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Abstract

Lidar based simultaneous localization and mapping
methods can be adapted for deployment on small au-
tonomous vehicles operating in unmapped indoor environ-
ments. For this purpose, we propose a method which com-
bines inertial data, low-drift lidar odometry, planar prim-
itives, and loop closing in a graph-based structure. The
accuracy of our method is experimentally evaluated, us-
ing a high-resolution lidar, and compared to the state-of-
the-art methods LIO-SAM and Cartographer. We specifi-
cally address the lateral positioning accuracy when passing
through narrow openings, where high accuracy is a pre-
requisite for safe operation of autonomous vehicles. The
test cases include doorways, slightly wider reference pas-
sages, and a larger corridor environment. We observe a
reduced lateral accuracy for all three methods when pass-
ing through the narrow openings compared to operation in
larger spaces. Compared to state-of-the-art, our method
shows better results in the narrow passages, and compara-
ble results in the other environments with reasonably low
usage of CPU and memory resources.

1. Introduction

Autonomous navigation in indoor environments such as
offices, warehouses, and industrial buildings is a challeng-
ing task. The problem is especially difficult when deal-
ing with autonomous unmanned aerial or ground vehicles
(UAVs and UGVs) in combination with narrow passages
such as doorways and openings between large or small ob-
jects. This requires precision navigation which in turn re-
quires accurate positioning relative to the environment. In
this study we propose and evaluate a lidar SLAM (Simul-
taneous Localization And Mapping) method for application
in such scenarios, where a known map is inexistent or an ex-
isting map or blueprint is too time consuming to adapt for
the purpose of the navigation. Our method is based on data
from inertial sensors and a high-resolution rotating time-of-
flight (ToF) lidar.
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Autonomous operation of UAVs or UGVs can be divided
into the main tasks: path planning, navigation, and con-
trol [3]. Path planning considers the high-level task of defin-
ing waypoints to visit in the simultaneously created map.
Autonomous path planning is a vast research area that is
not within the scope of our present study. Navigation and
control involve subtasks such as 3D path following, hover
control, attitude control [28], obstacle avoidance, and au-
tonomous takeoff and landing [21]. Within these subtasks,
we specifically address the problem of precise vehicle po-
sitioning in the map, to enable safe navigation through nar-
row passages without hitting or bumping into any physical
objects previously detected and located in the map build-
ing process. Safe passage through narrow openings can
be obtained with accurate control algorithms, but these al-
gorithms also require accurate positioning. Especially for
UAVs, high accuracy is needed both in terms of absolute
and relative positioning which are needed as feedback pa-
rameters into the attitude (roll, pitch, yaw) control [28]. The
UAV ego positioning should also have a reasonably high
update rate and low latency. Before addressing lidar posi-
tioning accuracy we will briefly discuss strategies for pass-
ing through narrow openings. We exemplify with a passage
through a doorway from one room or a corridor into another
room. This is the scenario evaluated experimentally in Sec-
tion 4.1. Ideally, the path planner gives waypoints located
on each side of the doorway such that the UAV, when fol-
lowing a straight line between these waypoints, has equal
clearance on both sides. If the path planner waypoints are
less accurate, an obstacle avoidance algorithm is needed to
give intermediate waypoints [18] which results in sufficient
clearance to both doorposts. Regardless of which algorithm
generated the path or waypoints, an important challenge is
the fact that a ToF lidar usually has a minimum range which
makes the sensor blind to close objects, in our example the
doorposts. Thus, during the time interval from an obstacle
is last seen to the actual passage of the obstacle, the relative
position accuracy is highly important. Another strategy for
passing near obstacles is to pass with relatively high speed
and thus reducing the time interval when the obstacles are
unseen by the onboard sensors, which also requires highly
accurate position (relative to obstacles) and speed feedback
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to the controller. This was demonstrated in impressive ag-
gressive UAV indoor flights using an external positioning
system [28] and also using only onboard sensors (down-
ward facing camera and IMU - inertial measurement unit)
and computing [27] in indoor environments with known ob-
stacles.

Our proposed SLAM method is a realtime, graph-based
SLAM using plane and edge features from lidar data. It uti-
lizes an IMU and plane features directly in the graph opti-
mization. A precision lidar odometry step, using plane and
edge features, is used to minimize drift over shorter time
periods and loop closing over longer time periods.

In summary, this paper has the following key contribu-
tions: (1) A lidar SLAM method for accurate indoor local-
ization is presented. The method is designed to run in real-
time onboard a UAV or UGV with relatively low computing
power. (2) Experimental data is collected specifically for
evaluating the accuracy when passing through narrow open-
ings. Data is collected with the sensor on a roller table to
achieve reliable ground truth (GT) data in the lateral dimen-
sion. (3) With the experimental data, our SLAM method is
evaluated and compared to the methods Cartographer [17]
and LIO-SAM [34].

2. Related work
UAV and UGV positioning systems are usually equipped

with an IMU and additional sensors for localization relative
to external global or local references. Data from the IMU
and additional sensors are fused e.g. with Extended Kalman
Filters (EKF) or other algorithms such as factor graphs to
obtain pose (position and orientation) estimates.

Indoor positioning implicitly requires other reference
systems than Global Navigation Satellite Systems (GNSS).
In addition to lidar, there exist several possible sensor
types, which combined with algorithms, achieve such ref-
erence systems. Commonly used sensors are stereo cam-
eras [1, 6, 9, 26, 30] or monocular cameras [1, 6, 11] com-
bined with extraction of references, called features or land-
marks, from the images. A downward facing camera can
be used to estimate the vehicle speed from optical flow data
extracted from the images [1, 2]. Apart from difficulties in
low-textured scenes, a drawback with passive camera sen-
sors are that they rely on ambient light and therefore are sen-
sitive to lighting conditions and shadows, including shad-
owing by the own vehicle. Adaptation to low-light condi-
tions can be made using onboard headlights, which however
give limited imaging range [1]. Sonars or ultrasonic sensors
can be used for localization [4,35] and as proximity sensors
for obstacle detection [16]. Ultra-wideband (UWB) posi-
tioning was demonstrated based on the principle of range
measurement from one onboard tag to eight external an-
chors [36].

Concerning lidar based SLAM methods, a large body of

work exists and many efficient lidar SLAM algorithms have
been proposed in recent years. Scan-to-scan, and scan-to-
map matching methods have been popular. In [17] the back-
ground for an algorithm using scan-to-map matching with
realtime loop closure was presented. The papers by Zhang
and Sing [37,38] regarding real time lidar odometry are still
relevant and provided impressive results. Further improve-
ments and optimization of lidar odometry have been pro-
posed in [33]. By including the IMU in the optimization via
a factor graph framework, Shan et al. [34] further built on
lidar odometry SLAM. Lidar SLAM using surfels has been
proposed in e.g. [5] and in [8] the algorithm was further de-
veloped using semantic information. Our SLAM algorithm
adapts two specific methods from [37], namely the feature
extraction and the mapping algorithms. A novelty in our
proposed solution compared to the mapping algorithm [37]
is that we introduce feature age as a weight factor, obtaining
a low-drift algorithm we call precision lidar odometry.

In contrast to the lidar odometry algorithms previously
mentioned, our proposed SLAM-algorithm utilizes a plane
representation directly in the graph optimization. In or-
der to utilize planes directly in the estimation formulation
a good parametrization of the planes is required. A spheri-
cal parametrization can be used as in [25], where a method
for indoor mapping with a RGB-D sensor was presented.
Another minimal representation called closest point is sug-
gested in [15], where infinite plane primitives were used and
evaluated using simulated 3D-lidar data. In [22] a plane rep-
resentation suitable for least squares optimization was pre-
sented and evaluated with a RGB-D camera. This represen-
tation was further used by Hsiao et al. [20] [19], creating a
keyframe based dense SLAM with a RGB-D camera. While
full 3-DOF lidar planes have been used in graph SLAM in
previous works, our algorithm applies the concept to real-
world data with a 3D-lidar. By combining the features
and lidar odometry from [37], the loop closing algorithm
from [34], and planar feature representation from [22], we
have created a novel full 3D-SLAM algorithm combining
an IMU, precision lidar odometry, loop closing, and full 3-
DOF planar primitives in a graph-based structure. This is to
our knowledge a SLAM method that has not been presented
in any prior works.

Several previous lidar SLAM studies have evaluated and
compared the accuracy between different methods includ-
ing recent both outdoor [13, 29] and indoor [39] applica-
tions. To our knowledge, no previous study has addressed
or quantified the specific accuracy performance or degra-
dation when passing through narrow openings and we thus
consider our study a relevant contribution also in this aspect.
For the accuracy evaluation through narrow passages we
employ an error metric proposed by Kümmerle [24], where
the error is calculated as the average of all relative relations
at a fixed distance along the trajectory. The metric was fur-
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ther employed by Geiger [14] and Hess [17]. This method
of quantifying errors has the advantage of consistently esti-
mating error values regardless where the error occurred or
in which order the data is processed.

3. Methods
3.1. Hardware overview

The system on which the proposed SLAM method is val-
idated consists of an Ouster OS1-16 lidar. The OS1-16 lidar
outputs a 360° point cloud consisting of 16x1024 points at
10 Hz. The 6-axis 100 Hz IMU included in the OS1-16 lidar
is also incorporated in the SLAM-algorithm. By mounting
the lidar at a 9° angle as shown in Figure 1 we make sure
that the resulting point cloud contains information in all de-
grees of freedom, including points from horizontal planes
such as the floor. Since our SLAM-method is to be exe-
cuted in realtime on a small UGV or UAV, it is crucial that
the onboard computer is both lightweight and power effi-
cient. For this application we use the Raspberry Pi 4 8G,
due to its ease of use, low cost and relatively high perfor-
mance to weight and power ratios.

Figure 1. Schematic sketch of the system hardware.

3.2. Software overview

Our algorithm consists of 4 main stages as can be seen
in the flowchart in Figure 2. The stages are: a) Feature
extraction and association, which we denote frontend, b)
Data fusion of IMU and infinite plane features, which we
denote backend, c) Precision lidar odometry, and d) Loop
closing. These stages will be explained in Sections 3.2.1 to
3.2.5.

3.2.1 Feature extraction

Due to the constraints of running in realtime on a small plat-
form and the relatively large amount of data that is gen-
erated by the lidar, it is crucial to abstract the lidar data
to a more manageable form at an early stage in the pro-
cessing. For this purpose we use features extracted from
the lidar data instead of the whole point cloud. The fea-
tures are extracted and selected with the same method as in
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Figure 2. Flowchart of the system software. P is a point cloud
scan, M is IMU data, T i

j is the transform from i to j, Fmap is
the feature map and Fscan is the features extracted from the most
recent scan.

LOAM [37], and consists of edges and planes. For the ex-
tracted plane features, lidar points are fitted to planes and
the feature with the lowest point-to-plane RMSE distance is
selected. For edges a similar selection is made except that
the lowest point-to-line RMSE distance is used.

3.2.2 Feature association

The feature association in our algorithm is kept simple in
order to minimize the computational complexity. For each
new feature in a lidar-frame a Nearest Neighbor (NN)-
search to the current map created in the backend step Sec-
tion 3.2.3 is done. We have complemented each plane in the
map with a center point and use this in the nearest neighbor
search. The NN-search is done through kd-trees and in ad-
dition to the Cartesian distance between center points, the
normal direction of the planes is used.

3.2.3 ISAM backend

The backend is built using the sensor fusion library Geor-
gia Tech Smoothing And Mapping (GTSAM) [10]. To be
able to work on data in realtime, the methods for Itera-
tive Smoothing And Mapping (ISAM) [23] available in the
GTSAM-library are used. By using IMU preintegration as
presented in [12] and [7], along with a minimal represen-
tation of our plane features as presented in [22] we can
achieve fast (10Hz) and accurate positioning over a short
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time span. The extra computational complexity that arise
from having infinite planes in the factor graph is a chal-
lenge. As the map of features in the graph grows larger,
it becomes impossible to fulfill the imposed time and com-
putation constraints. The factor graph is therefore pruned
when it grows to large, keeping only the most recent fea-
tures as part of the ISAM optimization. This will of course
lead to a growing error over longer time spans, since we
cannot connect our most current measurements with older
parts of the map. We solve this problem by having the pre-
cision lidar odometry handle drift over longer time spans.
The precision stage of the algorithm operates at a slower
pace than the rest of the algorithm and feeds odometry mea-
surements to the ISAM backend at a rate of 2.5 Hz. The pre-
cision stage therefore functions as a short term loop closing
algorithm, and is further described in Section 3.2.4. The
final step is to include real, long-term loop closing. The
factor graph framework is excellent for doing this and our
algorithm is further described in Section 3.2.5. In total, we
use four different factors in the graph: IMU Preintegration
factor, Infinite plane factors (called Oriented3DPlane in GT-
SAM), precision lidar odometry, and a loop closing factor.
An overview can be seen in Figure 3.

x1 x2 x3 x4 . . . xn

f1

I I I

A A

R
L

Figure 3. Example of the graph-structure. xi are pose values, fi
are feature values, I are Preintegrated IMU factors, A are Ori-
ented3DPlane factors, R are precision odometry between factors
and L are loop closing between factors.

3.2.4 Precision lidar odometry

The precision step is used to reduce drift in the x-,y-,z-
directions, and around the yaw axis. Features from the four
latest scans are registered using the odometry estimate from
the ISAM backend and merged together. These are then as-
sociated, using NN-search, to a feature map consisting of
previously merged features. The corresponding poses are
then optimized using a rigid transform with the matches be-
tween merged features and the previous map and the result
is fed back into the ISAM backend. The method is similar
to the mapping algorithm in LOAM [37] with the difference
that we have added a further improvement by including fea-
ture age as a weight factor to the map features. The pre-
cision lidar odometry improves the accuracy in two ways.

First, it reduces the pose error caused by errors in individ-
ual lidar range measurements by combining multiple scans,
in this case four. Second, it reduces accumulation of er-
rors over time by applying higher weight to older features
on the map. The weight assigned to a map feature is a lin-
ear weight to its age, and the maximum weight is set to a
fixed value of 10, i.e. all features older than 10 s have equal
age-weights.

3.2.5 Loop closing

Whilst the precision lidar odometry handles drift over
longer time spans, it will still build up error over time.
When creating larger maps we have found it crucial to cor-
rect long-term drift by searching for possible loop closing
opportunities. This part of the SLAM method works in its
own thread at a variable speed that is typically at slower
rate than the precision lidar odometry. The algorithm first
lists all scans that are both closer and older than respective
thresholds. After a suitable previous pose has been found
we use Generalized Iterative Closest Point (ICP) [32] to do
individual scan to scan matching. If a match between the
current scan and a previous scan is found, i.e. the resulting
error from the ICP-algorithm is below a certain threshold
we feed the calculated transform back to the GTSAM back-
end to handle the correct map updates. In this part, we work
on a subsampled version of the point cloud frame, not the
extracted features.

4. Evaluation and results
The accuracy of our SLAM method is evaluated with

data from two main experimental test cases. The data
from both test cases are also evaluated and compared to
the two representative state-of-the-art SLAM methods Car-
tographer [17] and LIO-SAM [34]. Additionally, the CPU
load and memory usage are evaluated for the three SLAM
solutions. The purpose of the first experimental case is to
evaluate the lateral positioning error during passage through
narrow openings. The purpose of the second test case is to
evaluate the translation and rotation errors over sequences
with common start and stop poses.

In order to evaluate LIO-SAM and Cartographer on the
same hardware and under the same conditions, some mod-
ifications were made. Since LIO-SAM in its native form
does not work with a 6-axis IMU, an estimate of orienta-
tion must be calculated in advance if the Ouster IMU is
used. We implemented a simple algorithm for estimating
roll and pitch based on gyro and accelerometer data as de-
scribed in [31]. For the heading, we fed back the estimate
that LIO-SAM outputs from the last timestep. Cartogra-
pher in its original form does not output a velocity estimate,
however it uses an internal velocity estimate based on the
derivative of the calculated poses. We altered the Cartogra-
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pher code to output this velocity, however it will naturally
be more noisy than the velocity estimates from the other
algorithms, which should be kept in mind in evaluation of
lateral speed accuracy in Section 4.1.

4.1. Accuracy in narrow passages

The evaluation of passage through narrow openings is
performed with data from an office environment. Data were
collected with the lidar mounted on a roller table along tra-
jectories with start and stop positions as indicated in the
schematic in Figure 4. This figure also shows photographs
of the environment. The purpose of using the roller ta-
ble was to minimize the movement of the lidar in the lat-
eral (sideway) direction. The trajectories were divided into
four parts: A,B,T and R, where A and B represent pas-
sages through doorways along a straight line. Passage A is
slightly narrower than passage B. Passage T represents a
passage through a doorway immediately after a 90-degree
turn. Passage R is used as a reference in the less narrow
corridor for comparison to the results from the narrow pas-
sages A, B, and T. To examine the influence from the pres-
ence of additional objects in a cluttered scene, chairs where
placed in the corridor environment and plastic bags were in-
troduced in the scene in Room 2 as shown in the right part
of Figure 4. These passages are labeled Ac,Bc,Tc, and Rc.

Examples of trajectories from the SLAM methods in
the reference passage Rc and the cluttered passage Bc are
shown in Figure 5. The data from all three methods were
analyzed at an output rate of 100 Hz. The start and stop po-
sitions of each passage were defined by manually marking,
respectively, a position 0.5 m in front of the doorway and
a position 1 m after passing the doorway. The correspond-
ing sample times t1 (start) and t2 (stop) were then used for
the evaluation of each passage. The forward movement di-
rection was estimated by drawing a straight line between
the centroid positions of the start and stop points, where the
centroids were calculated from trajectory points 50 samples
(0.5 s) before and after t1 and t2. In Figure 5, the movement
along the straight line is represented by the y-axis value (lat-
eral position) 0 cm. Thus, the y-axis values show the off-
set positions perpendicular to the direction of movement of
the roller table. Figure 5 also shows estimated quantities of
lateral errors, denoted absolute and maximum errors. The
absolute error is calculated as the average of all relative re-
lations at a fixed distance along the passage as proposed by
Kümmerle [24]. This error quantity was also used by e.g. by
Hess [17], both as absolute and squared values. In our study
we only report the absolute error values. The error quantity
consistently estimates the error values regardless where the
error occurred along a passage. In our case, this error met-
ric also is invariant to possible inaccuracies in the estimated
start and stop centroid positions. As a complement and pos-
sibly more intuitive error quantity, we also calculate the ab-

Figure 4. Schematic illustrations and photographs of the environ-
ment for evaluation of accuracy in narrow passages.

solute maximum lateral offset position from the straight line
from the start and stop centroid positions (denoted Max. err.
in Figure 5). An observation of the data in Figure 5 is that
Cartographer and LIO-SAM processed data have larger lat-
eral errors in the narrow passage Bc than in the reference
passage Rc. Figure 6 shows examples of the lateral speed
and a lateral speed error metric for the same raw data as
shown in Figure 5. The lateral speed is calculated as the
speed perpendicular to the straight line between the start
and stop centroid positions. The RMSE lateral speed is cal-
culated with the assumption of a true lateral speed equal to
0 cm/s.

The evaluation results through narrow passages with for-
ward speed 0.2 m/s are presented in Table 1 and summa-
rized in Table 2 for forward speed 0.5 m/s. The values pre-
sented for speed 0.2 m/s are the average and standard devi-
ation from three experimental walks through each passage.
Both tables show the values for all cluttered (9 walks), un-
cluttered (9 walks), and reference passages (6 walks). On
each row and for each error metric, the smallest values are
indicated in bold face.
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Table 1. Quantitative lateral errors over narrow passages at average forward speed 0.2 m/s.

Table 2. Quantitative lateral errors over narrow passages at average forward speed 0.5 m/s.
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Figure 5. The trajectories in forward and lateral directions pro-
duced by Cartographer, LIO-SAM, and our SLAM solution at a
forward speed of about 0.2 m/s over passages Rc and Bc.
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Figure 6. The lateral speed produced by Cartographer, LIO-SAM,
and our SLAM solution at a forward speed of about 0.2 m/s over
passages Rc and Bc.
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For all three SLAM solutions and both forward speeds,
the lateral position and speed errors are significantly larger
during narrow passages compared to the reference passages
in the corridor. It is noted that the lateral position and speed
errors in the reference passages R, Rc do not significantly
change between low and high forward speeds.

At forward speed 0.2 m/s, neither of the solutions show
any significant difference in lateral accuracy for the clut-
tered compared to the uncluttered scene. However, at 0.5
m/s all three methods have much larger lateral errors in the
cluttered passages, both in speed and either in absolute error
(Cartographer, LIO-SAM) or in maximum error (ours).

Table 1 indicates that Cartographer and LIO-SAM ex-
hibit the largest lateral errors in the narrowest passage A
(both uncluttered and cluttered). Passage T, immediately
after a 90-degree turn, gives similar errors for our SLAM
method compared to a straight passage B. Cartographer and
LIO-SAM produces significantly smaller errors after a turn
T compared to a straight passage B. A possible explana-
tion for the similar or better accuracy after a turn might be
the fact that more parts of Room 2 (Figure 4) are exposed
to the lidar sensor during the turn and thus more features in
Room 2 can be detected before actually entering Room 2.

An overall comparison of all three SLAM methods at
both forward speeds gives that LIO-SAM has the smallest
lateral errors in the corridor reference passages and that our
method has the smallest lateral errors in the narrow pas-
sages.

4.2. Absolute pose accuracy

As a complement to the evaluation of narrow passages
in Section 4.1 an evaluation of the absolute error that builds
up over time was also performed. Data from two different
environments are analyzed, a large indoor corridor scene
and a small cluttered kitchen environment, see Figures 7
and 8.

Figure 7. Photographs from the environments for evaluation of
absolute pose accuracy.

In both datasets, the trajectory is a loop, making sure that
start and end poses are identical. Since we want to evalu-
ate the error that builds up over time, we show the results
both with and without loop closing algorithms. Both trans-
lational and rotational absolute errors between start and end
poses are presented in Table 3. All three algorithms provide

Table 3. Position and rotation errors between start and end poses
for two different environments. The presented values are the aver-
age and the standard deviation over three separate runs with similar
trajectories.

excellent results when their respective loop closing algo-
rithms are used. Cartographer seems however to have the
lowest drift over time, when no loop closing is allowed.

4.3. Computation requirements

Since the focus of our SLAM-algorithm is to run in re-
altime on a small platform it is essential to examine the
computation requirements on the intended hardware. The
three algorithms were run on the target hardware. The CPU
load and memory usage are displayed in Figure 9. Only the
CPU processes connected to each respective algorithm was
taken into consideration. Cartographer and our algorithm
both provided identical results on the Raspberry Pi as on a
desktop computer, LIO-SAM struggled somewhat with the
limited computational resources and thus the quality of the
result was somewhat degraded. CPU usage increases dras-
tically in the beginning as the maps and graphs are built,
and all three algorithms plateau after a certain amount of
time. The evaluation was performed on the large indoor en-
vironment presented in Section 4.2, and all algorithms ran
without loop closing.

5. Conclusion

A novel lidar SLAM method was presented which com-
bines lidar odometry, loop closing, and full 3-DOF planar
primitives in a graph-based structure. The method was ex-
perimentally evaluated and compared to the state-of-the-
art methods Cartographer and LIO-SAM. Our method is
adapted for, and was demonstrated to run on low computing
resources. The approach was developed for deployment on
small autonomous vehicles operating in unknown or previ-
ously unmapped indoor environments.

In the experimental evaluation, we specifically addressed
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(a)

(b) (c)

Figure 8. Point clouds of three different environments. a) is the large indoor corridor dataset, b) is the cluttered kitchen dataset, and c) is
an example of a dataset from the narrow passage evaluation set.
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Figure 9. Computational performance on a Raspberry Pi 4 8G.
100% corresponds to one full CPU core in the top plot, and corre-
sponds to 8GB of RAM in the bottom plot.

and quantified the lateral positioning accuracy when pass-
ing through narrow openings such as doorways, a situation
when high accuracy is a prerequisite for safe navigation.
An important result from the experimental evaluation is that

a decrease in lateral accuracy occurs for all three SLAM
methods when passing through the narrow openings com-
pared to operation in larger spaces such as corridors. In
the comparison, LIO-SAM produced the lowest lateral er-
rors in the corridor environment while our proposed method
gave the smallest lateral errors in the narrow doorway pas-
sages. In experiments over longer sequences without loop
closure, Cartographer produced the lowest long-term drift.
All three methods provided excellent results when their re-
spective loop closing algorithms were used.
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