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Abstract

Human action recognition (HAR) in videos is one of
the core tasks of video understanding. Based on video se-
quences, the goal is to recognize actions performed by hu-
mans. While HAR has received much attention in the visi-
ble spectrum, action recognition in infrared videos is little
studied. Accurate recognition of human actions in the in-
frared domain is a highly challenging task because of the
redundant and indistinguishable texture features present in
the sequence. Furthermore, in some cases, challenges arise
from the irrelevant information induced by the presence of
multiple active persons not contributing to the actual ac-
tion of interest. Therefore, most existing methods consider
a standard paradigm that does not take into account these
challenges, which is in some part due to the ambiguous def-
inition of the recognition task in some cases. In this paper,
we propose a new method that simultaneously learns to rec-
ognize efficiently human actions in the infrared spectrum,
while automatically identifying the key-actors performing
the action without using any prior knowledge or explicit an-
notations. Our method is composed of three stages. In the
first stage, optical flow-based key-actor identification is per-
formed. Then for each key-actor, we estimate key-poses that
will guide the frame selection process. A scale-invariant
encoding process along with embedded pose filtering are
performed in order to enhance the quality of action repre-
sentations. Experimental results on InfAR dataset show that
our proposed model achieves promising recognition perfor-
mance and learns useful action representations.

1. Introduction
Human Action Recognition (HAR) is a fundamental re-

search problem in computer vision that aims to categorize
human actions. This task has seen a lot of advances in recent
years, making it relevant to a wide range of applications,
such as surveillance and security, human robot interaction,
autonomous vehicles, and urban planning [28, 34, 45]. Hu-

(a)

(b)

Figure 1. Example of two actions involving single and multiple
persons from the InfAR dataset labeled as ”Skip”. (a) Considering
all people in a scene to recognize an action can be uninformative.
(b) Identifying the key-actor performing the main action provides
accurate guidance for the action recognition model.

man action recognition is a very complex task due to several
challenges such as intra-class variations, viewpoint varia-
tions, motion velocity variations, background clutter, and
human body occlusions.

Thanks to the advances in deep learning, several meth-
ods exploiting convolutional neural networks (CNNs) for
human action recognition in the visible domain have been
proposed [5, 10, 12, 32, 37, 42]. Compared to classical ap-
proaches, such as dense trajectories [39], the two-stream
CNN architecture [32] has improved action recognition per-
formance by fusing the output of separate spatial and tem-
poral networks. The first stream network learns spatial
salient appearance patterns and the second stream network
learns temporal motion features. Wang et al. [42] demon-
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strated that dividing each video sequence into multiple seg-
ments, each processed with a two-stream network, and ag-
gregating their classification scores yields even better recog-
nition results. To enhance human action recognition perfor-
mances, several other works [2,7,22,31,47,50] have inves-
tigated the integration of human pose sequences or skeletal
data information as they provide robust and discriminative
representations of actions.

Despite the success of current state-of-the-art methods
on visible videos, they still show limited performance when
applied in certain real-world situations with low-light con-
ditions such as fog, smoke, or even dark environments. In
such scenes, infrared videos are more suitable as they are
resistant to background clutter, and less sensitive to lighting
conditions. Few works have addressed action recognition
in infrared videos [14, 19, 49]. Gao et al. [14] proposed a
two-stream CNN framework for infrared action recognition.
Jiang et al. [19] passed infrared data and optical flow vol-
umes to a two-stream 3D CNN framework and integrated a
discriminative code layer to generate class-based represen-
tations.

While these methods have mainly focused on incorporat-
ing richer information (e.g., original images, optical flow,
motion-history images of optical flow (OF-MHI) [3]) by
increasing the number of input streams, they are not ro-
bust enough to provide discriminative action representa-
tions. This is mainly due to three reasons. First, they do not
differentiate multi-person videos from single-person videos
when recognizing actions, and learn global scene-level fea-
tures without focusing on key-actors performing the main
action. In fact, videos captured in realistic environments
usually contain multiple persons interacting with each other,
but only a subset of them at a given time is involved in the
main action, as exemplified by the infrared action recogni-
tion dataset, InfAR [14]. For instance, a “Skip” action in
a scene is defined by one human (see Figure 1). Thus, in-
tegrating spatial and temporal information about other peo-
ple not involved in the main action, can be uninformative
and misleading and prevent the model from learning spe-
cific cues to understand such an action. Second, they learn
redundant or random features instead of focusing only on
relevant frames. Third, these models often consider the
stream networks to be independent and do not allow in-
formation sharing between them. They encode only the
motion features in short time windows without guarantee-
ing the preservation of the discriminative cues with pooling
techniques.

To address the above shortcomings, we propose Actor-
Driven Pose Embeddings for Video Action Recognition
(ActAR), a novel model for actor-specific action modeling
and recognition in the infrared spectrum. Our model oper-
ates in a three-stage fashion. First, we identify key-persons
in a video performing an action based on optical flow, and

we ignore the others that do not contribute to the main ac-
tion. This allows our model to focus only on relevant scene
information that characterize informative human actions. In
the second stage, we extract body pose information for each
key-actor. By considering pose information, we provide
rich cues to compensate for the missing texture and color
information in the infrared spectrum. As most pose estima-
tion models are trained in the visible spectrum, they can fail
in some cases when applied directly to the infrared domain.
To solve this problem, we propose a pose embedding filter-
ing mechanism that can leverage complementary discrimi-
native capabilities from large-scale RGB datasets. From the
filtered pose sequences, we extract key-poses to restrict the
analysis to only the relevant temporal action features. Last,
we integrate the most representative features into a com-
pact representation that encodes both the infrared and pose
information to obtain a more relevant representation of the
performed action. We tested our ActAR approach on the
InfAR dataset and found that it achieves good improvement
on human action recognition tasks.

Our contributions can be summarized as follows:

• We introduce a unified model for scene understand-
ing by simultaneously addressing two tasks in a single
framework: main actor identification and human ac-
tion recognition.

• Our method operates on raw infrared video sequences
and identifies key body pose features for robust and
discriminative action representations.

• Extensive experiments on the challenging InfAR
dataset demonstrate the effectiveness of our proposed
model compared to the state-of-the-art.

2. Related work

In this section, we first review existing works on human
action recognition in videos, then discuss the importance of
pose features for human action recognition.

2.1. Human Action Recognition in Videos

Human action recognition in videos aims to classify
videos into pre-defined sets of actions. Research method-
ologies in this field can be subdivided into two main cate-
gories: handcrafted features-based and deep learning-based
approaches. Early models extracted handcrafted features
with a series of operations, such as translations, rotations
and computing the trajectories of points to solve HAR re-
lated problems. In [44], a viewpoint-free representation for
human action from view-invariant motion descriptors was
proposed, where only variations in viewpoints related to
the central vertical axis of the human body are considered.
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Later, Wang and Schmid [40] proposed to estimate cam-
era motion to improve the dense trajectories video repre-
sentation for human action recognition. Cov3DJ [15] uses
a covariance matrix of skeletal joint movements as descrip-
tors combined with a classification algorithm to recognize
human actions. Despite their success, handcrafted methods
capture only local features, making them less discriminative
to correctly recognize complex human actions.

Deep-learning based approaches are now dominating
this field, as their performance is significantly better com-
pared to handcrafted-based approaches for HAR. In this
context, multiple research works have proposed to exploit
CNN models for action recognition [5, 32, 37]. The work
of [32] is notable in this category as it has successfully inte-
grated CNNs for human action recognition by introducing
a two-stream method. This method relies on RGB and op-
tical flow and models them into a spatial stream that carries
the scene and target information in the video, and a tem-
poral stream that focuses on the target and camera motion.
Tran et al. [37] proposed C3D, a method that simultane-
ously models appearance and motion information using 3D
ConvNets and successfully demonstrated that 3D ConvNets
are more appropriate for spatio-temporal feature learning
than 2D ConvNets. Two-Stream Inflated 3D ConvNet (I3D)
was later proposed in [5]. It inflates filters and pooling ker-
nels used for deep image classification ConvNets into 3D,
leading to natural spatio-temporal feature extraction from
videos.

Since RNNs are suitable for sequential data modeling,
various RNN-based methods for human action recognition
were proposed. For instance, Srivastava et al. [33] train
LSTMs with self-prediction to learn salient video represen-
tations, while Gammulle et al. [13] created a deep fusion
framework by learning spatial features from different lay-
ers of CNNs and then mapping them with temporal features
from LSTMs. Later, Du et al. [11] integrated an atten-
tion mechanism into a recurrent spatial-temporal network
to learn context key features for each timestep prediction of
RNN. However, RNN-based methods usually suffer from
gradient vanishing and nonparallelism issues making them
hard to optimize [30].

Compared with HAR in the visible domain, very few
works have addressed this task in the infrared spectrum re-
gardless of its great potential in handling low-light condi-
tions [14, 19, 49]. Gao et al. [14] proposed a two-stream
CNN framework for infrared action recognition. Jiang et
al. [19] passed infrared data and optical flow volumes to
a two-stream 3D CNN framework and integrated a dis-
criminative code layer to generate class-based representa-
tions. Later, several multi-stream methods were also pro-
posed. For instance, Liu et al. [26] adopted a three-stream
framework over local, global, and spatio-temporal features
to learn discriminative action representations. While these

methods have mainly focused on incorporating extra infor-
mation (e.g., original images, optical flow, motion-history
images of optical flow (OF-MHI) [3]) by increasing the
number of input streams, they are still not robust enough
to provide discriminative action representations.

2.2. Pose-based Action Recognition

Pose-based human action recognition has recently at-
tracted considerable interest in the literature, as the human
body joints position and motion are shown to provide dis-
criminative cues for action recognition [17]. Cheron et
al. [7] proposed an action descriptor conditioned on motion
and appearance CNN features computed for all body parts,
while Zolfaghari et al. [50] combine pose, motion and RGB
information using a Markov chain model to classify actions.
Similarly, a multitask framework with a single architecture
was proposed in [29] for pose estimation and human action
recognition. Choutas et al. [8] suggested to encode long-
term dependencies of pose keypoints motion and combine
it with a shallow CNN to classify actions. Asghari et al. [2]
later improved upon this by inferring a fixed-length repre-
sentation based on the location and body joints heatmap.
Unlike previous methodologies, this paper presents a dif-
ferent architecture for HAR that extracts richer key-poses
representation.

Besides body pose information, skeleton data consist-
ing in joints and bones representation of the human body,
was also considered in the context of human action recogni-
tion [31,43,47]. Skeletal body joints information can be ac-
quired using specific sensors such as depth cameras. How-
ever, the associated cost and availability of such data makes
it limited in practice. Thus, such solutions are outside the
scope of this paper.

3. Proposed method

In this section, we introduce our proposed Actor-Driven
Pose Embeddings for Video Action Recognition (ActAR)
method. Specifically, we first present our new key-actor
identification module, which defines the main actor per-
forming the action. We then introduce the building blocks
of ActAR, including human pose estimation, embedded
pose filtering, key-pose selection, and human action learn-
ing.

3.1. Overview

The proposed approach for human action recognition in
videos consists of four components, as illustrated in Fig-
ure 2. First, the main actors in each sequence are identi-
fied using motion information. This helps us focus on re-
gions of interest in each frame, rather than analyzing irrel-
evant features present in each frame. Second, we extract
pose features for each identified actor, as human poses are
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regarded as a very discriminative and distinctive informa-
tion to recognize actions. Incorrect pose estimations are fil-
tered through a deep pose embedded filtering mechanism
to avoid introducing inaccurate information in the learn-
ing process. Based on the filtered pose features, we select
the most discriminative key-poses that are sufficient to de-
scribe the main posture states of the actor while perform-
ing the action. By representing each actor with a set of
key-poses, we optimize the learning process by providing
only the relevant key features and disregarding the redun-
dant ones. Third, to make the extracted key-poses amenable
to the learning space, we embed them in a compact repre-
sentation that summarizes the distinctive key-poses of each
actor along with the infrared information that provides extra
context to the keypoint features. Finally, we train a CNN
with the constructed compact representations to learn and
recognize human actions in video sequences.

3.2. Key-Actor Identification

Human action recognition in multi-person videos re-
quires a deep understanding of the scene features. However,
in weakly-labeled real-world datasets, scenes can contain
multiple persons interacting with each other, but not nec-
essarily all of them are involved in the main action. This
makes the task of human action recognition in such situa-
tions even more challenging. One solution to this problem
would be to focus only on the persons performing the la-
beled action. Such annotations are expensive to acquire and
are not always readily available. Motivated by the need for
automated key-actors identification in realistic scenes, we
propose a new methodology for actor-specific action recog-
nition that identifies and locates the main person performing
the action.

The key-actor identification task requires accurate hu-
man body detection and tracking despite all the challenges
imposed by realistic videos in the infrared spectrum. To
track humans in videos, we apply a multi-object tracker over
each frame f of the video sequence S of T frames. We
adopted the recent state-of-the-art Bytetrack model [48] to
track simultaneously multiple human instances in videos.
Given the extracted tracks [Tra, ..., T rA], where Tra =
[ba0, ..., baT ]. The challenge now is to identify the main
actor tracks as the other tracks are not informative to the
action and may introduce noisy and non-discriminative fea-
tures for the action recognition model. One robust infor-
mation that can assist the identification of the main actor is
motion feature. At each timestep, and for each track, we
extract the optical flow magnitude in the object bounding
box y(Tra) = [ya0, ..., yaT ]. To achieve this, we use the
GMA model [18]. This method is able to handle occlusions
by aggregating the global motion using a transformer. The
aggregated motion features are defined as:

ŷi = yi + α

N∑
j=1

f(θ(xi), ϕ(xj))σ(yi)) (1)

where x denotes the context features, y are the motion fea-
tures, f refers to a similarity attention function, θ, ϕ and
σ are the projection functions for the query, key, and value
vectors, respectively, and α is a scalar parameter.

Note that frames with low-score tracking are discarded.
To distinguish the main actor, we maximize the motion vec-
tor of all actors, and choose the one with strongest motion
information, where the key-actor id is defined by:

kid = argmax
(
y(Tra), ..., y(TrA)

)
(2)

Now that we have performed the first precision-level of
our model by identifying the temporal tracks of the main
actor, we next discuss how to estimate and select discrimi-
native infrared information in the temporal dimension.

3.3. Human Pose Estimation

In this work, we mainly guide the task of action recog-
nition from videos by using the evolution of human body
poses as a cue. These representations will enable us to
deal with the abrupt viewpoint variation and lighting change
challenges. These representations are also compact and
low-dimensional, which is an essential feature for opti-
mized video analysis. However, for several benchmark
datasets, human pose information is not readily available.
To address this problem, we estimate 2D human pose fea-
tures of the identified actors in each video frame using
the state-of-the-art human pose detector proposed in [35].
The High-Resolution Net (HRNet) model learns reliable
pose estimation of multiple persons in videos using a high-
resolution network. It starts with a high-resolution subnet-
work, then high-to-low resolution subnetworks are added
subsequently, while multiscale fusions are performed re-
peatedly to allow information sharing between all the paral-
lel multi-resolution subnetworks.

Formally, for a given video sequence S ∈ RT×H×W×3

of T frames with width W , and height H , we run the HR-
NET pose detector on each frame to get human pose key-
points (i.e., body joints). Thus, across all frames, each actor
h is represented by a set of K temporal sequence of key-
points denoting the location estimate of each body joint of
the main actor at every frame. During the pose estimation
process, we optimize the MSE loss function as follows:

Lmse =
1

M

M∑
m=1

∥Cm − Ĉm∥22 (3)

where Cm and Ĉm refer to the true and the predicted confi-
dence map for the mth body joint, respectively.
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Figure 2. An overview of the proposed ActAR model. Given an infrared input video, we identify the key-actors based on optical flow.
To compensate for the missing texture and color information in the infrared domain, we extract the human body keypoints. We project
the estimated keypoints into the polar system, and then we filter out incorrect poses that may mislead the action representation. Next, we
select the key-poses based on a deep clustering method to form a compact representation encoding the most relevant infrared and pose
information. In the last stage, we train a 2D deep convolutional neural network to predict the human action.

This module returns the evolution of each actor body
pose across time, which will be used by our model for hu-
man action recognition. Next, we encode the extracted pose
features to mitigate the effects related to the camera view-
point changes that may lead to observing the same person
with different appearance scales.

3.4. Scale-invariant Polar Encoding and Embedded
Pose Filtering

The estimated human body poses often contain large
variations, such as scale, and bone length ratios [25]. This
leads to having the same action represented by different spa-
tial keypoints coordinates and thus can mislead the learning
model. To alleviate this, we propose a scale-invariant en-
coding method to eliminate the influence of such effects.
The goal is to let the pose-guided features encode only the
human poses related to the action while being invariant to
other factors. Specifically, we select the center hip joint as
the reference body joint, because it is usually stable in most
actions. Then, we calculate the relative positions of all the
other joints with respect to the reference joint Ĵ t:

J t
m = J t

m − Ĵ t (4)

As the actor body joints are initially defined in the Carte-
sian coordinates system (x, y) ∈ R2, we next project them
to the polar coordinate system with a polar angle θ ∈ [0, 2π].

This enables our model to differentiate between keypoint
vectors using their angles instead of focusing on their mag-
nitude. Thus, in this new system, the hip center becomes
the pole.

In the same context of enhancing the quality of the es-
timated poses, we have noticed that when using a model
trained on RGB data, the predictions on infrared domain
may result in incorrect poses in some cases. To overcome
this problem, we propose an embedded pose filtering mech-
anism that leverages latent pose representations from the
visible domain to filter poses estimated in the infrared spec-
trum. To do so, we train a deep autoencoder model to re-
construct ground truth poses from COCO dataset [24]. The
trained autoencoder will be also used in the clustering mod-
ule as we will discuss in the next section. Once the autoen-
coder has learned the latent pose representations in the rgb
domain, the model decides to keep or discard the estimated
infrared pose based on the reconstruction error.

3.5. Human Pose Features Selection

Since human poses in consecutive frames are often ex-
tremely similar, we select individual distinct key-poses that
are used as representative poses summarizing the principal
actor actions. Focusing on frames with key-poses signifi-
cantly reduces the complexity and the computational cost of
the human action recognition algorithm. To infer these can-
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didate key-poses, we embed the extracted pose features of
every actor across frames into a latent space and cluster the
resulting embedded vectors into sets of similar poses. Thus,
we adopt a Deep Embedded Clustering method [46] as a
base model for our key-pose extraction process. This model
consists in a deep autoencoder, followed by a soft cluster-
ing layer that assigns each pose sample to a cluster with
a specific probability. Specifically, it uses the autoencoder
networks to embed input features into a low-dimensional
latent space, and infers cluster assignments simultaneously.

Formally, given a polar encoded-keypoints sequence Vh

for a target actor, we start by learning unsupervised repre-
sentations of the input keypoints using a stacked autoen-
coder (SAE). It has been shown that this type of networks
learns discriminative and meaningful latent representations
on various datasets [23, 46]. After initializing the network,
we remove the decoder to keep just the encoder for deep
features extraction. After getting the embedded pose key-
points, we perform standard k-means clustering to obtain
the initial cluster centers. And then we optimize the encoder
using the following clustering objective:

L = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(5)

This objective function calculates the Kullback–Leibler
(KL) divergence loss between the auxiliary target distribu-
tion pij and the soft assignments qij where,

pij =
q2ij/

∑
i qij∑

j q
2
ij/

∑
i qij

(6)

and qij refers to the similarity between embedded pose key-
points V ′

h and cluster centroid µj measured by the Student’s
t-distribution [38].

qij =
(1 + ||V ′

h − µj ||2)−1∑
j(1 + ||V ′

h − µj ||2)−1
(7)

It is to note that minimizing the objective L follows a
self-training strategy, as the auxiliary target distribution pij
depends on the soft assignments qij leading to enhanced
clustering predictions.

Finally, to select the actual representative poses of each
cluster, we calculate the distance between each pose pi and
the embedded cluster center pic, and we take the nearest-
neighbor pose sample to the cluster center as the represen-
tative key-pose for that cluster. We empirically found that
the optimal number of clusters is 8, as it provided the best
balance between too few and too many poses clusters. Thus,
each actor in a sequence is mainly represented by 8 identi-
fied key-poses.

3.6. Human Action Representation Learning

To enhance the action recognition performance, various
fusion techniques to aggregate temporal information with

other modalities have been studied in the literature [20,32].
However, most of these approaches rely on information that
is not always relevant for the human recognition task, and
are limited in the way they fuse the temporal information.
Unlike these methods, our ActAR model combines actor-
specific relevant infrared information with the estimated
key-poses into a compact representation. This enables our
model to learn key patterns needed to recognize human ac-
tions in infrared videos.

To construct the summarized action representation for
each key-actor, we follow these steps: we first extract the in-
frared region of interest Ihk that is defined by the bounding
box of each key pose in V ∗

h . By encoding the pose vector
directly for the selected relevant actor region, we compen-
sate for the missing texture and color information in infrared
videos.

Next, we aggregate each encoded region Ihk into one
main grid-like structure for every identified key-actor as il-
lustrated in Figure 2. To prevent the model from learning
unnecessary action patterns, we combined each encoded re-
gion with zeros-valued borders having a 3 pixel width, in-
stead of being completely adjacent, as the the convolution
kernel sizes of the adopted CNN architecture can be larger
than the inter-region spacing.

After constructing the compact features representation
for each key-actor, we train a convolutional neural network
to learn the key patterns related to the performed action
from the created grid structures. As our backbone CNN
architecture, we use the Inception-ResNet-v2 model [36],
which has been pre-trained on the ImageNet dataset [9].
The Inception-ResNet-v2 model has a hybrid Inception net-
work architecture that uses residual connections instead of
filter concatenation. For the training objective, we adopt the
categorical cross entropy loss defined as:

LCE = − 1

N

N∑
i=1

log
exp (wT

yi
Gi + byi

)∑n
j=1 exp (w

T
j Gi + bj)

(8)

where Gi denotes the ith grid-like structure, N is the num-
ber of training structures, yi refers to the class label of Gi,
W is the learned weight matrix, and b is the intercept.

4. Experiments
After describing the experimental settings, we first

present an ablation study and then a comparison with the
state-of-the-art.

4.1. Experimental Settings

All experiments were performed on a single TITAN Xp
GPU. We implemented our proposed model using the Ten-
sorFlow library [1]. We use Inception-ResNet-v2 [36] as
our CNN backbone pre-trained on the ImageNet dataset [9].
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Actor Identification Frame Selection Polar Encoding Pose Embedding Filtering Average Precision (%)
All actors Principal actors Random Key frames

✓ ✓ 74.44
✓ ✓ 79.38
✓ ✓ 82.55
✓ ✓ ✓ 84.26
✓ ✓ ✓ ✓ 85.32

Table 1. Performance contribution of each component in ActAR on InfAR dataset.

We trained the model using a Stochastic Gradient Descent
(SGD) with ADAM [21] and set the optimizer hyperparam-
eters to β1 = 0.9, β2 = 0.999, ϵ = 0.001. For the key-poses,
we used 8 components and trained the network with a learn-
ing rate of 10−3 for 150 epochs with a mini batch size of 32.

For optical flow estimation we used the GMA
method [18] trained on Sintel dataset [4]. For human track-
ing, we use the ByteTrack model proposed by Zhang et
al. [48]. We use the HighResolution Net (HRNet) architec-
ture [41] to compute human poses across frames. Specif-
ically, we used the pose-hrnet-w48 architecture trained on
the COCO dataset [24].

We evaluated the proposed Actor-Driven Pose Embed-
dings model on the Infrared human action recognition
dataset, InfAR [14]. Infrared Action Recognition (InfAR)
is a challenging video action recognition dataset that pro-
vides 600 video clips captured by infrared thermal imaging
cameras. Each video clip is annotated with one action from
12 different human action classes. The average video clip
length is 4 seconds with a frame rate of 25 and a resolution
of 293×256.

4.2. Ablation Study

In this section, we perform an extensive ablation study
to investigate the effectiveness of each component of our
method on the InfAR dataset. In all ablations, we use aver-
age precision as the main evaluation metric. We report the
ablation performance of our model in Table 1.

We start with a basic model to understand the impact of
the actor identification stage. In this experiment, we first
consider all persons in the scene as being involved in the
main action, and we select random frames for action repre-
sentation for each person. To infer the scene action classifi-
cation, we take the most frequent of all person-level actions.
With the basic model, we achieve 74.44%. This is expected
as the model considers irrelevant information at two levels
of learning, namely, the scene and the actor levels.

To avoid incorporating wrong action information in-
duced by persons who do not contribute to the main ac-
tion in the scene, we integrate in the basic model infor-
mation solely about key-actors using our proposed optical
flow-guided module. Similar to our previous experiment,
we randomly select frames to represent the key-actor ac-

tion. With this model configuration, we outperformed the
basic model with a precision of 79.38%. This demonstrates
that the same model can get better performance if it is fed
with the right features with respect to the key-actor involved
in the labeled action.

Next, we upgrade the key-actor model with key-poses-
based frames selection. As we previously explained, key-
poses are obtained by clustering key-actor body poses us-
ing a deep autoencoder model. Clustering performance
will be discussed later in this section. Compared with ran-
dom frames representations, choosing infrared information
guided by key-poses to encode action cues provides an im-
proved level of precision in the temporal domain and allows
our model to capture more discriminative action features.
The obtained results clearly highlight the advantage of in-
corporating the frame selection module.

We also studied the impact of 2D-keypoint representa-
tions on the final action recognition precision. While in the
previous experiments, we used actor body joints defined in
the Cartesian coordinates system, they are now projected to
the polar coordinate system with the center hip as a refer-
ence joint since this joint is stable in most actions. Having
human poses π-scaled in this new coordinate system sig-
nificantly benefits the clustering module and enhances the
recognition capabilities of our model, as shown in the re-
sults. The new keypoints are not only lying on a common
space but are also scale-invariant.

As the InfAR dataset is not manually pose-labeled, the
keypoints predicted by HRNet can be sometimes incor-
rect. The integration of all the previous model compo-
nents with the pose embedding filtering module, i.e., our
ActAR model, mitigates the effects of this problem, and
thus, reaches the highest action recognition performances.
The performance boosts induced by the pose embedding
filtering module indicate the advantage of filtering features
predicted by trained RGB models in the infrared domain,
especially when working with weakly labeled data.

We have seen above that frame selection guided by key-
poses clustering can improve the performance of our model
for human action recognition. Now, we want to evaluate the
impact of the clustering model for identifying the most in-
formative body poses for each action. We compared three
clustering methods: K-means, Gaussian Mixture Model
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Figure 3. Impact of different pose clustering algorithms on the
performance of ActAR on InfAR dataset.

(GMM), and Deep Embedded Clustering (DEC) with dif-
ferent numbers of clusters, varying from 2 to 12. In this
experiment, we use the complete version of ActAR with the
same parameters settings. We report the clustering ablation
results in Figure 3. We can see that integrating DEC with
ActAR achieves the highest precision. This demonstrates
that clustering deep pose features is better than clustering
raw keypoints coordinates. On the other hand, ActAR with
GMM performs slightly worse than the k-means version in
this experiment. This can be explained by the fact that the
nature of our infrared input pose data is not naturally nor-
mally distributed. Furthermore, we found that the optimal
number of key-poses is 8. This indicates that the number
of key-poses must be chosen based on the average size of
humans in the scene.

4.3. Comparison with the State-of-the-Art Methods

We compare the proposed ActAR model with the state-
of-the-art methods on the InfAR dataset, which can be
grouped into two categories: handcrafted features-based
methods (e.g., DT, and iDT) and deep learning-based ap-
proaches (e.g., HOF, Two-stream 2D-CNN, Two-stream
3D-CNN, TSTDDs, Four-stream CNN, and SCA).

The results of our model and existing methods are re-
ported in Table 2 using the average precision evaluation
metric for human action predictions. We observe that our
method achieves the best action recognition precision. In
fact, ActAR surpasses handcrafted features-based meth-
ods [39, 40] that uses dense trajectories with a consider-
able margin of 13.49% and deep learning-based methods
[6, 14, 16, 19, 26] that uses different multi-stream architec-
tures with a margin ranging from 1.07% to 8.66%. Our re-
sults support our hypothesis that our main actor-driven Ac-
tAR model with discriminative pose-based features is bene-
ficial for the human action recognition task. The results also
reveal the impact of the embedded pose filtering module

Model Average precision(%)
HOF [14] 68.58
DT [39] 68.66
iDT [40] 71.83
Two-stream 2D-CNN [14] 76.66
Two-stream 3D-CNN [19] 77.50
CDFAG [27] 78.55
TSTDDs [26] 79.25
Four-stream CNN [16] 83.50
SCA [6] 84.25
ActAR 85.32

Table 2. Comparison of the average recognition precision of Ac-
tAR with state-of-the-art methods on InfAR dataset.

on the recognition performance, especially when extract-
ing features from infrared videos through models that are
trained on labeled RGB data.

5. Conclusion

In this paper, we have introduced a new actor-driven
model for effective human action recognition in infrared
videos with single and multiple persons. Extensive evalu-
ation experiments demonstrate the effectiveness of ActAR
compared to existing methods, and highlights the impact
of each component of the proposed model. The proposed
actor identification and frame selection modules effectively
encode discriminative infrared information with key-actors
body poses, and combining them together in a compact
representation leads to considerable improvements. This
further shows that identifying key-actors responsible for
the action is crucial for efficient human action recognition.
Therefore, our model can be easily generalized to any multi-
person sequence, as it does not require key-person anno-
tations for training. Finally, The embedded pose filtering
module also shows that infrared spectrum can benefit from
RGB models and data by getting better quality features.
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