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Abstract

The field of human motion enhancement is a rapidly ex-
panding field of study in which depth-based motion cap-
ture (D-Mocap) is improved to generate a more accurate
counterpart for demanding high precision real-world ap-
plications. The D-Mocap that is initially generated re-
lies on commercially available SDKs or open source tools
to produce the initial skeletal sequence which works best
in an ideal front-facing camera setup. This in turn cre-
ates a challenging initialization for human motion enhance-
ment when the camera is not positioned in the ideal for-
ward facing position. Currently there are no multiview D-
Mocap datasets which have corresponding time-synced and
skeleton-matched optical motion capture (Mocap) reference
data for view-invariant motion enhancement. We develop a
multiview D-Mocap dataset extended from the popular and
comprehensive Berkeley MHAD dataset [29]. In addition,
we analyze the performance of the D-Mocap data gener-
ated through a series of open source tools, highlighting the
difficulty and the need to produce robust results in a rear-
facing camera setup due to a 21.4% increase in average
joint position error over front-facing data. Finally, we ana-
lyze the results of some recent human motion enhancement
algorithms with regard to a front-facing camera setup ver-
sus a rear-facing one.

1. Introduction

Human motion analysis and human pose recognition are
well studied fields in computer vision which aim to generate
a three-dimensional human model or human joint positions
defined in Cartesian space from various sensor technolo-
gies (Fig. 1). Human motion data can be highly accurate
as with data collected from optical motion capture (Mocap)
systems, or less accurate but easily obtained as with data
collected from RGB-D (D-Mocap) or inertial sensors. Due
to the high complexity and cost of optical Mocap technol-
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Figure 1. The extended MHAD dataset. Data captured with front
and rear facing depth sensors is used to generate D-Mocap data.
This data is skeleton matched, time synced, and spatially regis-
tered to highly accurate optical Mocap for reference.

ogy, its real-world applications are often limited to a lab
setting. On the other hand, low-cost D-Mocap has been
applied for some real-world applications, such as gait as-
sessment [8, 15, 28, 33], rehabilitation [34], human mobil-
ity analysis [22], and exercise systems [6]. With human
motion enhancement and denoising of the low-quality D-
Mocap data, depth sensors could become an inexpensive
and versatile alternative for clinical applications,

Although there are ample datasets that provide clean
high quality Mocap data, there are very few that provide
low quality D-Mocap motion data with a high quality coun-
terpart time synced for performance evaluation. Most im-
portantly, there are none that we are aware of that provide
D-Mocap data taken from multiple angles and time aligned
to a highly accurate optical Mocap reference which are de-
sirable for view-robust human motion enhancement.
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Without an open-source benchmark dataset, researchers
in human motion enhancement have been employing two
methods to evaluate their work. In the first method, artifi-
cial noise of different-levels or various dropouts are induced
to high quality Mocap data to simulate the low-quality
D-Mocap data [13, 14, 18-20, 24, 43-45]. This method
suffers a significant shortcoming since modern methods
like deep learning and nonlinear Kalman filtering have
proven very successful at removing induced corruption,
while proving less effective at real-world generated motion
data [18, 24, 44]. The second approach uses motion data
collected in the lab along side high quality optical Mocap
in order to compare the improvements made to the lower
quality data [13, 18-20, 24, 43-45]. This method reflects a
real-world scenario, but is insular in that the motion data
is specific to the researcher’s task and is not often shared
amongst the community. A dataset which provides time-
synced and skeleton-matched low and high quality human
motion data over a wide range of subjects and actions would
provide this emerging field with the means to quantitatively
and technically compare competing methodologies.

In addition, as the research of D-Mocap human motion
enhancement evolves and progresses, view invariant algo-
rithms will become a necessity and an expectation. One
of the major advantages of depth-based human pose esti-
mation is that the subject is not confined by markers and
a capture space. To fully take advantage of this boon, an
algorithm that improves poor quality rear-view data will be
essential. Therefore, a multi-view benchmark dataset which
highlights non-optimal depth camera placement will be a
critical and a much-needed tool for the advancement of the
field of human motion enhancement.

We describe in this work an extension of the Berkeley
MHAD dataset [29] which includes low quality D-Mocap
data. The MHAD dataset provides a rear-facing depth sen-
sor capture angle for use in testing non-ideal view invari-
ance and can be used to highlight the shortcomings of D-
Mocap data capture. MHAD is a widely used dataset span-
ning fields of study including human motion enhancement
[13,19,20,40], human action recognition [ 1,32], multiview
and view invariant action recognition [41], human motion
synthesis [14, 31], and human shape reconstruction [16].
MHAD is flexible as well, due to its multimodality, con-
taining data from five different systems (Fig. 2).

The solid foundation provided by the Berkeley MHAD
data set, which contains data from 12 subjects perform-
ing 11 diverse actions, is an excellent choice to extend to
a benchmark D-Mocap data set. It provides a highly ac-
curate time-synchronised optical Mocap reference and mul-
tiple depth cameras (Fig. 3) that we have used to create
real-world D-Mocap data. Most importantly this dataset
includes data from a depth camera placed in a non-ideal
rear-facing position. This positioning highlights one of the
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Figure 2. The MHAD recording layout [29]. The capture angles
of the depth sensors produces higher error in the upper portion of
the body that is self-occluded due to the off-axis sensor position.

major weaknesses of D-Mocap data generation algorithms
and will be a critical tool in human motion enhancement
research as the community tackles the crucial problem of
view invariance. This benchmark dataset is publicly avail-
able' so that researchers may freely compare results on the
same D-Mocap data, something that is lacking in the human
motion enhancement community.

Figure 3. The MHAD dataset provides two depth sensor capture
positions, one forward-facing and the other rear-facing [29].

2. Related Work

In this section we will highlight several current method-
ologies for enhancement of D-Mocap. We will concentrate
on research that improves D-Mocap skeleton data and not
research that seeks to improve human motion estimation
from depth images.

Uhttp://vcipl-okstate.org/pbvs/bench/
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Table 1. Overview of some of the state-of-the-art in human motion enhancement systems.

Methodology Run Mode Sensor configuration Motion data type Metrics
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2.1. Motion Filtering Methods

The intent of traditional filtering methods in human mo-
tion enhancement is to remove noise in joint position data,
thereby arriving at a more accurate result. The most popu-
lar and effective of the filtering methods is the Kalman filter
(KF) [17]. Researchers have used the linear Kalman filter
to constrain joint dynamics with the objective of keeping
bone length constant [39], but most commonly researchers
have gravitated toward using a nonlinear KF due to the
nonlinear nature of D-Mocap data. The most common of
the nonlinear Kalman filters are the extended Kalman fil-
ter (EKF) and unscented Kalman filter (UKF) [21, 35, 36].
Recently, researchers have begun to explore the merits of
the Tobit Kalman filter since it is particularly well suited
to deal with the nonlinearity and non-Gaussian nature of
D-Mocap data due to the censored nature of occluded D-
Mocap [, 26,27,44,45]. Self occlusion errors are signif-
icantly reduced through the use of the Tobit model [26],
especially when adapting the censor limits of the TKF
[27,44,45].

The introduction of genetic algorithms (GAs) into filter
systems like the TKF and particle filters, have shown to be
successful in enhancing D-Mocap as well [7,38,44,45]. A
multi-objective GA 1is used in conjunction with a particle
filter in [38]. The GA is used to constrain bone length while
the data is being filtered with the particle filter. Much the
same technique is used in [7] to constrain bone length with
a differential evolutionary algorithm (DE). DE is used to
restrict bone length while employing the TKF in [44], and
is combined with a particle filter initialized with the Tobit
model in [43].

2.2. Motion Learning Methods

Of the data driven learning methods currently explor-
ing human motion enhancement, the most popular meth-
ods are dimensionality reduction, sparse coding, Gaussian
Process (GP) models, and deep learning. The Greedy Ker-
nel PCA [10] is used for dimensionality reduction in [37],
and thereby represent human motion in the Hilbert space.

As is common with dimensionality reduction, this is done
to remove any characteristics of the D-Mocap data that
are aberrant from human motion. Researchers in [9, 42]
use sparse coding dictionaries to in conjunction with bone
length and smoothing models to diminish noise and outliers
in D-Mocap. The works [6,25] use GP to constrain velocity
variation in optimization, and to map D-Mocap to optical
Mocap respectively.

Not surprisingly, the most often used machine learning
method in recent human motion enhancement research is
deep learning. With the rise in parallel processing power
has come a surge in powerful deep learning techniques for
many optimization problems, and human motion enhance-
ment is no exception. The work in [30] uses two intercon-
nected recurrent neural networks. One network is trained
on the joint positions of the human motion, and the other
is trained on the joint velocities, thereby learning two as-
pects of the natural kinematics of the human motion. Most
of the deep learning solutions in recent literature deal with
learning a lower dimensional representation of human mo-
tion, thereby extracting noise from data as it is mapped to
the lower dimension [3, 13, 14, 18-20,23,24,40]. In [3] the
authors use three types of temporal encoders in an attempt
to eliminate data that is disparate from natural human mo-
tion. Similarly, authors in [40] break up a network into 3
parts, a temporal section, a spacial section, and a residual
section. The temporal section is a bidirectional long short
term memory (LSTM) encoder that learns time dependen-
cies in the motion data. The spacial and residual sections
are both fully connected; the former learns spacial interde-
pendencies of joint positions and the latter learns to remove
high frequency noise from the data.

The work in [13, 14] uses a convolutional autoencoder
which simultaneously learns temporal and positional inter-
dependencies of data by training on a large set of varied
Mocap data and learning a motion manifold for valid human
motion. However, through this method, some of the original
kinematics of the human motion are lost as the motion man-
ifold does not take into account the kinematics of the test
data. Researchers in [23, 24] have addressed this problem
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Figure 4. Extending the MHAD dataset to include D-Mocap data. D-Mocap is first generated from depth images while joint positions for
the optical Mocap reference are are calculated through forward kinematics. Outliers are then removed from the D-Mocap and the D-Mocap
and Mocap reference are matched to the same skeletal model. Finally, the D-Mocap is registered to the Mocap reference through SVD,

and bias is removed to produce a dataset that can be used for multiview analysis and algorithmic enhancement.

by incorporating a bidirectional LSTM in an autoencoder
to learn time interdependencies of joints, thereby preserv-
ing some of the data’s natural kinematics. Similarly [19,20]
uses a set of target motion filtered with a TKF to optimize
the output of the autoencoder in the autoencoder’s latent
space. This method preserves the natural kinematics of the
motion while still adhering to the manifold learned by the
autoencoder.

We provide a brief overview of some of the tactics men-
tioned in this section, including method categories, run
modes, data collecting, and outcomes analysis. The details
are presented in Table 1. None of these recent methods have
attempted to tackle enhancement of multiview D-Mocap or
D-Mocap generated from rear facing depth sensors. This is
because available software tools that are used to generate D-
Mocap struggle to estimate human pose from capture angles
that are not forward facing. In order to explore the challenge
of enhancing this sub-par data, we need a common bench-
mark dataset that uses real-world D-Mocap, provides mul-
tiview with a rear-facing camera, and is temporally synced
and spatially registered to a highly accurate optical Mocap
reference. Our work in providing the MHAD dataset for
multiview D-Mocap provides this benchmark to the com-
munity.

3. Dataset Generation
3.1. Skeleton Generation

The purpose of this work is to extend the MHAD dataset
to include real-world D-Mocap data. This process is illus-
trated in Figure 4. When the RGB-D images of the MHAD
dataset are processed with the ros_openpose_rgbd [5] pro-
gram, low-quality D-Mocap data is generated. This pro-
cedure can be divided into two steps. To begin, Open-
Pose [4] estimates the locations of joints in two-dimensional
space from the appropriate pixel position in the frame’s
RGB image. Second, the joint positions are placed in three-
dimensional space using depth image data and the initial
two-dimensional values. Although this method generates
estimates of joint motion trajectories similar to those gener-
ated by publicly available SDKSs, ocasionally some extreme
joint positions are created in the process resulting in out-
liers. Due to the desire to generate a dataset that closely
represents data captured using SDK software, we processed
the obtained data through a Hample Filter to reduce the ef-
fect of outliers. In Hampel filtering, the median joint posi-
tion value was calculated using a seven-frame window. This
median value can then be used to estimate standard devia-
tion using median absolute deviation (MAD), by the equa-
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tion o = 1.4826(MAD). If the value of the joint position
is more than three standard deviations from the mean, the
value is substituted with the median of the window (Fig. 5).
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Figure 5. Outliers are removed from D-Mocap using Hampel fil-
tering. This process is done to ensure data error is akin to com-
mercially available D-Mocap SDKs like Nuitrack and Kinect.

3.2. Skeleton Matching

The default skeletal model used in ros_openpose_rgbd
is keypoints_pose_.COCO_18 which contains 18 body joints
(Fig. 6). This model features a split human torso which is
not common in most human motion enhancement work and
is not easily comparable to the Mocap data from MHAD. In
comparison, the keypoints_pose_BODY_25 model provided
by OpenPose contains 16 joints that can be matched with
Mocap skeleton data generated from the MHAD dataset
(Fig. 6). The MHAD optical Mocap motion data is con-
verted from motion data recorded from the Mocap system
and placed in the global frame using forward kinematics on
the bvh files. This results in a 35 joint model(Fig. 7 (a)).
The MHAD Mocap model is matched with the D-Mocap
BODY_25 model to generate a skeleton model of 16 com-
mon joints that can be compared across both the Mocap and
D-Mocap data (Fig. 7 (b)). In contrast, in the COCO model,
there are only 13 joint positions common with the optical
Mocap model. These 13 joints mostly consist of joint posi-
tions central to the human body, and some extremities such
as toe joints are lost. These missing joints are the most su-
ceptable to errors from occlusion and therefore contribute
more to the evaluation of the human motion enhancement
method’s efficacy.

3.3. Data Registration

The sets of Mocap and D-Mocap data are recorded in
their own respective 3D spaces and must be matched so that
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Figure 6. Two skeleton models included in OpenPose, on the left
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for skeleton matching since it had more joints in common with the
optical Mocap skeleton model provided by MHAD.
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Figure 7. The optical Mocap skeletal model with 35 joints pro-
vided by MHAD is depicted on the left. The final skeleton model
used in the Extended MHAD Dataset is shown on the right. These
are the 16 joints that are common between the BODY 25 model
and the optical Mocap skeleton model.

a valid comparison may be made. To calculate the rigid
transform between the two skeletons, we use singular value
decomposition (SVD) [2]. In this method, a centroid for
each entire sequence of data is calculated using,

1 I N
C=572. Pij M
i=1 j=1

where N is the total number of joints in the skeletal model
I is the number of frames in the sequence, and p; ; is a
particular joint position for a particular frame. Using 1, an
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intermediate matrix H is calculated from the D-Mocap data
X, Mocap data X, and the centroids of each dataset (Cg,

CX)? o
H=(X-Cg) x (X-Cx)". )

Next, using SVD on H from 2, the factorization of H pro-
duces U and V. The benefit of doing this is that these matri-
ces can be used for registration by calculating the necessary
rotation matrix R and translation vector t by the following:

[U,S,V] = SVD(H), 3)
R = UxV”T 4)
t = Cx—RxCx. (5)

Once R and t are obtained, a rigid body transform on the
D-Mocap aligns the data as closely as possible in the same
3-D space with the Mocap reference,

X=RxX+t, (6)
where X is the point registered version of the D-Mocap data.

3.4. Bias Removal

The skeletal structure calculated by the optical Mocap
system and ros_openpose_rgbd define the locations of each
joint slightly different from one another even though they
are estimating the same joint. This results in a constant off-
set which is not due to noise or occlusion, but is instead just
a difference in definition. Any analysis done on the pure
data of these two data sets would be subject to this bias and
may yield erroneous results. In order to correct for this dif-
ference in joint definition, a bias is calculated between the
D-Mocap data and the Mocap data. This is done by calcu-
lating a Euclidian distance for each joint j in each frame 1,
between the D-Mocap data and Mocap data. These values
are then averaged over all frames using:

Bias; =

I
> Xi, - X, (7
=1

~I =

where X is a matrix of D-Mocap data, X is a matrix of Mo-
cap, and [ is the total number of frames. The bias is cal-
culated for each joint so that it may be removed from the
D-Mocap data. This yeilds a 0 mean error between the D-
Mocap and optical Mocap for each joint position.

4. Multiview analysis
4.1. Multiview Comparison of D-Mocap

One clear problem of using commercially available and
open pose tools for D-Mocap generation is the weakness
that these methods have with rear facing depth cameras.
Figure 1 highlights this problem over a series of correspond-
ing frames of D-Mocap data generated from the front-facing

camera and the rear-facing camera of the extended MHAD
dataset. We can see that the ros_openpose_rgbd opensource
tool struggles to estimate the same subject when captured
from the rear. This is why view invariance in human mo-
tion enhancement is so important and why the community
needs a dataset that accurately represents the problem with
D-Mocap captured from the rear.

To numerically express this problem of rear-facing D-
Mocap, we have done a comparison between the D-Mocap
data generated from the front-facing depth camera and the
rear-facing counterpart. This comparison was done by joint
position error with respect to the optical Mocap reference.
This calculation is given in the following equation,

N
1 _
meanErr; = i Z HXM - Xi,jHQ , €]
i=1

where mean Err; is the average distance the enhanced D-

Mocap motion data, )A( is from Mocap motion data over all
frames, ¢, for a particular joint j.

In comparing the D-Mocap columns in Table 2, we see
how the algorithm used to generate human motion data
struggles when using depth images from the rear facing
camera. This problem is quantified by a 21.4% increase
in average joint position error, a 1.8cm increase from the
results from the front-facing camera. We notice, the few
joints that had better results in the rear-facing dataset are
generally internal to the body structure and do not differ in
performance of the forward-facing dataset nearly as much
as the peripheral joints like the hands and feet. We do no-
tice one exception, the joints on the upper right quadrant
of the body perform worse in the front-facing data than the
rear-facing data. The reason for this is that the Kinect cam-
eras are angled to the human subject rather than directly
facing the front and rear of the human subject (Fig. 2). Due
to these placements, there is more occlusion of the joints
in the right half of the body in the front-facing data, and in
the left half of the body for the rear-facing data. We also
see that the worst result of both cameras is joint 13, the left
hand, which is susceptible to inaccuracies from capturing
from the rear-view as well as suffering from a higher rate of
occlusion. For convenience, joint numbers in Table 2 on the
left side of the body are indicated with an (L) and joints on
the right side of the body are indicated with an (R).

Fortunately, the increase in error due to occlusion on
each side of the body is actually a benefit to researchers who
want to study joints that suffer from higher rates of occlu-
sion than others. The rear placement of the depth camera is
obviously a problem in current D-Mocap generation meth-
ods, but with a dataset that makes multiview real-world D-
Mocap data readily available, this problem can be attacked
as a community, using a standard set of motion data.
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Table 2. Front and Rear Facing MHAD Motion Enhancement Results in (cm). (L) and (R) depict left or right side of the body.

Front Facing Rear Facing
Joints D-Mocap EKF [35] UKF [21] TKF [44] Autoencoder [13] D-Mocap EKF [35] UKF [21] TKF [44] Autoencoder [ 13]
Data ‘ Enhanced ‘ Enhanced Enhanced ‘ Enhanced Data ‘ Enhanced ‘ Enhanced Enhanced ‘ Enhanced
1 1.5 32 24 2.0 22 2.0 3.1 2.5 1.8 2.9
2 (L) 3.6 4.1 2.6 29 24 22 35 29 1.8 33
3(L) 34 4.6 3.1 29 4.0 3.1 3.6 3.1 2.4 4.1
4 (L) 3.7 42 3.7 3.0 4.7 52 4.7 4.4 3.8 53
5(L) 6.7 5.6 4.0 42 7.5 8.8 73 6.9 59 7.0
6 (R) 3.6 45 2.6 29 2.4 5.1 54 4.8 34 3.6
7 (R) 4.0 4.1 33 3.0 44 24.4 17.0 16.5 14.2 13.9
8 (R) 42 47 39 32 5.0 52 4.6 42 32 5.0
9 (R) 8.7 5.6 4.0 53 7.5 18.0 11.9 11.6 10.1 10.3
10 52 5.6 6.1 43 4.0 2.6 4.6 3.7 2.1 44
11(L) 52 6.4 79 4.4 4.2 34 4.9 4.1 2.6 4.8
12 (L) 8.2 7.8 8.0 6.7 6.2 153 13.7 13.0 10.5 12.0
13 (L) 194 13.6 133 11.6 132 39.6 304 28.8 27.1 26.6
14 (R) 10.7 6.2 7.0 6.3 6.0 2.7 4.7 35 2.1 4.0
15 (R) 16.1 11.0 10.9 9.9 11.7 7.6 6.9 7.3 52 8.7
16 (R) 30.4 17.0 17.0 16.3 19.5 17.9 16.3 14.9 11.0 15.1
Ave. 8.4 6.7 6.2 5.5 6.6 10.2 8.9 8.3 6.7 8.2

4.2. Multiview Human Motion Enhancement

We used four methods of human motion enhancement to
illustrate the applicability of our extended MHAD dataset.
These methods include three nonlinear Kalman filtering
methods and one deep learning method, a convolutional au-
toencoder first proposed by Holden ez al. [13, 14]. The pub-
licly available autoencoder [12] was retrained using the 16
joint skeletal structure described in Section 3.2. The convo-
lutional autoencoder was trained on a homogeneous skele-
ton where multiple subjects were all retargeted to ensure all
bone lengths and skeletal sizes remained the same. How-
ever, in testing we opted to only scale the D-Mocap as we
are attempting to analyze the dataset more than the human
motion enhancement method.

The modification of the D-Mocap for the autoencoder
was a two step process. First, using subject T-poses each
skeleton was scaled to match the size of the training skele-
ton with regard to the distance of the subject’s hips to the
floor. Second, after the data was recovered from the au-
toencoder the resultant human motion was re-scaled using
the inverse of the scaling value in step one and any constant
bias between the recovered skeleton and the MHAD Mocap
data was removed using 7.

The joint positions of the enhanced human motion data
are then evaluated on a joint by joint basis using the eu-
clidean distance from the MHAD Mocap data averaged over
all frames (8). These joint-by-joint values are given in Ta-
ble 2 for the original D-Mocap data and all four enhance-
ment methods. In addition, a qualitative analysis of each
enhancement method over corresponding frames of human
motion data is shown in Figure 8. This is an example of how
the extended MHAD dataset can be used to compare vari-
ous methods of human motion enhancement in a multiview
manner.

5. Conclusion

Human motion enhancement of D-Mocap makes low-
cost depth sensors promising and affordable devices for
real-world clinical and health-related applications. How-
ever, this research is now at a crossroads. In order to ex-
ploit the markerless and mobile capabilities of depth sen-
sors, we must tackle view invariance and we also need a
public benchmark dataset for algorithm evaluation. This
subject has largely been ignored by human motion enhance-
ment researchers for two reasons. First, the software tools
used to generate D-Mocap do a poor job when the depth
sensor is placed in a non-forward facing position as shown
in Figures 1, 8, and Table 2. Second, the community lacks
a real-world dataset that provides multiview D-Mocap that
accentuates both ideal front-facing data and non-ideal rear-
facing data. We have provided a publicly available dataset
that extends MHAD to include D-Mocap that has been spa-
tially registered and temporally synced to highly accurate
optical Mocap data for reference. This dataset provides the
necessary tools for the human motion enhancement com-
munity to begin tackling the difficult problem of view in-
variance and especially data generated from a rear-facing
depth sensor.
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