
 

 

 

Abstract 

 

The rapid advancement of Deep Convolutional Neural 

Networks helped in solving many remote sensing problems, 

especially the problems of super-resolution. However, 

most state-of-the-art methods focus more on Single Image 

Super-Resolution neglecting Multi-Image Super-

Resolution. In this work, a new proposed 3D Residual in 

Residual Dense Blocks model (3DRRDB) focuses on 

remote sensing Multi-Image Super-Resolution for two 

different single spectral bands. The proposed 3DRRDB 

model explores the idea of 3D convolution layers in deeply 

connected Dense Blocks and the effect of local and global 

residual connections with residual scaling in Multi-Image 

Super-Resolution. The model tested on the Proba-V 

challenge dataset shows a significant improvement above 

the current state-of-the-art models scoring a Corrected 

Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 

dB for Near Infrared (NIR) and RED Bands respectively. 

Moreover, the proposed 3DRRDB model scores a 

Corrected Structural Similarity Index Measure (cSSIM) of 

0.9865 and 0.9909 for NIR and RED bands respectively. 

1. Introduction 

Super-resolution (SR) is a task that refers to improving 

imaging systems resolution. The goal of SR is to generate 

a high-resolution (HR) image from single or multiple low-

resolution (LR) images [1]. In general, SR techniques are a 

solution when the resolution of available images is not 

sufficient for the application at hand. This is the case of 

remote sensing applications, where capturing high-

resolution images from satellites is difficult due to 

constraints such as sensor limitations or exorbitant 

acquisition expenses [2].  

Nowadays, small satellite missions centered on data 

collection have relatively expensive hardware with higher 

spatial and spectral resolutions. Consequently, as 

resolutions improve, onboard equipment on satellites 

creates larger amounts of data, making compression 

algorithms increasingly difficult to fulfill bandwidth 

constraints [3-5]. A possible solution to this problem could 

be to acquire images at a lower resolution and use SR  

 

algorithms for enhancing and reconstructing HR images 

from LR images captured by sensors [1, 2], and indeed, 

different SR techniques and models are used in numerous 

applications of remote sensing for monitoring and mapping 

Earth’s surface [1]. 

Earliest methods [6-10] were based on reconstructing a 

HR version of the scene using a single image as input 

(single-image super-resolution, SISR). However, the 

quantity of information that a single image can convey is 

limited. Furthermore, the problems due to the atmospheric 

conditions (clouds, sun illumination, water, and others), 

altitude, errors in the sensors or noise, can affect badly the 

satellite images and cause a loss of data in the images that 

hinder the performance of SISR algorithms [11]. 

To overcome such problems, multiple-image super-

resolution (MISR), on the other hand, constructs a HR 

image from multiple LR images of the same scene taken 

from the same or separate sensors, usually at different 

times. MISR has a substantial benefit from SISR in that it 

can extract previously inaccessible information from 

several image observations of the same scene. In the case 

of remote sensing applications, MISR can obtain missing 

information (e.g., data occluded by clouds) from the rest of 

the input images of the scene.  

In recent years, different deep learning (DL) methods 

were proposed for SISR achieving considerable progress in 

the field. In particular, Y. Zhang et al. [12] used dense 

networks and K. Zhang et al. [13] exploited the use of 

residual connections at different levels to solve the SISR 

problem. On the other hand, MISR has received much less 

attention. Only recently, some approaches have been 

proposed, but existing methods do not completely exploit 

the relationships existing between the input images. 

In this paper, we propose a novel DL model to generate 

a HR image from multiple low-resolution images. Our 

proposal is based on the combination of dense networks 

and residual connections, which have been successfully 

applied for SISR previously, and the use of 3D 

convolutions [14] to take advantage of the existing 

correlations between pixels of the same point of the scene 

in the different input images. Hence, the main contributions 

of the model can be summarized as,  
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• The use of 3D convolutions to focus on correlation 

between multiple LR images for each scene. 

• Dense blocks that stack large amounts of 3D feature 

maps for better generation of SR by establishing 

maximum information flow between blocks. 

• Fusion of global and local residual connections with 

residual scaling that solves the problem of vanishing 

gradient.  

2. Related Work 

In the last decades, different work was provided for both 

approaches of SISR and MISR. In this section, we review 

different SISR models followed by recent advances in 

MISR. 

2.1. SISR Techniques 

SISR is a technique for reconstructing a HR image from 

a single LR image. Different SISR techniques have been 

introduced in the literature. Interpolation-based methods 

such as Lanczos filters [6], optimization-based methods, 

and learning-based methods are the three primary 

categories of SISR techniques [1]. Low total-variation 

priors [7], gradient-profile priors [15], and non-local 

similarity [8] are examples of optimization-based 

algorithms that specifically convey prior knowledge about 

real images in order to address this ill-posed inverse issue. 

Prior knowledge narrows the solution space, resulting in 

higher-quality results [1]. However, once the upscaling 

factor is increased, many optimization-based methods' 

performance rapidly degrades, and these methods are 

typically computationally expensive.  

Pixel-based or example-based learning approaches are 

both learning-based methods. The latter are the most 

common, and they generate HR patches by modeling the 

relationship between LR and HR patches. Different 

machine learning techniques were used at the beginning of 

learning-based methods such as Freeman et al. [9] that used 

the k-nearest neighbor algorithm and Schulter et al. [10] 

that used random forests on LR-HR image pairs to generate 

a SR image.  

After that, DL methods gained popularity and were used 

in SISR tasks. Dong et al. [16] proposed a Super-

Resolution Convolutiosn (SRCNN) that was used to learn 

an end-to-end mapping between LR and HR image pairs. 

Moreover, Multi-scale ResNet CNN architecture was 

adopted by Li et al. [17] for Image SR. Tai et al. [18] 

proposed a Deep Recursive Residual Convolution Neural 

Network (DRRCNN) with 52 convolution layers with 

residual connections to avoid problems of deep CNNs and 

also proposed a memory network (MemNet) that is based 

on a recursive unit and a gate unit for explicitly mining 

persistent memory via an adaptive learning process [19]. 

Under different receptive fields, the recursive unit learns 

multi-level representations of the current state. The 

preceding memory blocks' representations and outputs are 

combined and passed to the gate unit, which selects how 

much to reserve from the previous state and how much 

should be updated by the current state [19].  

A SR Generative Adversarial Network (SRGAN) was 

proposed by Ledig et al. [20]. Sajjadi et al. [21] proposed a 

GAN model that focuses on combining perceptual loss and 

automatic texture synthesis to create realistic textures 

without focusing on correct ground truth pixel generation.    

The common weak point of the previous SISR technique 

is that it only depends on one LR for each scene to get SR 

image, which can result in missing different inaccessible 

information that affects the quality of the enhanced image. 

2.2. MISR Techniques  

MISR technique elucidated the importance of feature 

fusion from several LR images of the same scene to 

generate a HR image. It is easier to produce a more 

accurate reconstruction than with SISR approaches since 

more data from many observations of the scene is 

available. Tsai and Huang [22] implied the first work of 

MISR techniques which is based on utilizing a frequency-

domain approach to combine multiple images with 

subpixel displacement to enhance image spatial resolution. 

The first proposed method had several flaws in terms of 

fusion of information from HR images. Therefore, 

different spatial domain MISR strategies were introduced.   

Some of the most proposed popular spatial domain 

MISR strategies were iterative back-projection (IBP) [23], 

projection onto convex sets (POCS) [24], non-uniform 

interpolation [25], regularized methods [26], and sparse 

coding [27]. Most of the previous MISR methods needed a 

priori knowledge of the motion model, noise level, and blur 

kernel where a processing step of image registration and 

blur identification must be done as a reconstruction 

preprocessing stage [1]. However, knowing the image 

degradation process or properly forecasting it might be 

difficult in different situations. As a result, numerous 

investigations on blind SR image reconstruction have been 

conducted.  

Different DL approaches had been adopted in the last 

previous year in the MISR strategies for video SR [28, 29]. 

On the other hand, MISR is addressed rarely in remote 

sensing satellite imagery [2]. A model proposed by 

Kawulok et al. [30] does not fully harness the benefits of 

DL, limiting their CNN's ability to tackle a SISR problem. 

The median shift-and-add approach is used to fuse the 

upsampled LR pictures, resulting in an SR image that is 

utilized as an initial guess for a classic regularized 

procedure [1]. 

Recently, The European Space Agency (ESA) issued a 

challenge to super-resolved multiple PROBA-V satellite 

imagery [31, 32]. Deudon et al. [33] introduced HighRes-

net, a DL-based system for MISR of remotely sensed 
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PROBA-V satellite data. Exploiting both spatial and 

temporal connections, an end-to-end learning strategy was 

developed. They suggested an end-to-end learning process 

for the MISR sub-tasks of co-registration, fusion, 

upsampling, and registration-at-the-loss [2]. Molini et al. 

recently[1, 34] presented DeepSUM and DeepSUM++, 

two new CNNs for super resolving multi-temporal 

PROBA-V imaging. Salvetti et al. [2] proposed RAMS 

model that uses feature attention at various phases. 

The previous models did not focus on the importance of 

the fusion of 3D Convolutions, Deep Dense Blocks, 

Global, Local Residual connections and residual scaling in 

MISR which are exploited in our proposed model. 

3. Methods 

In this section, we propose the 3DRRDB model to 

extract multiple features from multiple low-resolution 

satellite images of the same scene to generate a high-

resolution image. The model adopts the use of dense blocks 

[35] that have been successfully used in residual dense 

networks [36] for single-image super-resolution. The main 

novelty of the model is replacing the 2D convolutions with 

3D convolutions to capture the correlated information of 

the multiple low-resolution input images of the same scene. 

Moreover, the model introduces the importance of fusion 

of global and local residual connections with the residual 

scaling. This fusion allows keeping information between 

layers of the proposed deep 3D model and avoiding 

vanishing gradient through it during the training process. It 

is done by allowing the flow of low-frequency information 

through multiple skip connections to enhance the 

generation of SR images. Figure 1 shows the full 

architecture of the proposed model that consists of two 

main phases which are preprocessing and the 3DRRDB 

CNN. 

3.1. Preprocessing 

First, all the low resolution (LR) images for a certain 

scene are registered to a reference image with maximum 

clearance where clearance refers to the part of the image 

with valid information (e.g., free of clouds). The 

registration process is important because the images for a 

certain scene are taken at a different time with different 

conditions and have a misalignment with the other LR 

images [2]. Resampling each pixel value is necessary to 

create a cohesive reference image. Translation as a 

transformation model during the registration process is 

used, which calculates the necessary shifts to register each 

image on both axes. In order to avoid improper registration 

caused by misaligned pixels, clearance masks are 

considered throughout this process. The registration is 

done using normalized cross-correlation in the Fourier 

domain [2]. 

Second, T frames (in our case, T = 9) with a clearance 

rate higher than 0.85 (i.e., 85% of pixels clear in the image) 

are selected to avoid any unclear scene. If a scene has a 

clearance rate lower than 0.85, it is removed completely. 

These values are fixed to have the same settings as in 

previous works [2, 37].  

Third, augmentation is applied for the previously 

selected T LR images for each scene. As a result, in the T 

input images, there is no reason to prefer one order over 

another. The training dataset is pre-augmented by 

performing np random temporal permutations of the 

selected T input images to improve generalization. This 

allows us to train the algorithm to find the best temporal 

image regardless of where its position is in the input tensor.  

Finally, each image forming the pack of T images is 

normalized by subtraction of the mean pixel intensity value 

and dividing it by the standard deviation derived across the 

entire dataset [2]. 

3.2. 3DRRDB CNN  

The proposed 3DRRDB model consists mainly of eight 

Residual Dense Blocks (RDB). Each RDB is composed of 

a dense block. A global residual connection connects the 

input of the first RDB to the output of the last one. The 

global residual connection helps in passing gradient 

(information) from the input to the last layers and that will 

prevent the vanishing gradient problem from occurring in 

very deep CNNs [13]. Another addition to each RDB is the 

residual scaling to make training more stable [36, 38]. The 

pipeline of CNN ends with a convolutional layer followed 

by a bi-linear upsampling layer to scale by a factor of 3. 

The whole model architecture is shown in Figure 2. 

The RDB consists of Dense Block, Local Residual 

Connection and Residual Scaling Factor as shown in 

Figure 2. Each Dense Block has five 3D convolutional 

layers and a local residual connection. In Dense Block, 

each convolutional layer has a Leaky Rectified Linear Unit 

(LReLU) activation function except the last convolutional 

layer as shown in Figure 3. 

Figure 1. Full system architecture. 
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Figure 3. 3D Residual Dense Block structure. 

 

The dense block is a connectivity pattern that optimizes 

the information flow between layers by applying direct 

connections from any layer to all following layers as shown 

in Figure 3 [35]. As a result, the feature maps of all the 

preceding layers, ��, … , ����  are sent to the lth layer as 

shown in Eq. 1. 

 �� � 	�
���, ��, … , �����
 , 
1
 
 

where ���, ��, … , ����� denotes the concatenation of 

feature-maps generated in layers 0, … , � � 1. In each dense 

block, a local residual connection is connected between the 

input of the block and the output of the block. The local 

residual connection is introduced to optimize the infor-

mation flow because of the several 3D convolutions in each 

RDB. If we assume that the input of RDB is �� and the 

output after the five 3D convolution layers is, ����, then 

the final output of each RDB can be represented by Eq. 2. 

 ��������� �  �� � �� !"#$�  %$�!&'
����
  , 
2
 

 

where the Residual scaling (β) is added to increase the 

stability of the output during training [38]. Different values 

of residual scaling are applied between 0.1 and 0.3 [38]. 

The best results were obtained at Residual scaling (β = 0.2).  

The RDB consists of 2 main parts which are the 3D 

Convolution Layers and the LReLU activation function.  

 

3.2.1 3D Convolution Layers 

In the area of the SR of satellite imagery, the focus is on 

the idea of the fusion of different features in temporal 

dimensions. Features are extracted from a certain scene 

through multiple captured spectral images for the same 

area [14]. This concept is defined as MISR which is more 

informative in capturing and finding the correlation of 

spatial and temporal features in resolving the low-

resolution images 32×32 (LR) to have a 96×96 high-

resolution Image (HR) than the SISR. For the previous 

reason, 3D convolution layers with 32 filters and a kernel 

size of 3×3×3 for T=9 were used in the model. The 3D 

convolution works by convolving 3D kernels to the stacked 

multi-images (frames) of the same scene captured at 

different times. By this construction, the feature maps in 

the convolution layer are connected to multiple contiguous 

frames in the previous layer [14]. For a unit value at 

position (x, y, z) on the jth feature map in the ith layer is 

defined as in Eq. 3.  

 

 

)*+,- � ./0 12*+ � 3 3 3 3  4*+5�67)
*��
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,��

-�6

8�7
9:��
7;�

<:��
6;�

=:��
�;�5 > 
3
 

 

 

where ./0
 
 means the activation function, 2*+ is the bias 

for the feature map, m indexes over the set of feature maps 

in the (i-1)th layer connected to the current feature map. 4*+5�67
 is the position value (p, q, r) of the kernel connected 

to the mth feature map in the previous layer where Pi, Qi and 

Ri are the height, width and depth of 3D kernel respectively 

[14]. Figure 4 shows how the kernel of 3D convolutions 

works. 

Figure 2. The proposed 3DRRDB DL model. 
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Figure 4. 3D kernel of 3D convolutional layers. 

 

3.2.2 LReLU activation function 

LReLU is used as a non-saturated activation function [39]. 

It is a variant of ReLU that overcomes the problem of 

“dying ReLU” which comes from the fact that it is unlikely 

for a neuron to recover once it has gone negative. Such 

neurons are essentially worthless because they do not play 

any part in discerning the input. Over time, a big portion of 

the network becomes idle where all the inputs with 

negative values are dropped and only the positive part is 

kept [39]. The enhancement added in the LReLU is that the 

negative input would generate a non-zero output and that 

can be defined as @
�
 � max
$�, �
 where x is the input 

to the activation function and α is a specified parameter 

that falls between (0,1). It should be emphasized that ReLU 

maps negative input to zero, whereas LReLU compresses 

negative input using a predetermined linear function [39].  

4. Experiments Setup 

In this section, dataset description, all the experimental 

settings, environment, packages, loss function and perfor-

mance metrics used will be explained.  

4.1. Dataset Description 

The European Space Agency’s (ESA) Advanced 

Concept Team provided a dataset for MISR Problem [2, 

31, 32]. It can be found in [32]. There was no evidence of 

a clear temporal order for the captured image for one region 

[2]. The data consists of 300 m and 100 m resolution radio-

metrically and geometrically corrected Top-Of-Atmos-

phere (TOA) reflectance’s in Plate Carrée projection for 

the RED and NIR spectral bands. For the 300 m low 

resolution (LR) images, the data was delivered in 128×128 

grey-scale pixels, and for the 100 m High Resolution (HR) 

images, it was given in 384×384 grey-scale pixels [31]. A 

quality map was included with each image, indicating 

which pixels were hidden (clouds, cloud shadows, ice, 

water, missing pixels, etc.) and which should be regarded 

clearly. For HR images, at least 75% of the pixels must be 

clear, and for LR images, at least 60% of the pixels must 

be clear [31]. Each scene consisted of several 128×128 

pixels LR pictures (varying from 9 to 35 depending on the 

scene) and a single 384×384 pixels HR ground truth. Even 

though the real signal bit-depth is 14 bits, the images were 

encoded as 16-bit png files [2, 31]. The dataset was divided 

into two parts: the train section contains both LR and HR 

images while the test part contains only the LR images 

without ground truth or HR images. The experiments were 

done on the training data only as in [1, 2, 33, 34, 37] to 

validate the effectiveness of our approach. As a result, the 

train section was divided into training and validation sets. 

The dataset is divided into 396 training scenes and 144 

validation scenes for the NIR band while the RED band 

scenes were divided into 415 training scenes and 146 

validation scenes. The same validation pictures as in [1, 2, 

33, 34, 37] were utilized to make comparisons with earlier 

approaches easier. 

4.2. Experimental Settings 

Our model implementation is done using Python 

language with Keras package (TensorFlow backend). The 

model is proposed to upscale the LR image by a factor of 

three (s = 3) because of the Proba-V dataset specifications 

described in section 4.1. Experiments are carried out on a 

core i7 CPU running at 3.80 GHz with 32 GB of RAM and 

an Nvidia RTX 3090 graphics card with 24 GB of RAM.  

The model is trained for 200 epochs using the Adam 

optimizer with Nesterov Momentum with a starting 

learning rate of 0.0001. Inputs are divided into batches of 

size 32. For each epoch, the Peak Signal to Noise Ratio 

(PSNR) is measured. The best model is characterized as 

having the highest PSNR, and it is then saved and used on 

the testing set. 

In the preprocessing stage detailed in Section 3.1, we 

apply data augmentation by generating 10 permutations (np 

= 10) of the T input images for each scene in the dataset. 

This results in a total of 3930 NIR and 4150 RED training 

images. Augmentation is not applied to validation data to 

keep it with the same size and establish a fair comparison. 

After that, 16 patches of each LR training image are 

extracted with a size of 32×32 pixels and the corresponding 

clearance masks and HR images with a size of 96×96 

pixels. After a further improvement is applied by removing 

the patches with a clearance rate lower than 0.85. The total 

number of training image patches for NIR and RED bands 

becomes 62880 image patches and 66400 image patches, 

respectively while the validation image patches for NIR 

and RED are 2720 image patches and 2816 image patches 

respectively. 

4.3. Loss Function 

A special loss function is adopted because different 

images in the same scene can have quite different 

circumstances. It is critical to make the loss function 

independent of possible intensity biases between the target 
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image D�,EF9  and super-resolved D�,EG9 . The loss function can 

be defined in Eq. 4 [2] as the smallest mean absolute error 

(L1 loss) between  D�,EF9  and D�,EG9  and the Mean absolute 

error as proposed in [2] due to its good results.  

 

H � I!&�,E є ��,K�� LD�,EF9 � MD�,EG9 � 2�,E NL
 	 � 2"

 O � 2"
  , 
4
 

 

where a super-resolved output cropped of d pixels on each 

border is defined as D�,EG9  and each possible patch is 

considered as D�,EF9, u,v є [0,2d] of size (sH – 2d) x (sW – 

2d) extracted from the ground truth IHR. ||…|| describe L1 

Norm (absolute value summation). 2�,E represents the 

mean biases between D�,EF9  and D�,EG9  patches, defined as 

shown in Eq. 5. 

 

2�,E �  ∑ ∑ RD�,EF9 �  D�,EG9 S
!, T
UV�K�+;�UF�K�*;� 
 	 � 2"

 O � 2"
   . 
5
 

4.4. Performance metrics 

First, the proposed model is evaluated using two 

quantitative evaluation metrics which are Corrected Peak 

Signal-to-Noise ratio (cPSNR) and Corrected Structural 

Similarity Index Measure (cSSIM). The two metrics are 

adopted by state-of-the-art [1, 2, 33, 34]. 

 cPSNR is a modified version of PSNR that handles the 

disadvantage of high sensitivity of PSNR towards biases in 

brightness [32]. cPSNR is calculated using Corrected 

Mean Squared Error (cMSE) proposed by [31]. cMSE is 

the minimum Mean Squared Error (MSE) between   DY7��G9 � 2�,E  and HR patches D�,EF9 that can be defined in Eq. 

6 [2]. 

 %Z[\ � min�,E є ��,_� Z[\Y�`a7
D�,EF9 , D�,EG9 � 2�,E
  , 
6
 

 

where 2�,E  is the mean biases defined in Eq. 5 and where Z[\Y�`a7  denotes the mean squared error computed 

exclusively on pixels in the clearance mask [2]. The 

cPSNR can be computed as in Eq. 7.  

 

%c[d� � 10 log�� 
2�_ � 1
K %Z[\   , 
7
 

 

where 2�_ � 1 is the highest possible pixel intensity for a 

16-bit encoded image [2].  

Similarly, cSSIM is the maximum SSIM between DY7��G9 � 2�,E and HR patches D�,EF9 multiplied for the 

clearance mask Z�,EF9 and can be defined as in Eq. 8. 

 %[[DZ � max�,E є ��,_� [[DZ
D�,EF9 . Z�,EF9, D�,EG9 . Z�,EF9 � 2�,E
 . 
8
 

 

Second, the proposed model 3DRRDB is evaluated and 

compared to state-of-the-art methods using a qualitative 

metric which is the quality map [1]. The quality maps are 

generated by the absolute difference between the HR target 

and the SR reconstructions for the Bicubic. 

Finally, the efficiency of the best models in state-of-the-

art is compared to our proposed model. 

5. Results 

First, a partial ablation study is conducted to evaluate the 

importance of 3D convolution layers in RRDB model 

compared to 2D convolution layers. 

Second, two experiments are conducted using the 

proposed 3DRRDB model. The two experiments are 

applied on the NIR band and RED band separately that is 

provided by Proba-V dataset [31]. The proposed 3DRRDB 

is compared to different models of the state-of-the-art 

which are Bicubic [2], IBP [23], RCAN [12], Dynamic 

Adaptive Filter (VDR-DUF) [40], HighRes-net [33], 

DeepSUM [1], DeepSum++ [34], RAMS [2] and 

RAMS+20 [2]. 

Finally, number of learning parameters for the proposed 

3DRRDB is compared to the highest model results, RAMS 

[2] and RAMS+20 [2], to have a clear view on the 

complexity of both models. 

5.1. 2DRRDB vs 3DRRDB  

The importance and effectiveness of the 3D 

convolutions in our proposal has been evaluated by 

replacing them by 2D convolutions.  

 As shown in Table 1, the proposed 3DRRDB model 

overwhelms the 2DRRDB in all bands (NIR and RED). 

The proposed 3DRRDB scores an increase in cPSNR of 

1.23 dB in the NIR band and 1.24 dB in the RED band 

compared to the 2DRRDB. Moreover, the 3DRRDB 

achieves a cSSIM greater than 2DRRDB. 

 
Table 1. Ablation Study: Quantitative Comparison between the 

proposed 3DRRDB model and 2DRRDB cPSNR and cSSIM 

metrics for NIR and RED bands. 

 NIR Band RED Band 

 cPSNR cSSIM cPSNR cSSIM 

2DRRDB 47.56 0.9818 49.59 0.9874 

Our model 48.79 0.9865 50.83 0.9909 

5.2. NIR Band Experiment Results 

The proposed 3DRRDB model outperforms all state-of-

the-art models in cPSNR metric for NIR band images as 

shown in Table 2. It scores an increase of 0.28 dB, 0.56 dB, 

0.86 dB and 0.95 dB in comparison to NIR band images 

results of the best four models RAMS+20  [2], RAMS [2], 

DeepSUM++ [34], DeepSUM [1] respectively. 

Furthermore, the 3DRRDB model surpasses the Bicubic 
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[2], IBP [21], RCAN [19] and Dynamic Adaptive Filter 

(VDR-sDUF) [41] models in terms of cSSIM metric for 

NIR band images. The proposed 3DRRDB model scores a 

slight increase to DEEPSUM++ model [32], DEEPSUM 

[1] and HighRes-net [31] models in SSIM of NIR band 

images with a comparable cSSIM to RAMS+20  [2] and 

RAMS [2] models as shown in Table 2. 

 Figure 5 illustrates qualitative visual comparison 

between the SR images reconstructed by the Bicubic [2], 

RAMS+20  [2] and the proposed 3DRRDB models for the  

NIR band,  respectively. Moreover, the generated quality 

maps of the suggested 3DRRDB model generate images 

with sharper edges and finer textures, as well as images that 

are more artistically detailed. Figure 6 shows the quality 

maps of the same SR examples in Figure 5. for Bicubic [2], 

RAMS+20  [2] and the proposed 3DRRDB models. 

 
Table 2. Quantitative Comparison between the proposed 

3DRRDB model and state-of-the-art models in terms of cPSNR 

and cSSIM metrics for NIR and RED bands. 

 NIR Band RED Band 

 cPSNR cSSIM cPSNR cSSIM 

Bicubic [2] 45.12 0.9767 47.63 0.9846 

IBP [23] 45.96 0.9796 48.21 0.9865 

BTV [41] 45.93 0.9794 48.12 0.9861 

RCAN [12] 45.66 0.9798 48.22 0.9870 

VDR-DUF [40] 47.20 0.9850 49.59 0.9902 

HighRes-net [33] 47.55 0.9855 49.75 0.9904 

DeepSUM [1] 47.84 0.9858 50.00 0.9908 

DeepSUM++ [34] 47.93 0.9862 50.08 0.9912 

RAMS [2] 48.23 0.9875 50.17 0.9913 

RAMS+20  [2] 48.51 0.9880 50.44 0.9917 

Our model 48.79 0.9865 50.83 0.9909 

5.3. RED Band Experiment Results 

The results in the RED band reproduce the same 

behavior observed in the NIR band and that can be shown 

in Table 2,  Figure 7 and Figure 8. The proposed 3DRRDB 

surpassed all state-of-the-art models. It scores an increase 

in cPSNR of RED band images scoring 0.39 dB, 0.66 dB, 

0.75 dB and 0.83 dB compared to the best four models 

RAMS+20  [2], RAMS [2], DeepSUM++ [34], DeepSUM 

[1] respectively. Moreover, the 3DRRDB model surpasses 

the Bicubic [2], IBP [23], RCAN [12] and Dynamic 

Adaptive  Filter (VDR-DUF) [40] models in terms of 

cSSIM metric of RED band images as shown in Table 2. 

The 3DRRDB RED band images results scores a slight 

increase in cSSIM for RED band images compared to 

DeepSUM model [1] with comparable cSSIM results to 

RAMS+20  [2], RAMS [2] and DeepSUM++ [34] models 

as shown in Table 2. 

Figure 7 demonstrates a qualitative visual comparison 

between the SR images reconstructed by the Bicubic [2], 

RAMS+20  [2] and the proposed 3DRRDB models for the  

RED band, respectively. Furthermore, 3DRRDB model 

generated quality maps with sharper edges and finer 

textures, as well as images that are more artistically 

detailed. Figure 8 shows the quality maps of the same SR 

examples in Figure 7 for Bicubic [2], RAMS+20  [2] and 

the proposed 3DRRDB models. 

5.4. Efficiency 

We also compare the number of trainable parameters, 

which indicates the model’s complexity and, as well as the 

risk of overfitting and the need for a large amount of 

training data. Table 3 shows the approximate number of 

trainable parameters for RAMS [2], RAMS+20 [2] and the 

proposed 3DRRDB models. The highest complexity is 

achieved by the RAMS+20 [2] with 19M parameters while 

our proposed 3DRRDB has the least trainable parameter of 

456k. Our proposed 3DRRDB model has about 41 times 

fewer trainable parameters than RAMS+20  [2], and about 

half the trainable parameters of  RAMS [2]. These results 

prove the efficient complexity provided by the proposed 

3DRRDB model compared to the best models in state-of-

the-art. 

 
Table 3. Comparison of the number of trainable parameters best 

state-of-the-art model’s result and the proposed 3DRRDB model. 

No. of Trainable Parameters 

RAMS [2] RAMS+20 [2] Our model 

958k 19M 456k 

6. Conclusion  

In this paper, a novel 3D DL model named 3DRRDB for 

image super-resolution is introduced which effectively can 

upsample multiple low-resolution images for each scene to 

a high-resolution image with a scaling factor of 3. The 

proposed 3DRRDB model introduces the idea of focusing 

on correlation between numerous LR pictures for each 

scene using dense blocks with 3D convolutions that 

improved super-resolution generation by maximizing 

information flow. We have proved that 3D convolutions 

are more relevant for MISR techniques than 2D 

convolutions on RRDB model. Moreover, the proposed 

model introduces the idea of mixing global and local 

residual connections with residual scaling to 3D 

convolutions to reduce vanishing gradients during the 

training process. The proposed 3DRRDB model shows 

great potential in MISR by surpassing the state-of-the-art 

models in cPSNR results scoring 48.79 dB and 50.83 dB 

for NIR and RED bands respectively and with comparable 

cSSIM results.  Moreover, our proposed 3DRRDB model 

has much lower complexity compared to the best resulted 

state-of-the-art models. In addition, the model can be 

generalized to different scaling factors and can be 

extended, as future work, to be applied for multi-spectral 

remote sensing images.  
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Figure 5. An example of NIR band image qualitative comparison. Left to right: LR image, Bicubic SR image, RAMS+20 SR image, the 

proposed 3DRRDB SR image and HR image. 

 

 
Figure 6. An example of NIR band quality maps. Left to right: Bicubic quality map, RAMS+20 quality map, the proposed 3DRRDB 

quality map and HR image. 

 

 
Figure 7. An example of RED band images qualitative comparison. Left to right: LR image, Bicubic SR image, RAMS+20 SR image, the 

proposed 3DRRDB SR image and HR image.  

 

 
Figure 8.  An example of RED band quality maps. Left to right: Bicubic quality map, RAMS+20 quality map, the proposed 3DRRDB 

quality map and HR image. 
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