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Abstract

Multiple Object Tracking (MOT) is an integral part
of machine vision research. Most tracking-by-detection
based MOT solutions utilize video streams from RGB
cameras for their operation. However, for real-world
applications, it is necessary to utilize sensors that oper-
ate in different spectrums to accommodate for varying
lighting conditions. Since object detection is the first
step of the tracking pipeline in tracking-by-detection
approaches, we compare the performance of state-of-
the-art object detectors when trained on color images
to their performance when trained on thermal images.
We introduce a new dataset for multiple object track-
ing with thermal images and corresponding RGB images
and show that state-of-the-art trackers perform better on
thermal images, especially in poor lighting conditions.
Finally, we propose the use of a dynamic cut-off thresh-
old for tracking-by-detection approaches that factors the
size of a predicted box to enhance the tracker associa-
tion. Our dataset and source code are publicly available
at https://github.com/wassimea/thermalMOT

1. Introduction

Multiple object tracking is an important task in ma-
chine vision where the goal is to assign identities to
different objects present in a video sequence, and ef-
fectively maintain the unique identity of objects across
consecutive frames. With several applications including
self-driving cars, human computer interaction, and vir-
tual reality, MOT has been a popular area of research in
the computer vision domain.
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1.1. Multiple Object Tracking

Most state of the art MOT methods [1,5,21,25] uti-
lize the tracking-by-detection paradigm, which is a two-
stage process. In the first stage, a standalone detector is
run on the video sequence to predict the location and
class of objects present in the frames. In the second
stage, a tracker processes these detections to conduct
association: assigning a unique ID to detections of the
same object across consecutive frames. While the per-
formance of an object detector is usually measured by
how accurate it can localize and classify objects in a sin-
gle frame, the performance of a multiple object tracker
also factors how well it can correctly re-identify an ob-
ject across consecutive frames of a video sequence.

While some approaches have been developed that
perform one shot, end-to-end tracking [!3, 23], such
methods were still unable to surpass the performance of
two-stage tracking methods. Zhang et al. [26] performed
an empirical study that concluded that the tasks of ob-
ject detection and object tracking often compete with
each other during training, causing one-shot trackers to
be less accurate than two-stage trackers.

1.2. Perception Systems and Thermal Sensors

Deep learning helped achieve significant break-
throughs in machine vision tasks (advanced percep-
tion modules, intelligent monitoring systems, and au-
tonomous vehicles, to name just a few) [17]. Such sys-
tems rely on the fusion of information from multiple
types of sensors (lidar, radar, RGB cameras, depth sen-
sors, thermal sensors, etc.) to get a better perception of
the environment. This information is processed by an ar-
tificial intelligence module to perform advanced analy-
sis and make critical decisions. Accurate multiple object
detection and tracking is an essential task as it allows the



localization of objects of interest and the prediction of
the trajectory of moving objects.

The use of thermal sensors in machine vision is be-
coming more popular [0, 12] as they offer a powerful
perception of the thermal identities of objects in a scene.
They are also suitable for outdoor applications as ther-
mal sensors operate normally at night and are not signif-
icantly affected by poor weather conditions [20].

1.3. Contribution

In this paper, we study the feasibility of using ther-
mal sensors to conduct accurate multiple object detec-
tion and tracking. The main contributions of our work
are summarized below:

* We introduce a new dataset for multiple object
tracking with images and ground truth annotations
for RGB and corresponding thermal images.

* We compare the performance of two state-of-the-
art object detectors (TOOD [9], VENET [24]) when
trained on thermal images to when they are trained
on RGB images of the Teledyne FLIR Thermal
Dataset for Advanced Driver-Assistance Systems .

* We study the efficacy of applying transfer learning
of weights trained on a RGB dataset when training
an object detector on thermal images.

* We develop a tracking-by-detection MOT method
based on the current state-of-the-art approaches
that operates on thermal images, and enhance the
data association of the tracker by applying a dy-
namic cut off score for detections based on the pre-
dicted box area.

2. Literature Review

In this section, we provide an overview of the existing
methods and approaches that we build upon in our work.

2.1. Object Detection

2.1.1 Task-aligned One-stage Object Detection
(TOOD)

Feng et al. introduced the Task-aligned One-stage Ob-
ject Detection (TOOD) [9] which strengthens the link
between the localization and the classification tasks of
object detection. This is accomplished by introduc-
ing “Task-Alignment”: taking the network’s outputs for
each task and passing them to a network head that mod-
ifies the score and the location predictions to align their
optimal anchors. Their Task alignment learning (TAL)

Thttps://www.flir.ca/oem/adas/adas-dataset-form/

278

also pushes the network to predict better aligned bound-
ing boxes. TOOD achieved an AP of 51.1 on the MS-
COCO dataset.

2.1.2 VarifocalNet (VFNET)

Zhang et al. designed VFNet using Varifocal Loss [24].
This loss is meant to maximize the [oU-aware classifica-
tion score (IACS) that takes into account both the clas-
sification and the location of a prediction. The Varifocal
loss also modifies focal loss by weighing positive ex-
amples more heavily than negative ones. Additionally,
VENet uses a new nine-point deformable convolution
representation for bounding boxes and a network head
to refine the network’s box predictions by learning an
additional offset to their locations.

2.2. Tracking By Detection

The tracking-by-detection paradigm is more suitable
for real-world applications, where different detectors
could be used as a first step in the tracking pipeline,
and the training data does not necessarily need to con-
tain tracking ground truth labels. In addition, the rapid
breakthrough in deep learning has led to the emergence
of faster and more accurate detectors [9, 14, 24]. This
has led to more research in MOT utilizing state-of-the-
art object detection models [3,22].

Since object detectors are not perfect, and there will
always be cases where the detector predicts false pos-
itive boxes or misses true detections (false negatives),
state-of-the-art MOT approaches often eliminate pre-
dicted boxes with a low confidence by setting a cut-
off threshold for detector confidence. However, this in-
evitably leads to some true detections being ignored, es-
pecially in cases where there is occlusion.

Of the systems utilizing the tracking-by-detection
paradigm, ByteTrack [25] has achieved state-of-the-art
performance on the test data of the benchmark MOT17
dataset [16] with an MOTA of 80.3%. ByteTrack uti-
lizes YOLOX [10] to generate detections. Instead of ig-
noring detection boxes with low confidence, ByteTrack
separates the predicted boxes into a set of high-score de-
tection boxes, and a set of low-score detection boxes.
The algorithm first predicts the locations of the tracklets
in the next frame using a Kalman filter, then matches the
tracklets with the high-score detection boxes by comput-
ing the IOU between the high-score detection boxes and
the predicted tracklet location. Tracklets that remain un-
matched through this first association are then matched
with the low-score detection boxes through a second as-
sociation step. At the end of this two-step association
process, tracklets that remain unmatched are deemed to
be lost, new tracklets are created from the unmatched
high-score detection boxes, and the remaining low-score



(d) Morning sample Thermal image.

(e) Afternoon sample Thermal image.

(c) Night sample RGB image.

il

(f) Night sample Thermal image.

Figure 1. Samples from the three testing sequences of our dataset taken during different times of the day.

detection boxes are ignored.

3. Proposed Approach and Experiments

In this section, we elaborate on the experiments we
have conducted in the color and thermal domain on ob-
ject detection, multiple object tracking, and our pro-
posed dynamic confidence thresholding for MOT.

3.1. Datasets
3.1.1 City Scene RGB-Thermal MOT Dataset

For the purpose of comparing tracking methods on visi-
ble and infrared images, we collected and manually an-
notated a dataset using a FLIR infrared camera and a
visible-light camera, both at a framerate of 10Hz. One
in every 2 frames was annotated, resulting in an effective
framerate of SHz for the dataset. During data collection,
the cameras were static and aimed at a city intersection.
Cars and pedestrians were annotated up to a distance of
300m and 100m respectively.

The dataset is composed of 15 sequences collected
over the course of a day, for a total of 1,997 annotated
frames. These sequences are divided into a training set
of 12 sequences (1,591 frames) and a testing set of 3
sequences (406 frames). Samples from the three testing
sequences are given in Figure 1.

The annotated frames contains 267 unique car in-
stances, 25,985 car bounding boxes, 145 unique pedes-
trian instances, and 7,822 pedestrian bounding boxes.

3.1.2 FLIR ADAS dataset

In our experiments, we study the performance of state-
of-the-art object detectors when trained on color images
compared to when trained on thermal images. To that
end, we use the FLIR Thermal Dataset for Advanced
Driver-Assistance Systems, which is one of the largest
and most comprehensive thermal datasets that also pro-
vides color images corresponding to the thermal images.
It is composed of city scenes captured using a thermal
sensor and an RGB camera installed on top of a car. It
is manually annotated for 15 classes (person, car, bike,
etc.). There is a total of 11,886 training images and
3,749 testing images.

3.2. Object Detection Experiments

The object detector is an integral part of tracking-by-
detection approaches. The performance of the tracker
is significantly influenced by the performance of the ob-
ject detector. In our experiments on object detection, we
address the following two matters:

* We study the efficacy of applying transfer learn-
ing of weights trained on the Imagenet dataset [7]
(color images) to train an object detector on ther-
mal images.

* We compare the performance of object detectors
when trained on thermal images against when they
are trained on color images. As both the FLIR
ADAS dataset and our City Scene RGB-Thermal



MOT dataset contain images taken at night, this
experiment is important to examine the efficacy of
thermal images under poor lighting conditions.

Table 1 shows a summary of the object detection ex-
periments conducted. We use the MMDetection tool-
box [4] for all object detection training experiments we
perform.

We use Resnet50 [11] as the backbone of the detec-
tors in all experiments. The models are trained for 6
epochs with a batch size of 8, with an initial learning
rate of 0.01. We use focal loss [15] for box classifica-
tion. We apply data augmentation (resizing and flipping)
to enrich the dataset.

3.3. MOT Experiments

For our experiments on MOT, we use the state-of-the-
art ByteTrack [25] approach. ByteTrack’s simple design
that conducts data association based on motion similar-
ity make it ideal for our experiments, as the tracker does
not require any domain-specific training. We fine tune
the trained object detectors on the tracking dataset we
collected as follows:

¢ Fine tune TOOD and VFNET on the thermal im-
ages of our City Scene RGB-Thermal MOT dataset
with weights initialized from the trained detectors
on the ADAS Thermal dataset.

* Fine tune TOOD and VFNET on the RGB images
of our City Scene RGB-Thermal MOT dataset with
weights initialized from the trained detectors on the
ADAS RGB dataset.

3.4. Dynamic Confidence Cut-Off (DCC)

In the original implementation of ByteTrack, the au-
thors set a minimum detection threshold 7,,,;,, (0.1) and
a threshold for high score detection boxes Tjign (0.5).
Bounding boxes that have a confidence below 7,,;,, are
ignored, boxes that have a confidence between 7,,;,, and
Thign are treated as low score detection boxes, and boxes
that have a confidence higher than 74, are treated as
high score detection boxes as explained in Section 2.2.

A drawback of this implementation is that it treats
all objects of all sizes in the same manner strictly based
on which range the confidence value falls in. This in-
evitably leads to false and missed detections as it does
not take into account several factors like very small de-
tections that are far from the camera, significant overlap
and occlusion, especially as the size of the objects gets
smaller as they move away from the camera (as is the
case in some sequences in our City Scene RGB-Thermal
MOT dataset, where the size of a tracked car for example
becomes smaller as it moves further from the camera).
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To address this issue, we propose the use of a dy-
namic confidence cut-off score for 744, in the imple-
mentation of ByteTrack inspired by the work conducted
by Stalder et al. [19]. Our results show that the dy-
namic confidence cut-off significantly improves the per-
formance of the trackers, especially for objects with a
smaller area. We elaborate more on the findings in Sec-
tion 4.2.

4. Results

In this section, we elaborate and analyze the results
we achieved on object detection and MOT.

4.1. Precision Recall of Object Detectors

To study the performance of TOOD and VFNET on
the thermal and RGB variants of the ADAS dataset, we
plot the precision-recall curves of all the models from
Table 1. The results are given in Figure 2 for TOOD and
Figure 3 for VFNET.

From the analysis of the precision-recall curve of
TOOD, we see that the detectors trained on thermal im-
ages perform significantly better than the ones trained
on RGB images. This could be attributed to the fact
that the ADAS dataset contains data captured at night,
where the RGB images would contain little to no fea-
tures of the objects of interest present in the frames. This
explains why the maximum recall achieved by the de-
tectors trained on RGB images is 79%, while the max-
imum recall achieved by the detectors trained on ther-
mal images is 97%. This shows the superiority of de-
tectors trained on thermal images, especially under poor
lighting conditions. The ADAS dataset does not split the
frames captured during the day from those captured dur-
ing the night, so we were unable to conduct experiments
to show the performance of the detectors exclusively on
the frames taken at night. However, in the dataset that
we collected, we split the sequences taken during the
day from those taken at night, allowing us to compare
the performance of the trackers in both settings.

The results also show that using transfer learning
when training the detectors improves the overall perfor-
mance of the detector. However, the results show that
the effect of transfer learning was more significant on
the detectors trained on the RGB images of the ADAS
dataset. This could be explained by the fact that pre-
trained weights are also a result of training RGB images
(the Imagenet dataset [7]). While transfer learning did
improve the overall performance of the detector trained
on thermal images, the improvement was not as signif-
icant. This shows that transfer learning is most effec-
tive when the initial weights and the dataset on which
the detector is being trained on both belong to the same
spectrum.



Experiment # | Weight Initializatoin Trained / Tested on Object Detector
1 Imagenet ADAS Thermal Train/Test Sets TOOD
2 Random ADAS Thermal Train/Test Sets TOOD
3 Imagenet ADAS RGB Train/Test Sets TOOD
4 Random ADAS RGB Train/Test Sets TOOD
5 Imagenet ADAS Thermal Train/Test Sets VENET
6 Random ADAS Thermal Train/Test Sets VENET
7 Imagenet ADAS RGB Train/Test Sets VENET
8 Random ADAS RGB Train/Test Sets VENET

Table 1. Object detection experiments conducted
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Figure 2. TOOD Precision-Recall curve. A detection is con-
sidered a true positive if it has at least a 0.5 IOU with a ground
truth box.

The analysis of the precision-recall curve of VFNET
confirms the above findings. The maximum recall
achieved from the detectors trained on RGB images is
78%, while the maximum recall achieved by the detec-
tors trained on thermal images is 96%. Applying trans-
fer learning also improved the performance of detectors
both in the color and thermal domains, but we notice that
the improvement in the color domain is more significant.

4.2. MOT Metrics

To study the effectiveness of the trained detectors in
the task of MOT, we calculate the standard MOT met-
rics [2, 18] of ByteTrack with DCC when using each
trained detector on our City Scene RGB-Thermal MOT
dataset. We retrain the detectors on our City Scene
RGB-Thermal MOT dataset with the weights initialized
from the weights of the detectors trained on the ADAS
dataset. We study the performance of the tracker across
three testing sequences, taken in the morning, afternoon,
and at night to study the performance of the tracker un-
der different lighting conditions. The results are given
in Table 2.

The results on the sequence taken in the morning
show that the trackers operating on RGB images are
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Figure 3. VENET Precision-Recall curve. A detection is con-
sidered a true positive if it has at least a 0.5 IOU with a ground
truth box.

more effective than trackers operating on thermal im-
ages. This could be explained through analysis of the
sunlight distribution in that sequence. From Figure 1, we
notice that the field of view of the thermal camera covers
an area that is partially in the shade. Since the dataset
was collected in a hot day in the month of July, there
is a considerable difference in temperature between the
areas in the shade and the areas in direct sunlight. This
could be noticed by comparing the appearance of the car
present in the shade to the appearance of the car present
in the sunlight. This difference makes it more difficult
for the detector to operate on thermal images of this se-
quence.

In the second sequence taken in the afternoon, we
can see from Figure 1 that the entire field of view of the
thermal camera is almost entirely in the shade, so there
is no significant variation in temperature values across
different parts of the field of view. This results in the
tracker performing better on thermal images, even hav-
ing a higher MOTA than the tracker running on RGB
images.

In the sequence taken at night, we notice that the
trackers operating on thermal images perform signifi-
cantly better than the trackers operating on RGB images



(34% higher MOTA when using TOOD, 48% higher
MOTA when using VENET). This is further proof that
the detectors perform better on thermal images when
there is not a significant variation in temperature across
different parts of the field of view. In addition, the track-
ers operating on RGB images are expected to struggle in
detecting objects at night as they are not clearly visible.

To study the effect of using a dynamic cut-off confi-
dence, we compare the performance of the trackers with
DCC against the performance of the trackers when us-
ing a fixed confidence for high-score detection boxes as
in the original implementation of ByteTrack does. The
results are given in Table 3. It can be seen that applying a
DCC noticeably improves the MOTA of the trackers, es-
pecially since there are lots of objects with a small area
in the dataset (far from the camera).

4.3. Speed

We benchmark the speed of the proposed trackers in
two environments:

* A powerful machine with an NVIDIA RTX 3090
GPU, and an Intel Core i9 - 10900X 3.70 GHz Pro-
cessor. (Referred to as AWP).

* A lower power edge device, NVIDIA Jetson
Xavier, with a 512-core Volta GPU, and a 8-
core ARM v8.2 64-bit Processor. (Referred to as
Xavier).

The results are given in Table 4. Since the tracking pro-
cess is independent from the detection process, and the
tracking association runs on CPU while the detector in-
ference runs on the GPU, the latency of the tracking pro-
cess is constant.

4.4. Failure Cases

As elaborated in Section 4.2, the thermal trackers per-
form poorly under conditions where there are different
intensities of sunlight in the thermal sensor’s field of
view. We also discuss the limitations of the RGB track-
ers at night. In addition, we notice that there is a notice-
able number of incorrect annotations in the FLIR ADAS
dataset, on which we heavily rely for the training of our
detectors. There are several instances where pedestri-
ans present in an image are not annotated. This would
cause a problem during training when a large number
of objects predicted as pedestrians by the model do not
have corresponding ground truth annotations, causing
the model to train on considering them negatives when
they are actually true positives. Similarly, when evalu-
ating the model, several false positives are actually true
positives, which would negatively affect the precision
and recall values. We randomly sample 100 testing im-
ages from the ADAS Thermal dataset, and found that 6
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of them have annotation faults (2 of which are shown in
Figure 4. This should also be taken into consideration
when analyzing the precision-recall curves of the mod-
els.

5. Conclusion and Future Work

In this paper, we have conducted in-depth empirical
studies to analyze the feasibility of using thermal sensors
for multiple object detection and tracking. We train two
state-of-the-art object detectors on the RGB and ther-
mal variations of the FLIR ADAS dataset, and study the
efficacy of transfer learning when applied to training a
detector on a dataset from a different spectrum than the
initial weights.

We show the superiority of detectors trained on ther-
mal images compared to those trained on RGB images,
especially under poor lighting conditions. We also show
that transfer learning is more effective when used to train
a detector on a dataset from the same spectrum as the
initial weights. We introduce the use of a dynamic con-
fidence cut-off, which factors the size of a predicted box,
as an enhancement to the motion similarity association
of tracking-by-detection based MOT, and show that it
improves the accuracy of the tracker.

We have highlighted the limitations of trackers op-
erating on RGB images under poor lighting conditions,
and the limitations of trackers operating on thermal im-
ages when the thermal sensor field of view is covering
areas of significantly different sunlight intensities.

Our experiments and analysis clearly highlight the
importance of sensor fusion, especially in critical sys-
tems like ADAS. Each type of sensor is optimal under
certain conditions and has limitations under other condi-
tions. Being able to combine data sources from different
spectrums significantly enhances the perception ability
of an autonomous system.

In the future, our work can be expanded by examin-
ing further enhancements to the data association of the
tracker that utilize the thermal information of an object.
In addition, developing a tracker that utilizes informa-
tion from both the visible and non-visible spectrum to
enhance the tracking accuracy can be investigated.
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