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Abstract

Synthetic Aperture Radar (SAR) has received more at-
tention due to its complementary superiority on capturing
significant information in the remote sensing area. How-
ever, for an Aerial View Object Classification (AVOC) task,
SAR images still suffer from the long-tailed distribution of
the aerial view objects. This disparity limit the performance
of classification methods, especially for the data-sensitive
deep learning models. In this paper, we propose a two-
stage shake-shake network to tackle the long-tailed learn-
ing problem. Specifically, it decouples the learning proce-
dure into the representation learning stage and the classi-
fication learning stage. Moreover, we apply the test time
augmentation (TTA) and the classification with alternating
normalization (CAN) to improve the accuracy. In the PBVS
1 2022 Multi-modal Aerial View Object Classification Chal-
lenge Track 1, our method achieves 21.82% and 27.97% ac-
curacy in the development phase and testing phase respec-
tively, which wins the top-tier among all the participants.

1. Introduction

Synthetic aperture radar (SAR) is an active earth obser-
vation system, which can be installed on aircraft, satellites,
spacecraft and other flight platforms [5]. It can generate
high-resolution radar frequency (RF) images under low vis-
ibility and various scenarios [20]. Comparing to electro-
optical (EO) sensors, SAR can effectively identify camou-
flage and penetrate shelter during the whole day. Therefore,
the usage of image dataset obtained by SAR received pro-
gressive attention [33], such as parameter estimation [16],
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object detection [3, 13], classification [17, 21, 27], etc. The
motivition of our work is to investigate a more effective and
efficient method using SAR images to improve the classi-
fication accuracy for AVOC(Aerial View Object Classifi-
cation). This task requires predicting the class label of an
aerial low-resolution image based on a number of prior ex-
amples of images and their class labels.

There are two major problems need to be addressed in
this AVOC competition, especially when using the given
SAR dataset. Firstly, the class distribution of the dataset is
typically long-tailed.It means that samples of head-class oc-
cupy the vast majority of whole dataset, while the samples
of tail-class is negligible compared to the head-class. (Table
1). Consequently, neural networks trained on this imbal-
anced dataset face overfitting problems, tending to classify
all test samples as head-classes and ignore tail-classes. The
second obstacle of this challenge is low image quality and
high noise interference, as shown in Fig. 1. This perturba-
tion increases the difficulty of feature extraction by neural
network and causes the experimental result sensitive to the
pre-processing method.

To alleviate overfitting problem, we adopt three essen-
tial methods which greatly improve the accuracy of clas-
sification results. Firstly, a novel two-branch ResNet [11]
with shake-shake regularization [7] is selected to be base-
line architecture. This simple ResNet variant is specifi-
cally proposed to overcome overfitting problem by two ran-
dom coefficients. Second, two-stage training strategy [15]
is performed to decouple the learning procedure into the
representation learning stage and the classification learning
stage for data of the long-tailed distribution. In the repre-
sentation learning stage, neural network is trained on given
long-tailed dataset as usual. For the classification learning
stage, the model is retrained on a class-balanced dataset by
freezing parameters of backbone and only updating param-
eters of classifier. This training procedure greatly mitigate
the phenomenon that classification results are dominant by
head-class. Finally, after obtaining test results, the test time
augmentation (TTA [23]) is applied to counteract low qual-
ity and high noise interference problem. By rotating, flip-
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Figure 1. Examples of SAR and EO images with ten class indexes
from the given dataset.

ping and scaling, a more abundant dataset is generated to
enrich information and reduce specific pattern bias to some
extent. It should be noticed that image sharpening, edge en-
hancement and other image enhancement algorithms are not
employed to prevent the introduction of new noise. More-
over, a post-processing approach called the classification
with alternating normalization (CAN) [14] is also employed
to improve the classification performance by re-adjusting
prediction results with prior of the dataset.

Based on these improvement methods mentioned above,
we test our model on the Track 1 SAR imagery dataset. We
achieve 21.82% in the validation set and obtain 27.97% on
the final test data. Adequate experiments are performed to
show the effectiveness of our approach. In summary, the
main contributions of this paper are summarized as follows,

• A two-stage training strategy is employed on a
lightweight shake-shake network to mitigate the over-
fitting problem of the long-tailed dataset.

• The test time augmentation and a post-processing ap-
proach are applied to balance results with prior of the
dataset.

• We have achieved the top-tier accuracy both in the
development phase and testing phase among all the
teams.

The rest is planned as follows. In Section 2, related
works are presented. In Section 3, our proposed method is
introduced in detail. In Section 4, we evaluate our method
on the Track 1 SAR imagery dataset of the PBVS 2022
Challenge. Finally, we conclude our study about this com-
petition in Section 5. Our code is available at https:

//github.com/LinpengPan/PBVS2022-Multi-
modal-AVOC-Challenge-Track1.

2. Related Works
Recently, long-tailed recognition has attracted lots of at-

tention in the field. We briefly review previous methods on
long-tailed recognition. These methods can be divided into
three categories [31]: data distribution re-balancing, trans-
fer learning, and decoupled learning.

2.1. Data Distribution Re-balancing

Data distribution re-balancing consists of re-sampling
and re-weighting. Re-sampling methods are to make the
class distribution more balanced. It includes oversampling
[2, 9, 24] for minority class and undersampling [6, 10] for
majority class or learning to sample [22]. Re-weighting ap-
proaches are to re-weight the loss functions [19]. These
series of methods [1, 4] assign minority category instances
more costs which are always misclassified or not confident.
However, all of these methods sacrifice the accuracy of the
head to compensate for the tail.

2.2. Transfer Leaning from Head to Tail class

To transfer knowledge from head to tail class is an-
other branch [18, 26]. Transfer-learning based methods ad-
dress the issue of imbalanced training data by transferring
features learned from head classes with abundant training
instances to under-represented tail classes. Recent some
works include transferring the intra-class variance [28] and
transferring semantic deep features [18]. However, it is usu-
ally a non-trivial task to design a specific model for feature
transfer.

2.3. Decoupled Learning

Recently some works [15, 32] show that the distribu-
tion of datasets have no impact on representation learning
of networks. Therefore, decoupling the representation and
classifier learning improves the performance on long-tailed
datasets significantly. We also make use of this core into
our model.

3. Methods
3.1. Overall Framework

The distribution of this PBVS 2022 Multi-modal Aerial
View Object Classification Challenge Datasets is long-
tailed and the percent of class “0” is close to 80% (described
in Section 4.1). To tackle this severely long-tailed dataset,
special attention is paid on designing the proposed deep
learning strategy.

The overall framework of our proposed method can be
separated into three components, the shake-shake regu-
larization, two-stage training strategy and testing strategy.
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Since SAR images are of low-resolution and complex archi-
tectures tend to be overfitting, we introduce a lightweight
ResNet backbone with shake-shake regularization to alle-
viate the over-fitting problem. To mitigate the problem of
long-tailed distribution, a two-stage training strategy is used
to decouple the learning procedure into the representation
learning stage and the classification learning stage. At the
test phase, we use the test time augmentation (TTA [23])
and a post-processing approach to improve the accuracy.
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Figure 2. Shake-shake regularization. (a): Training pass. (b): At
test time.

3.2. Shake-Shake Regularization

Inspired by data augmentation, shake-shake regulariza-
tion [7] was proposed to augment the internal represen-
tations. We use Xin and Xout to denote the inputs of a
residual block and the output of one residual block respec-
tively. Let f(θ1) and f(θ2) represent two convolution units
where θ1 and θ2 are the weights. A residual block with two
branches can be described as the following

Xout = Xin + f(Xin;θ1) + f(Xin;θ2). (1)

Let γ denote a random variable between 0 and 1 which
is sampled from a uniform distribution. The residual block
with shake-shake regularization can be described by

Xout = Xin + γf(Xin;θ1) + (1− γ)f(Xin;θ2). (2)

The training procedure is shown in Fig. 2. In the for-
ward training pass, γ is sampled to obtain the output of the
residual block. Then in the backward training pass, another
random number denoted as η is sampled to calculate the
gradients, which can be seen as a form of gradient augmen-
tation. Finally, at the test phase, the scaling coefficient value
is set to 0.5 following the same logic as Dropout [25].

3.3. Two-Stage Training Strategy

The long-tailed distribution of the SAR images causes a
great challenge to the classification methods based on deep
learning. However, there still are some interesting findings
[15]:

1) High quality representation can be learned with the
long-tailed datasets;

2) Strong long-tailed recognition ability can be obtained
by adjusting only the classifier with the class-balanced
datasets.

Inspired by this, we introduce a two-stage training strat-
egy which decouple the learning procedure into represen-
tation learning stage and the classification learning stage,
as shown in Fig. 3. For the training phase, we train the
shake-shake model with the complete dataset to learn the
feature representation, then we freeze the parameters of the
feature extractor and only train the classifier with the class-
balanced dataset. We construct this class-balanced dataset
from the given data without no extra images, which will be
discussed in Section 4.4.

3.4. Testing Strategy

Data Augmentation is the process of randomly applying
some operations (e.g. rotation, crop, flips) to the input data.
By this mean, a model cannot see the same example twice
and has to learn more general features about the classes it
has to recognize. Test Time Augmentation [23] is to per-
form random modifications to the test images. For TTA, in-
stead of showing the regular, “clean” images, only once to
the trained model, we input it the augmented images several
times. We then average the predictions of each correspond-
ing image and take it as our final guess.

Specifically in this paper, given a test sample, we can
get m different samples by augmenting it. Then we can
get m probability distributions with the trained shake-shake
model and obtain the final probability distribution by aver-
aging them. More details can be seen in Section 4.5.

3.5. Classification with Alternating Normalization

Applying data augmentation at test time can achieve bet-
ter performance in general. However, due to long-tail con-
straint, the model tends to predict the sample as the head
class. In this case, the effect of TTA is not satisfactory.
To solve this problem, we introduce a non-parametric post-
processing approach, called the classification with alternat-
ing normalization (CAN [14]).

Ideally, the prediction category distribution should be
same as the prior distribution. But the actual prediction may
deviate this assumption and we can correct it. As show in
Fig. 4, the principle behind CAN is to make the category
distribution of the whole prediction examples closer to the
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Figure 3. Two-stage training strategy. For representation learning stage, we train the whole model. For classification learning stage, we
train the classifier and fix the other structures.

prior distribution by adjusting the prediction distribution of
the challenging examples (low-confidence examples). CAN
adjusts those low-confidence results based on the prior cat-
egory distribution to improve the overall accuracy. In detail,
it consists of two main steps.

1) Example Division
We need to divide the examples into high-confidence ex-

amples and low-confidence examples by computing the top-
k entropy of its category probability distribution in this step.

First, the normalized probability distribution of the top-k
probability values p̂i is

p̂i =
[pi1, p

i
2, . . . , p

i
k]

k∑
i=1

pij

, (3)

where pij represent the prediction probability of j-th (j =
1, · · · ,M ) category of i-th (i = 1, · · · , N ) example. Then
the top-k entropy Htop−k(p̂

i) can be calculated by follow-
ing

Htop−k(p̂
i) = −

k∑
j=1

p̂ij log(p̂
i
j). (4)

Finally, we take Htop−k(p̂
i)/ log k as the final metric,

which has been normalized to [0, 1]. We can set threshold
τ to divide the samples by the final metric. Obviously, an
instance with high entropy is hard to recognize and has low-
confidence. As seen in Fig. 4, sample 1 is a high-confidence
example while sample 2 is an instance with low-confidence.

2) Alternating Normalization In this step, the class
probability distribution of the non-confidence examples is
adjusted by alternating normalization.

Ideally, the predicted category distribution is equal to the
prior category distribution p̃ (assume we have known the

prior category distribution)

p̃ =
1

N

N∑
i=1

p(i). (5)

Without loss of generality, assume there are n samples
{1, 2, ..., n} with high-confidence, and then the remaining
{n + 1, n + 2, ..., N} belong to low-confidence examples.
We consider high-confidence examples to be more reliable
and use them to correct low-confidence examples.

Given any low-confidence example s ∈ {n + 1, n +
2, ..., N}, we can obtain a new set {1, 2, ..., n, s}. To make
the this new set maintain the prior distribution, we perform
the first normalization with ps and high-confidence proba-
bility p1,p2, ...,pn

pk =
pk · p̃
p̄

, k = 1, 2, ..., n, s, (6)

where the operators are element-wise and the mean proba-
bility p̄ is

p̄ =
1

n+ 1
(ps +

n∑
i=1

pi). (7)

However, after Eq. 6, the sum of pk may be not equal to
1, so we need to employ the second normalization

p̂k =
[pk1 , p

k
2 , ..., p

k
M ]

M∑
j=1

pkj

. (8)

Eventually, we only keep p̂s as the adjusted probability
of sample s and discard the rest. In other word, the prob-
ability of high-confidence examples is fixed and we only
update the probability of low-confidence examples. More
details can be found in the original paper [14]. As shown
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in Fig. 4, the probability of sample 2 has been changed by
the influence of sample 1 with high-confidence and the prior
distribution.

4. Experiments

4.1. Datasets

For PBVS @ CVPR 2022 Multi-modal Aerial View Ob-
ject Classification Challenge Track 1, there are only one
type of images, which are captured by synthetic aperture
radar (SAR) sensors from the aerial view. SAR images vary
from 50 × 50 to 60×60 pixels. Since the SAR image sizes
are not consistent in the dataset, we resize all samples to
56× 56.

Table 1. Class Distribution of the PBVS 2022 training data. We
define the first four sample-rich classes as the head classes for their
domination. The rest classes are called tail classes.

Class Index Type Samples (#) Percent (%)
0 sedan 234,429 79.72
1 SUV 28,089 9.56
2 pickup truck 15,301 5.21
3 van 10,655 3.63
4 box truck 1,741 0.59
5 motorcycle 852 0.29
6 flatbed truck 828 0.28
7 bus 624 0.21
8 pickup truck w/ trailer 840 0.29
9 flatbed truck w/ trailer 633 0.22

The objects in images belong to a list of 10 classes cor-
responding to a training set with non-uniformly distributed
number of samples per class, whereas the validation set and
test set is based on a small uniformly distributed number of
samples per class. In other words, this is an extremely im-
balanced dataset with a long-tailed distribution, as shown
in Table 1. In this challenge, the ground-truth labels of the
validation and test sets are not public, only the final perfor-
mance scores are visible to the participants.

4.2. Network Architecture

The ResNet with shake-shake regularization is proposed
to mitigate the overfitting problem which achieve the state-
of-the-art performance on the CIFAR100 dataset in 2017
[7]. We evaluate the performance of several common clas-
sification models on this long-tailed dataset and the shake-
shake-26 achieve the best accuracy. From the Table 2, we
can see the ResNet-50 achieves the best performance in
ResNet family while the some advanced and complex net-
works do not achieve better performance. It shows that
these advanced networks may not work well in long-tailed
dataset since they are inclined to overfit the head classes.

Table 2. Classification performance on different models. Shake-
shake-26 model is the best choice considering both the computa-
tion and performance.

Model Parameter Top-1 Accuracy
ResNet-34 [11] 21.8M 14.16%
ResNet-50 [11] 25.5M 14.68%
ResNet-101 [11] 44.5M 14.29%
ResNet-152 [11] 60.2M 14.16%
WRN-28-10 [29] 36.5M 14.58%

DenseNet-100 [12] 27.2M 14.16%
PyramidNet-110 [8] 28.3M 13.77%

shake-shake-26 2x32d [7] 2.9M 18.83%
shake-shake-26 2x96d [7] 26.2M 14.68%

4.3. Implementation details

We use shake-shake-26 as our baseline model and train
it from scratch. Specifically, we train 100 epochs for the
representation learning stage and 10 epochs for the classi-
fication learning stage. We set mini-batch size to 128 and
train our model with SGD optimizer. We set the momentum
to 0.9. The cosine annealing learning strategy is applied to
adjust the learning rate. The initial learning rate is set as 0.1
with a weight decay 1e− 4 for the first stage and the initial
learning rate is set as 0.01 with the same weight decay for
the second stage. The models are all trained by using the
cross-entropy loss function with the mixup [30]. All mod-
els are built on the Pytorch framework and trained with two
NVIDIA 2080Ti GPUs.

Table 3. The impact of sample size on classification learning stage.
’w/o’ denotes removing TTA and CAN.

Method # Samples Accuracy
w/o w

Baseline - 18.83% 20.91%

Two-stage
500 20.26% 20.39%

5000 19.87% 21.82%
6000 20.39% 20.52%

4.4. Train Strategy

A two stage train strategy is parlayed to improve the per-
formance on long-tailed dataset. We build a class-balanced
dataset by random selecting from the extended dataset. The
class-balanced dataset is only used to train the classifier
to alleviate overfitting of the long-tailed distribution. As
shown in Table 3, the classification learning stage can ef-
fectively improve the performance. When 500 samples are
used on this stage, the accuracy achieves 20.26%, which is
7% higher than the baseline. However, the accuracy does
not improve with more samples used. For 5000 and 6000
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Figure 4. The illustration of Classification with Alternating Normalization (CAN). The prior distribution for two classes is {0.5, 0.5}.
CAN adjusts the predict probability distribution based on prior distribution and produces a less ambiguous prediction.

samples, the accuracy is 19.87% and 20.39% respectively.
Considering the additional improvement of post-processing
methods, we finally choose to use 5000 samples for the clas-
sification learning stage.

Table 4. The impact of the number m of augmented samples in
TTA on the accuracy. CAN contributes to the final results as well.

m of TTA Development Phase Test Phase
w/o CAN CAN

0 19.87% 20.26% -
4 20.65% 21.23% -
8 21.82% 21.56% 26.63%

12 21.56% 21.82% 27.97%

4.5. Investigation on the parameter of TTA

We introduce two post-processing methods to further the
improve classification performance. We first employ TTA
to obtain the most reliable results from multiple results by
random rotation, flip, brightness transformation, blur and
affine transformation. Then we introduce CAN to improve
the final accuracy. Table 4 shows the performance improve-
ment in development phase and test phase, respectively. The
TTA promotes the reliable predictions from several trans-
formed version of a given input as m becomes large. How-
ever, the increasing computation entails the growth of m.
Besides, CAN is always conducive to obtain more reliable
results except m = 8. According to the performance in the
test phase, we decide the integrated Testing Strategy with

TTA (m = 12) and CAN.

4.6. Ablation Study

We mainly compare the effectiveness of each method in
Table 5. It proves the benefits of adding different method
to the network. Every improvement we introduce improves
the final accuracy and after comprehensive evaluation we
achieve the 21.82% top-1 accuracy by combining these
methods.

Table 5. Ablation study on the development phase for Track 1.

Method
Baseline ✓ ✓ ✓ ✓ ✓

Two-stage ✓ ✓ ✓ ✓
TTA ✓ ✓
CAN ✓ ✓

Accuracy 18.83% 19.87% 21.56% 20.26% 21.82%

4.7. Competition Results

The top-5 teams from preliminary results in the test
phase and corresponding development results are listed in
terms of top-1 accuracy in Table 6. Note that the only dif-
ference between development and test phase is the change
of provided data for competitions. We achieved the best
during the development phase. The top ranking team in test
phase behaved badly in the development phase but ranked
the top in the final test phase. This may indicate that there is
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Table 6. Preliminary results in test phase and corresponding in
development phase.

Team Top-1 Accuracy
Development Phase Test Phase

TeamA - 36.44%
TeamB 16.62% 31.23%
TeamC 13.51% 28.09%
Ours 21.82% 27.97%

TeamD - 26.76%

a large gap between the validation set and the test set, which
makes some methods poorly generalized.

5. Conclusion

In this paper, a two-stage shake-shake network is de-
signed towards the long-tailed distribution dataset of PBVS
2022 Multi-modal Aerial View Object Classification Chal-
lenge Track 1. For the training phase, we train the model
with the complete dataset to learn the feature represen-
tation, then we freeze the parameters of the feature ex-
tractor and only train the classifier with the class-balanced
dataset. Combining with the test time augmentation (TTA)
and a post-processing approach CAN, our proposed method
achieves the top-tier ccuracy in the development phase and
behaves well in the testing phase.
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Lopez-Paz. mixup: Beyond empirical risk minimization.
ArXiv, abs/1710.09412, 2018. 5

[31] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and
Jiashi Feng. Deep long-tailed learning: A survey. ArXiv,
abs/2110.04596, 2021. 2

[32] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min
Chen. Bbn: Bilateral-branch network with cumulative learn-
ing for long-tailed visual recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9719–9728, 2020. 2

[33] Xiaoxiang Zhu, Devis Tuia, Lichao Mou, Gui-Song Xia,
Liang pei Zhang, Feng Xu, and Friedrich Fraundorfer. Deep
learning in remote sensing: A comprehensive review and list
of resources. IEEE Geoscience and Remote Sensing Maga-
zine, 5:8–36, 2017. 1

256


	. Introduction
	. Related Works
	. Data Distribution Re-balancing
	. Transfer Leaning from Head to Tail class
	. Decoupled Learning

	. Methods
	. Overall Framework
	. Shake-Shake Regularization
	. Two-Stage Training Strategy
	. Testing Strategy
	. Classification with Alternating Normalization

	. Experiments
	. Datasets
	. Network Architecture
	. Implementation details
	. Train Strategy
	. Investigation on the parameter of TTA
	. Ablation Study
	. Competition Results

	. Conclusion

