
HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model
(Supplementary Materials)

In this supplementary material, we provide more ablation
studies and results of the proposed HiMODE.

A. Ablation Studies on Backbone
As introduced in the main paper, backbone module is an

important part of our system. This section provides more
ablation studies on the backbone module to demonstrate its
superiority, quantitatively and qualitatively, to the other pre-
trained backbones.

A.1. Detailed Architecture of the Backbone.

Our CNN-based backbone is referred to as depth-wise
due to using depth-wise Conv layers in HNet blocks which
are concatenated with the Conv layers. Depth-wise sepa-
rable CNNs have less parameters and possibility for over-
fitting, such as MobileNet. HNet (as shown in Figure 1)
is extracted from HardNet [4]. Comparing the number of
layers, our backbone has only 40 layers (i.e. HNet=4 × 8,
Conv=4, Concat=4 layers) which is significantly less than
that of HardNet (i.e. 68 layers).

Figure 1. The overall architecture of the proposed HNet block
extracted from the HardNet [4] structure.

A.2. The Effects of Input Resolution

The visual information is affected by the image reso-
lution. High image resolution results in higher visual in-
formation and so better image quality. Generally, when
the image resolution is reduced, the performance of the
CNN-based networks degrades significantly [7]. On the
other hand, lower input image resolution is desirable as it
leads to a reduced number of features and the optimized
number of parameters. Consequently, the risk of model
overfitting is minimized [2]. Nevertheless, extensive low-
ering of the image resolution eliminates the information
that is useful for classification. The effects of the input
image resolution on the overall performance of the pro-
posed system based on our novel CNN-based backbone is

investigated and compared with four pre-trained models of
ResNet34 [5], ResNet50 [5], DenseNet [6], and HardNet
[4]. The evaluation results are presented in Table 1 in terms
of four error-based evaluation metrics and three accuracy-
based evaluation metrics. The terms ”low” and ”high” for
image resolution refer to the image size of 256 × 512 and
512 × 1024, respectively. Comparing the results, our pro-
posed backbone ranks first in all evaluation metrics on all
three datasets, except for Abs-Rel and δ on Stanford3D,
RMSElog on Matterport3D, and RMSE on PanoSunCG, at
which our proposed backbone ranks second with a slight
difference. The superiority of our proposed backbone is
proven as the other models cannot surpass its performance
even with high-resolution inputs. It is worth mentioning
that the overall performance of our proposed system main-
tains almost the same when the resolution of the input im-
ages varies, demonstrating its independence and robustness
to the input image size. Consequently, our HiMODE sys-
tem is proposed based on the low-resolution input images
so that the number of parameters is reduced without sacrific-
ing the performance accuracy, as opposed to the other state-
of-the-art approaches [10, 12] which were mostly based on
512× 1024 input images.

A.3. Computation Cost of Different Backbones

In addition to the performance, the superiority of our
proposed CNN-based backbone is further investigated by
comparing its computation cost with that of four pre-trained
models of ResNet34 [5], ResNet50 [5], DenseNet [6], and
HardNet [4]. The results in terms of the number of param-
eters as computation cost with three accuracy-based eval-
uation metrics on Stanford3D [1] dataset are presented in
Table 2 (for both low and high resolution). We can observe
that the proposed HiMODE based on our novel CNN-based
backbone has the least number of parameters for low reso-
lution input images with the values of 79.67M as well as the
best performance accuracy of 0.9711 and 0.9965 in terms of
δ, δ2, respectively. Its performance in terms of δ3 is almost
the same as that of HardNet. Replacing the other pre-trained
models of ResNet34, ResNet50, DenseNet, and HardNet
with our proposed backbone brings additional computa-
tion burden (i.e. parameters) of 7.29M, 10M, 6.48M, and



2.57M, respectively. Besides, accuracy also significantly
decreases. The highest degradation in δ, and δ2 occurs in
DenseNet with the values of 0.9076 and 0.9839, respec-
tively, while the poorest performance of 0.9880 in terms of
δ3 belongs to ResNet34. For high resolution input images,
HiMODE based on our proposed CNN-based backbone still
has the least number of parameters (98.89M) comparing
with the others. Achieving the least computation cost with
the highest performance accuracy proves the capabilities of
our proposed backbone over the other pre-trained feature
extractors.

A.4. Qualitative Results for Different Backbones

The performance of HiMODE based on our proposed
CNN-based backbone is compared with the other pre-
trained models qualitatively in Figures 2-4. As it is men-
tioned in the main paper, our depth-wise proposed back-
bone can extract high-resolution features near the edges to
overcome distortion and artifact issues. On the depth maps
estimated based on our proposed backbone, sharper edges
and more details are recovered.

B. More Results on 3D Structure
B.1. Quantitative Results

The detailed quantitative results for 3D structure esti-
mation under different number of ground-truth corners are
presented in Table 3 as a supplement to the main paper
to extend the quantitative studies. In comparison with the
recent state-of-the-art approaches, our proposed HiMODE
achieves the best results for 6 corners (82.23%) on the 2D
IOU (intersection over union) metric, and both 4 (85.48%)
and 6 (85.05%) corners in terms of 3D IOU. Overall, our
proposed method can achieve state-of-the-art performance
in 3D structure estimation with fewer corners. For higher
number of corners, our method obtained comparable results
although AtlantaNet [8] is the best performer.

B.2. Qualitative Results

Additional qualitative results for estimating 3D struc-
tures from monocular omnidirectional images on three dat-
sets of Stanford3D [1], Matterport3D [3], and PanoSunCG
[11] are demonstrated in Figures 5-7, respectively1. Our
method was evaluated on different input images with var-
ious numbers of corners. Qualitatively, our HiMODE can
successfully reconstruct the 3D structure by finding the cor-
ners and boundary between walls, floor, and ceiling, which
is a vital task in VR/AR and robotics applications. The pro-
posed HiMODE successfully reconstructs the 3D structure
with different numbers of corners by finding the corners and
boundary between walls, floor, and ceiling.

1Some samples of 3D structures are available at https://bit.ly/
3HLh1Z3 in video format.

C. More Omnidirectional Depth Results
We show more qualitative results for depth map estima-

tion by our HiMODE in Figures 8-10 on three datasets;
Stanford3D, Matterport3D, and PanoSunCG. The results
of our proposed HiMODE are compared with two other
recent state-of-the-art approaches of Bifuse [12] and Ho-
HoNet [10] on three datasets in Figures 11-13. These visual
results further demonstrate the superior performance of the
proposed HiMODE over the other two methods in recover-
ing the details of the surfaces, even for the deep regions and
small objects.

In addition, the effectiveness of combining the HiMODE
output with the output of two recent state-of-the-art ap-
proaches; Bifuse [12] and HoHoNet [10], on three datasets
is investigated. The qualitative results are illustrated in Fig-
ures 14-16. Very interestingly, we observe significant im-
provement in the depth map estimation when HiMODE is
combined with Bifuse, HohoNet, or both methods via a
simple concatenation of the respective outputs. The best
qualitative results are achieved with the combination of
three methods, whereby the resulting depth map mimics
the groundtruth depth map very closely (the last columns
of Figures 14-16).
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Table 1. A quantitative comparison between the proposed CNN-based backbone with four pre-trained models on three datasets based on
two input image resolutions of 256× 512 (low) and 512× 1024 (high).

Datasets Backbones Resolution Errors Accuracy
Abs-Rel Sq-Rel RMSE RMSElog δ δ2 δ3

Stanford3D

ResNet34 [5] High 0.0956 0.0824 0.3875 0.1577 0.9398 0.9817 0.9906
Low 0.1128 0.0635 0.3665 0.1873 0.9149 0.9884 0.9880

ResNet50 [5] High 0.0666 0.0489 0.2897 0.1217 0.9512 0.9940 0.9968
Low 0.0509 0.0682 0.3177 0.1185 0.9349 0.9906 0.9923

DenseNet [6] High 0.0823 0.0702 0.3346 0.1246 0.9451 0.9901 0.9944
Low 0.1045 0.0624 0.3358 0.1621 0.9076 0.9839 0.9889

HardNet [4] High 0.0755 0.0461 0.2984 0.1038 0.9578 0.9947 0.9972
Low 0.0789 0.0352 0.3041 0.1215 0.9234 0.9947 0.9992

Proposed High 0.0679 0.0223 0.2711 0.0963 0.9693 0.9959 0.9987
Low 0.0532 0.0207 0.2619 0.0821 0.9711 0.9965 0.9989

Matterport3D

ResNet34 [5] High 0.1026 0.0861 0.3956 0.1434 0.9487 0.9820 0.9777
Low 0.1078 0.1139 0.4587 0.1786 0.8976 0.9792 0.9800

ResNet50 [5] High 0.0699 0.0586 0.3610 0.1003 0.9523 0.9928 0.9859
Low 0.1014 0.0856 0.4189 0.1251 0.9257 0.9755 0.9945

DenseNet [6] High 0.0782 0.0545 0.3678 0.1165 0.9501 0.9893 0.9908
Low 0.0935 0.0472 0.3548 0.1547 0.9138 0.9668 0.9829

HardNet [4] High 0.0630 0.0471 0.3355 0.0873 0.9562 0.9918 0.9938
Low 0.0769 0.0244 0.3648 0.1174 0.9415 0.9831 0.9902

Proposed High 0.0597 0.0213 0.3146 0.0894 0.9601 0.9921 0.9981
Low 0.0658 0.0245 0.3067 0.0959 0.9608 0.9940 0.9985

PanoSunCG

ResNet34 [5] High 0.1006 0.0653 0.3989 0.1595 0.9466 0.9783 0.9849
Low 0.1353 0.1471 0.4823 0.2379 0.9183 0.9947 0.9926

ResNet50 [5] High 0.0832 0.0474 0.3259 0.1339 0.9524 0.9864 0.9936
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Low 0.0949 0.0987 0.4283 0.1958 0.9245 0.9909 0.9895

HardNet [4] High 0.0715 0.0398 0.3303 0.1178 0.9615 0.9910 0.9978
Low 0.0726 0.0557 0.3985 0.1305 0.9693 0.9897 0.9877

Proposed High 0.0667 0.0347 0.3265 0.1013 0.9691 0.9945 0.9990
Low 0.0682 0.0356 0.3378 0.1048 0.9688 0.9951 0.9992

Table 2. Comparison between the proposed CNN-based backbone
with four pre-trained models as backbone in terms of computation
cost and accuracy (on Stanford3D dataset). The bold and under-
lined numbers indicate the best results for low and high resolution
input images, respectively.

Backbones Input Computation Cost Accuracy
Parameters δ δ2 δ3

ResNet34 [5] High 103.55M 0.9398 0.9817 0.9906
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HardNet [4] High 100.37M 0.9578 0.9947 0.9972
Low 82.24M 0.9234 0.9947 0.9992

Proposed High 98.89M 0.9693 0.9959 0.9987
Low 79.67M 0.9711 0.9965 0.9989
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Figure 2. Qualitative comparisons for our HiMODE based on our proposed CNN-based backbone and four pre-trained models of ResNet34
[5], ResNet50 [5], DenseNet [6], and HardNet [4] on Stanford3D dataset. As demonstrated by rectangles, our HiMODE can accurately
recover the details of the surface especially sharp edges even for the deep regions and small objects.
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Figure 3. Qualitative comparisons for our HiMODE based on our proposed CNN-based backbone and four pre-trained models of ResNet34
[5], ResNet50 [5], DenseNet [6], and HardNet [4] on Matterport3D dataset. As demonstrated by rectangles, our HiMODE can accurately
recover the details of the surface especially sharp edges even for the deep regions and small objects.
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Figure 4. Qualitative comparisons for our HiMODE based on our proposed CNN-based backbone and four pre-trained models of ResNet34
[5], ResNet50 [5], DenseNet [6], and HardNet [4] on PanoSunCG dataset. As demonstrated by rectangles, our HiMODE can accurately
recover the details of the surface especially sharp edges even for the deep regions and small objects.
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Figure 5. 3D structures estimation on Stanford3D dataset using our HiMODE.
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Figure 6. 3D structures estimation on Matterport3D dataset using our HiMODE.
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Figure 7. 3D structures estimation on PanoSunCG dataset using our HiMODE.
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Figure 8. More qualitative results for omnidirectional depth map estimation based on our HiMODE on Stanford3D dataset.
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Figure 9. More qualitative results for omnidirectional depth map estimation based on our HiMODE on Matterport3D dataset.
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Figure 10. More qualitative results for omnidirectional depth map estimation based on our HiMODE on PanoSunCG dataset.
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Figure 11. More qualitative comparisons between our HiMODE and two recent state-of-the-art approaches, Bifuse [12] and HoHoNet [10]
on Stanford3D dataset. As demonstrated by rectangles, our HiMODE can accurately recover the details of the surface even for the deep
regions with small objects.
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Figure 12. More qualitative comparisons between our HiMODE and two recent state-of-the-art approaches, Bifuse [12] and HoHoNet [10]
on Matterport3D dataset. As demonstrated by rectangles, our HiMODE can accurately recover the details of the surface with sharp edges
even for the deep regions and for small objects.
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Figure 13. More qualitative comparisons between our HiMODE and two recent state-of-the-art approaches, Bifuse [12] and HoHoNet [10]
on PanoSunCG dataset. As demonstrated by rectangles, our HiMODE can accurately recover the details of the surface with sharp edges
even for the deep regions and for small objects.
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Figure 14. More qualitative results for omnidirectional depth map estimation based on our HiMODE along with its combination with two
recent state-of-the-art approaches, Bifuse [12] and HoHoNet [10] on Stanford3D dataset.
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Figure 15. More qualitative results for omnidirectional depth map estimation based on our HiMODE along with its combination with two
recent state-of-the-art approaches, Bifuse [12] and HoHoNet [10] on Matterport3D dataset.
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Figure 16. More qualitative results for omnidirectional depth map estimation based on our HiMODE along with its combination with two
recent state-of-the-art approaches, Bifuse [12] and HoHoNet [10] on PanoSunCG dataset.
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