of its later modifications, such as
[37]. Apart from its wide availability, one of the advan-
tages of this tool is that it is very easy to use. To calibrate
a fisheye camera, the user only needs to capture the series
of images of a common checkerboard chart and enter infor-
mation about its size, which is readily available. It is not
necessary to provide any detailed optical design specifica-
tions that might be hard to obtain, or any educated guess for
the initial values of the calibration parameters, which might
require some special knowledge and experience.

The vast majority of existing fisheye models, including
those used by Matlab [1], OpenCV [2], and MPEG [39], as-
sume a central projection. I.e., they assume that there exists
a single viewpoint through which all the rays forming the
image are passing. However, in practice, cameras equipped
with fisheye lenses tend to be axial cameras. The entrance

pupil of the lens with extremely large field of view moves
as the incident ray angle changes, which causes the appar-
ent viewpoint to shift along the optical axis. This is shown
shown, e.g., in [35]. See also Figure 3 and 4. This viewpoint
shift tends to be larger than many people realize. For exam-
ple, in case of both Nikkor fisheye lenses analyzed in [35],
the apparent viewpoint shift between 0º and 90º incident
angle exceeds 1 cm. The Fujinon fisheye lenses used in our
360º camera array, shown in Figure 1, also exhibit a view-
point shift of a similar magnitude.

It is convenient to neglect this angle dependent view-
point shift and use a central projection to model the camera.
However, for some 3D computer vision and computational
imaging applications this approximation may not be accu-
rate enough. It can lead to large errors that potentially can
limit system performance, especially when dealing with ob-
jects that are close to the cameras. For example, in case of
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an object placed 0.5 m from the camera, neglecting 1 cm
viewpoint shift for incident angles close to 90º results in
more than 1º error in the assumed incident ray direction.
When using cameras with high resolution sensors such as
those used in Facebook 360º camera array described in [29],
which provide angular resolution of about 35 pixels per de-
gree, this translates to reprojection error in the order of tens
of pixels. We believe that this is one of the reasons why
Pozo et al. in their paper [29] report that their depth esti-
mation starts to break down for objects closer than 1.6 m.
For some more detailed results analyzing the impact of ne-
glecting the axial viewpoint shift on the accuracy of some
common stereo vision tasks see, e.g., [20, 21]. Note that
the calibration with a chart belongs to tasks where neglect-
ing the viewpoint shift of fisheye lenses may have signifi-
cant impact on the accuracy. Due to the very large camera
field of view, the calibration chart needs to be quite close
to the camera. Otherwise it would have to be of size that is
not practical. So, the calibration with a chart relies on spa-
tial points that are most impacted by the parallax due to the
angle-dependent viewpoint shift.

To mitigate this issue, several different non-central fish-
eye and omnidirectional camera models have been proposed
in literature. See, e.g., the work by Mičušı́k and Pajdla [26],
Gonçalves and Araujo [14], Gennery [13], Swaminathan et
al. [34], Kumar and Ahuja [22], Brousseau and Roy [5],
Camposeco et al. [8], or Fasogbon and Aksu [11]. In
this paper, we describe an alternative model that is a di-
rect extension of Scaramuzza’s central model used by Mat-
lab Computer Vision Toolbox. It makes it possible to adapt
any existing applications that rely on this popular fisheye
model to include also the viewpoint shift characterization
and hence improve their performance when objects close to
the camera are present in the scene. This applies, besides
other, to the calibration tool itself. Our modification of
Scaramuzza’s algorithms allows producing an easy-to-use
fully automatic tool that can provide more accurate char-
acterization of fisheye cameras, including their inherent in-
cident angle dependent axial viewpoint shift. This is quite
important because the viewpoint shift data, or the complete
lens design from which this information can be extracted, is
not something that is commonly provided by lens manufac-
turers and available to users.

Besides the extension of the model incorporating the ax-
ial viewpoint shift, we discuss in this paper also some other,
smaller modifications of Scaramuzza’s central model that
can help to improve the accuracy of the obtained calibration.
Our experiments with both synthetic data, for which the
ground truth is available, and with real life fisheye images
demonstrate that the improvement in the accuracy achieved
by using both the proposed modifications of the central
model, and the extension to the non-central projection, can
be quite significant.

2. Modified Scaramuzza’s central model
The omnidirectional camera model developed by Scara-

muzza et al., described in [32, 33], has two parts. The first
one represents the central projection from 3D space to an
ideal image plane involving radial distortion, while the sec-
ond part is an affine transform representing the mapping
from the ideal image plane to the captured image pixel co-
ordinates. Together they use nine intrinsic parameters to
characterize a fisheye camera. Four of them are the coeffi-
cients of polynomial

f(ρ) = f0 + f2ρ
2 + f3ρ

3 + f4ρ
4, (1)

which represents the radial distortion. For any given point
(x, y) in the ideal image plane it specifies a ray in 3D

d (x, y, f(ρ)), d > 0, (2)

that gets projected to (x, y). Here and elsewhere ρ de-
notes the radial distance ρ =

√
x2 + y2 from the principal

point – the point where optical axis z intersects the image
plane, which is the center of the radial distortion. The five-
parameter affine transform that maps the point (x, y) in the
ideal image plane to a fisheye image point (u, v) has the
form [

u
v

]
=

[
a1 a2
a3 1

] [
x
y

]
+

[
c1
c2

]
. (3)

Note that the polynomial (1) does not include a linear
term. The argument for omitting this term can be extended
to all odd terms. This is similar to, e.g., the traditional
Brown distortion model [6, 7] using only even terms. We
thus prefer to replace (1) by

f(ρ) =

K∑
k=0

f2kρ
2k. (4)

Our experiments show that the polynomial (4) with four free
parameters tends to yield more accurate calibration than (1)
and that using polynomials of higher order can further im-
prove the accuracy of calibration, see Section 5.

Also, it should be noted that one of the parameters in
the affine transform (3) is redundant and can be eliminated.
The coordinates in the ideal image plane can always be ro-
tated and scaled in such a way that a3 (or possibly a2) be-
comes 0. In our experiments removing this parameter both
eliminated small random rotations in estimated camera ex-
trinsics, which can be misleading, and improved the conver-
gence of the final non-linear optimization step. Similarly as
Urban et al. in [37] we observe that the extra step involv-
ing a brute force search for more accurate initial estimate of
the principal point (c1, c2), included in the original OCam-
Calib package, performed between the initial estimation of
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Figure 5. Proposed non-central extension of Scaramuzza’s fisheye model involving the characterization of axial viewpoint shift expressed
as the function of image point radial distance ρ .

distortion and extrinsics and the final non-linear optimiza-
tion, see [33], is unnecessary with our modifications.

Similarly as, e.g., Frank et al. [12], we also observe that
in the presence of radial distortion the mapping from an
ideal image plane to a tilted sensor plane cannot be reduced
to an affine transform, as it is commonly done with the pin-
hole camera model (see, e.g., [15, 28]). A projective trans-
form in this case provides more physically accurate model
for a sensor that is not perfectly aligned to the lens. A gen-
eral homography representing the projective transform be-
tween two planes in 3D has eight free parameters. However,
here two of them are redundant. The homography between
the ideal image plane and camera sensor plane can be pa-
rameterized by six parameters as

H =

[
1 0 c1
0 1 c2
0 0 1

][
1 0 0
0 1 0
p1 p2 1

][
a1 a2 0
0 1 0
0 0 1

]
.

(5)
The factorization above not only provides non-redundant
parameterization but also is convenient for implementation,
as it allows implementing both the forward and inverse
transform in a few simple steps. The homography matrix
representing the transform from the image to the ideal im-
age plane can be expressed as

H−1 =[
1
a1

−a2
a1

0

0 1 0
0 0 1

][
1 0 0
0 1 0

−p1 −p2 1

][
1 0 −c1
0 1 −c2
0 0 1

]
.

(6)

Note that when the redundant parameter a3 is normalized
to 0, the affine transform parameterization used by Scara-

muzza’s model is the special case of our more general pro-
jective transform parameterization (5), with p1 = p2 = 0.
Our proposed projective transform is thus a direct extension
of the affine transform used in Scaramuzza’s model used
by Matlab Computer Vision Toolbox, adding two extra free
parameters.

3. Proposed extension to non-central model
To extend either the original Scaramuzza’s model, or our

preferred central model with the modifications described in
Section 2 to a non-central axial projection, we introduce the
second polynomial g(ρ) that characterizes the amount of
viewpoint shift along the optical axis. With this new model,
instead of (2), all points that get projected to the point (x, y)
in the ideal image plane form the half-line

(0, 0, g(ρ)) + d (x, y, f(ρ)), d > 0. (7)

I.e., the ray that gets projected to point (x, y) starts not at
the origin, but at the point (0, 0, g(ρ)) on the optical axis,
see Figure 5.

By a similar argument as in the case of radial distortion
polynomial f , the newly introduced function g that char-
acterizes the amount viewpoint shift should be a smooth,
even function. Also, without the loss of generality, we can
choose the origin of the camera coordinate system to be at
the viewpoint corresponding to zero incident angle, which
makes g(0) = 0. Consequently, we require that

g(ρ) =

M∑
m=1

g2mρ2m. (8)

The key difference compared to some other non-central
models, such as those presented in [13] and [22], is that we
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express the amount of the shift of the apparent viewpoint
along the optical axis not as the function of incident angle,
but as the function of the radial distance of the image point
from the principal point. When using the other models to
find the projected image point, it is necessary first to find
the incident angle. However this operation is non-trivial, as
the incident angle depends on the amount of viewpoint shift,
but at the same time the amount viewpoint shift is expressed
as the function of incident angle. Finding the viewpoint and
the incident angle thus requires solving a non-linear equa-
tion. With our model, this is not necessary.

Given a 3D point (X,Y, Z) that should be projected to
the image, with our new model we have

(X,Y, Z) = (0, 0, g(ρ)) + d (x, y, f(ρ)) (9)

for some x, y, and d > 0. Comparing the individual com-
ponents and denoting R =

√
X2 + Y 2 yields

d =
X

x
=

Y

y
=

Z − g(ρ)

f(ρ)
=

R

ρ
. (10)

We can thus obtain ρ by solving the equation

f(ρ)− Z

R
ρ+

1

R
g(ρ) = 0, (11)

then find the corresponding point (x, y) in the ideal image
plane,

x =
ρ

R
X, y =

ρ

R
Y, (12)

and finally find the projected image point (u, v) by applying
to (x, y) the affine transform (3) or our homography (5).

The mapping in the opposite direction, identifying a 3D
point or the ray in 3D corresponding to the image point
(u, v) is similarly as in the case of Scaramuzza’s central
model trivial and requires only evaluating a few formulas.
It starts with finding the corresponding point (x, y) in the
ideal image plane by applying the inverse affine transform
or inverse homography (6) to the image point (u, v). The
ray in 3D is then given by (7) together with (4).

4. Calibration algorithm
4.1. Initial guess for the calibration parameters

The algorithm for estimating initial values of calibration
parameters described by Scaramuzza et al. in [32,33] can be
modified to provide also the initial estimate of the viewpoint
shift.

Let us assume that (un,j , vn,j), n = 1, . . . , N , j =
1, . . . , J , are the checkerboard corner points detected in the
captured calibration image series. In particular, the point
(un,j , vn,j) is the position of the point (Xn, Yn) on the cal-
ibration chart in the jth calibration image. To initialize the
parameters of the affine or projective transform represent-
ing the mapping from the ideal image plane to the image

pixel coordinates we approximate it by a translation shift-
ing the origin of the coordinate system to the center of the
image. Alternatively, a more accurate initial guess could be
obtained by using one of existing methods for estimating
the center of radial distortion (c1, c2), such as [16, 17], or
the initial affine transform could be estimated by using the
circular boundary of the camera field of view, if it is avail-
able, as in [27]. However in our experiments we found that
unnecessary.

Let us denote (xn,j , yn,j) the resulting estimated points
in the ideal image plane corresponding to the detected im-
age points (un,j , vn,j). We want to find the coefficients of
polynomials f and g in (4) and by (8), respectively, and the
set of 3x3 rotation matrices Rj and 3x1 translation vectors
tj , j = 1, . . . , J , such that

Rj

 Xn

Yn

0

+ tj =

 0
0

g(ρn,j)

+ dn,j

 xn,j

yn,j

f(ρn,j)

 (13)

for some dn,j > 0. As usual, ρn,j =
√
x2
n,j + y2n,j .

We can follow the example set in [32, 33] and elimi-
nate the unknown distance dn,j along the ray by using cross
product. In our case, we haveRj

 Xn

Yn

0

+ tj −

 0
0

g(ρn,j)

×

 xn,j

yn,j

f(ρn,j)

 = 0.

(14)
If we denote

Rj =

 r
(j)
11 r

(j)
12 r

(j)
13

r
(j)
21 r

(j)
22 r

(j)
23

r
(j)
31 r

(j)
32 r

(j)
33

 , tj =

 t
(j)
1

t
(j)
2

t
(j)
3

 , (15)

this can be re-written as

(r
(j)
21 Xn + r

(j)
22 Yn + t

(j)
2 )f(ρn,j)− (16)

(r
(j)
31 Xn + r

(j)
32 Yn + t

(j)
3 − g(ρn,j))yn,j = 0

(r
(j)
31 Xn + r

(j)
32 Yn + t

(j)
3 − g(ρn,j))xn,j− (17)

(r
(j)
11 Xn + r

(j)
12 Yn + t

(j)
1 )f(ρn,j) = 0

(r
(j)
11 Xn + r

(j)
12 Yn + t

(j)
1 )yn,j− (18)

(r
(j)
21 Xn + r

(j)
22 Yn + t

(j)
2 )xn,j = 0

The last of the three equations, (18), does not involve the
unknown polynomials f and g and is linear in the remain-
ing unknowns. Collecting these equations for all the de-
tected corners in a single calibration image, i.e., for all
n = 1, . . . , N , we can form for each j = 1, . . . , J a lin-
ear system that we can solve for r(j)11 , r(j)12 , r(j)21 , r(j)22 , t(j)1 ,
and t

(j)
2 . However, as this linear system is overdetermined

and homogeneous, we can only find the solution in the least
squares sense and it involves an unknown scale factor.
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Let us denote this solution r̃
(j)
11 , r̃(j)12 , r̃(j)21 , r̃(j)22 , t̃(j)1 , and

t̃
(j)
2 and set

A =

[
r̃
(j)
11 r̃

(j)
12

r̃
(j)
21 r̃

(j)
22

]
. (19)

To find the entries of the rotation matrix Rj , we need to find
2x1 vectors b, c, and constants α and β such that the matrix[

αA b
cT β

]
. (20)

is a rotation, i.e., it is orthogonal and its determinant is 1.
There are four possible solutions to this completion prob-
lem. It is possible to show that the scaling factor α and
vector c must satisfy

α = ± 1

σ1
, c = ±

√
1− σ2

σ1
v2, (21)

where σ1 and σ2 are the singular values of A, σ1 ≥ σ2,
and v2 is the right singular vector corresponding to σ2. The
last column of the completion can be found by computing
the cross product of the first two columns, making sure that
det(Rj) = 1. The elements of the translation vector are
scaled by the same factor as the elements of the rotation
matrix and thus

t
(j)
1 = α t̃

(j)
1 , t

(j)
2 = α t̃

(j)
2 . (22)

Caution needs to be exercised because only one of the four
possible completions is the right rotation matrix Rj . To find
the correct signs, we check that the selected α and vector c
yield dn,j > 0 in (13) and f0 > 0 when the coefficients of
f are estimated.

To estimate t
(j)
3 and the coefficients of f and g, we sim-

ilarly as Scaramuzza create a single large system of linear
equations for all n and j that needs to be solved. However,
instead of using (16) and (17), as they suggest, we prefer to
use the first two rows of (13) to estimate dj,n and then col-
lect all the third rows involving the unknown coefficients,

M∑
m=1

g2m ρ2mn,j + dn,j

K∑
k=0

f2k ρ
2k
n,j − t

(j)
3 =

r
(j)
31 Xn + r

(j)
32 Yn, (23)

The resulting system of equations is smaller and, in our ex-
periments, it also tends to provide more accurate results.

Note that the presented algorithm only requires that the
spatial points corresponding to points detected in the cal-
ibration images lie in a single plane and their mutual po-
sition is known. It does not require the points to form a
square grid. Hence, it allows both using a completely differ-
ent type of a calibration chart, if desired, and it also makes

Figure 6. Synthetic data experiment using Nikkor 16mm f/2.8D
design parameters, ground truth radial distortion curve and the ra-
dial distortion curves obtained by calibration with different mod-
els.

it possible to use images in which the chart is only partially
visible. In that case, one simply collects only the equations
corresponding to the corner points that are successfully de-
tected in each image. We find this very useful, as it helps
both to reduce the number of images that need to be cap-
tured for calibrating our circular array, and to improve the
accuracy of calibration for the areas farther from the center.
When only images in which the whole chart is visible can be
used, the percentage of the corner points that lie farther out
tends to be very small and thus significant error in the cal-
ibration on the periphery of the field of view can be easily
outweighed by a minor improvement for the points closer
to the center. The impact of including images in which the
chart is only partially visible on the accuracy of calibration
can be seen in Figure 6.

4.2. Non-linear optimization step

The parameters obtained by the algorithm described
above generally do not provide sufficiently accurate char-
acterization of the camera that could be used in practice and
they only can serve as an initial guess for a subsequent non-
linear refinement. Except for one case that is explicitly la-
beled, in all the practical experiments shown in Section 5
we used the most common cost function, the total square
reprojection error, which was minimized by Levenberg-
Marquardt algorithm (see, e.g., [15,23]). We implement the
cost as suggested by Urban et al. in [37], making the error
in horizontal and vertical direction two separate elements in
the cost vector. Let ∆u be the vector comprising elements
u′
j,n − uj,n, where uj,n is the column coordinate of the ac-

5227



reprojection principal distortion chart chart
error point curve rotation translation

(pixels) (pixels) (pixels) (degrees) (mm)
avg max avg max avg max avg max avg max

Matlab model 1.45 36.98 1.38 3.04 12.07 110.56 0.21 5.90 1.84 32.82
Our 4-par. dist., affine, no vp. shift 1.00 20.78 1.40 2.74 10.11 81.78 0.16 3.28 1.77 20.73
Our 4-par. dist., no vp. shift 1.00 20.79 1.11 1.67 10.12 81.82 0.16 3.24 1.75 20.12
Our 4-par. dist., 2-par. vp. shift 0.69 22.15 0.38 0.72 3.41 59.94 0.08 2.33 0.46 13.38
Our 6-par. dist., no vp. shift 0.81 10.88 0.87 1.38 8.16 49.46 0.15 1.18 1.72 10.09
Our 6-par. dist., 2-par. vp. shift 0.31 2.76 0.12 0.29 0.59 20.56 0.01 0.19 0.14 1.08
Our 8-par. dist., no vp. shift 0.80 10.80 0.86 1.37 7.83 41.27 0.15 1.17 1.72 10.10

Table 1. Calibration reprojection error and calibrated model error with respect to ground truth for synthetic data based on Nikon D850
camera with 16mm f/2.8D lens.

Calibration Point prediction test error
Camera Array 90th Under Over

MRE MRE Max Average percentile 1 pixel 5 pixels
(pixels) (pixels) (pixels) (pixels) (pixels) (%) (%)

Matlab model 0.50 0.83 69.95 2.80 6.41 36.71 10.98
Our 4-par. dist., affine, no vp. shift 0.40 0.74 65.03 2.49 5.91 42.40 9.49
Our 4-par. dist., no vp. shift 0.39 0.66 58.14 2.13 5.29 50.03 8.07
Our 4-par. dist., 2-par. vp. shift 0.30 0.38 16.14 0.93 2.17 71.22 1.33
Our 6-par. dist., no vp. shift 0.36 0.63 53.93 2.04 4.95 53.88 7.40
Our 6-par. dist., 2-par. vp. shift 0.25 0.31 11.71 0.52 1.20 86.57 0.17
Our 8-par. dist., no vp. shift 0.36 0.63 54.90 2.04 4.96 53.95 7.40
Our 4-par. d., 2-par. vp. shift, sp. cost 0.32 0.39 16.70 0.99 2.33 68.83 1.48

Table 2. Comparison of the accuracy of different models when calibrating real-life fisheye camera array

tual detected image point and u′
j,n is the column coordinate

of the image point that is the projection of the matching
chart point (Xn, Yn), using the current estimates of the ex-
trinsic rotation Rj (represented by three parameters), trans-
lation tj , and all the intrinsic parameters. Analogously, let
∆v be the vector comprising row coordinate differences.
The cost that is minimized then can be expressed as

∆uT∆u+∆vT∆v. (24)

As we have already mentioned in Section 4.1, we allow in
our implementation variable number of points per image.
So, in our case, vectors ∆u and ∆v collect the error only for
all chart points that are visible and are successfully detected.

It is possible to use other cost functions. For example, to
reduce the impact of outliers among the detected points, one
can use instead l1 cost or one of the robust costs proposed
in literature. See e.g., [9, 36, 40]. In case of our model, an
attractive choice can be a cost function that does not require
projecting the chart points (Xn, Yn) to the fisheye images,
but it is instead based on mapping the detected image points
to rays or points in 3D space. An example of such cost is

∆XT∆X+∆YT∆Y, (25)

where ∆X and ∆Y collect the differences between the
actual chart corner points (Xn, Yn, 0) and their estimates
(X ′

n,j , Y
′
n,j , 0) produced with the current parameter values.

As with the discussed models the mapping from 2D image
to 3D space is much simpler, it makes the calibration sig-
nificantly faster (about 10× in our experiments).

The non-linear optimization step can take from a few
seconds to few minutes. Its speed varies widely depend-
ing on the number of calibration images, stopping criteria
of the optimization process, and other factors. When the
total square reprojection error is used as the cost, it tends
to be slightly slower than Matlab Computer Vision Tool-
box, due to the larger number of intrinsic parameters that
we use. However, we find the slower speed acceptable as,
due to the need to capture and process many images of the
chart, calibration with a chart is inherently a slow process
suitable only for off-line use in situations when accuracy is
more important than speed.

5. Experiment results

To compare different models we have run experiments
with both synthetic and real captured data. We had to rely
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mostly on our own data as the few publicly available sets
such as those included with [10, 37] are not suitable for our
purposes. The synthetic images for which ground truth is
available are invariably produced with a central model and
the available sets of real images are not rich enough to pro-
vide comparison beyond checking calibration mean repro-
jection error, which can be highly misleading. Not only it
is strongly dependent on the point set used, but we also find
that, for a single camera, errors in estimated intrinsics and
extrinsics can partially offset each other and the resulting
mean reprojection error can be deceptively low. See the re-
sults in Table 2.

To provide a fair comparison of different models, all the
results shown are obtained with our own code that allows us
to use exactly the same settings for all the models and to use
images with only partially visible chart to make sure that
the outer parts of the field of view are properly represented
during calibration. However, to validate our code, we did
compare the results it produces to those obtained with Mat-
lab function estimateFisheyeParameters. When
we use exactly the same point set and the same model as
Matlab, the results tend to be virtually identical.

5.1. Synthetic data experiments

To produce synthetic data that is close enough to reality,
we used the design specifications of Nikon D850 camera [3]
with Nikkor 16mm f/2.8D fisheye lens. The lens character-
istics – the radial distance of the projected point in the ideal
image plane and the amount of the viewpoint shift for dif-
ferent incident angles – were obtained by ray tracing in Ze-
max, using the lens design data listed in [35], adopted from
the U.S. patent 5,434,713. A randomly selected small offset
was added to move the principal point off the center of the
image. The chart positions used were generated randomly,
but in order to keep the values realistic, the chart angle and
distance distributions were based on those we observed in
practice when calibrating our real 16-camera array. Table 1
lists the average and maximum error over 16 instances of
the camera that we simulated, with respect to the ground
truth.

Comparing the first two rows of Table 1 we see that re-
placing the distortion polynomial (1) with the polynomial
(4) with the same number of parameters does help to im-
prove the accuracy of the resulting calibration. Switching
from affine to projective transform does not have any effect
here because the sensor tilt was not included in this simula-
tion, because of the lack of information about the realistic
range of misalignment angles. The remaining five rows of
Table 1 demonstrate that increasing the order of polynomial
representing lens radial distortion can help to improve the
accuracy some extent, but even better results are obtained
when the viewpoint shift characterization is included.

You can see the impact of using different models on the

accuracy of the calibration also in Figure 6.

5.2. Real-life fisheye array calibration

With real-life data, in the absence of ground truth for the
calibration, we use for evaluating the accuracy of calibration
a common practical task the accuracy of which we can mea-
sure. The calibration image set is the output 360° fisheye
camera array shown in Figure 1, comprising 16 Point Grey
cameras equipped with Fujinon FE185C086HA-1 2.7 mm
lenses. The captured images, see Figure 2, are of size
2448× 2048 pixels and have approximately 185° field of
view. We use image pairs captured by neighboring cameras
to triangulate the spatial position of detected chart points
and then measuring the error of predicting their location in
the images captured by the remaining cameras.

Images capturing 41 different chart positions used as
the test set provided us with 81,835 predicted locations for
which we we could reliably measure the distance from ac-
tual detected image points. The prediction error statistics
summarized in Table 2 show quite clearly that both our pro-
posed modifications of the central model, and incorporat-
ing the viewpoint shift in the model help to significantly in-
crease the accuracy of calibration. Our best result provides
an improvement by almost an order of magnitude. Note also
that the accuracy of calibration with the spatial cost (25),
which is considerably faster, is almost as good as the accu-
racy of calibration with the same model using the traditional
reprojection error cost (24).

6. Conclusions
In this paper we propose modifications to the central

fisheye model developed by Scaramuzza et al., used by
Matlab Computer Vision Toolbox and an extension of this
model that incorporates the characterization of axial view-
point shift exhibited by fisheye lenses. and we demonstrated
that the techniques suggested in [32, 33] can be adapted to
this non-central model. This allows switching between the
simpler central projection and the more accurate non-central
projection as needed, and also makes it possible to produce
a user friendly tool for calibrating the non-central model
that does not require lens design information that can be
hard to obtain. Our experiments with both synthetic and real
data show that the proposed modifications allow producing
much more accurate fisheye camera calibration, which can
help to significantly improve the performance of 3D com-
puter vision and computational imaging systems involving
fisheye cameras, particularly when objects close to the cam-
era are present in the scene.
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