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Abstract

Hyperspectral image (HSI) classification is the most
vibrant area of research in the hyperspectral community
due to the rich spectral information contained in HSI can
greatly aid in identifying objects of interest. However,
inherent non- linearity between materials and the corre-
sponding spectral profiles brings two major challenges in
HSI classification: interclass similarity and intraclass vari-
ability. Many advanced deep learning methods have at-
tempted to address these issues from the perspective of a
region/patch- based approach, instead of a pixel- based al-
ternate. However, the patch- based approaches hypothe-
size that neighborhood pixels of a target pixel in a fixed
spatial window belong to the same class. And this as-
sumption is not always true. To address this problem, we
herein propose a new deep learning architecture, namely
Gramian Angular Field encoded Neighborhood Attention
U- Net (GAF- NAU), for pixel- based HSI classification. The
proposed method does not require regions or patches cen-
tered around a raw target pixel to perform 2D- CNN based
classification, instead, our approach transforms 1D pixel
vector in HSI into 2D angular feature space using Gramian
Angular Field (GAF) and then embed it to a new neigh-
borhood attention network to suppress irrelevant angular
feature while emphasizing on pertinent features useful for
HSI classification task. Evaluation results on three pub-
licly available HSI datasets demonstrate the superior per-
formance of the proposed model. The source code available
at https://github.com/MAIN- Lab/GAF- NAU/

1. Introduction

Hyperspectral images (HSIs) contain abundant spectral
bands/channels where each band measures the radiated en-
ergy from objects in narrow bandwidths. The detailed spec-
tral information has several applications in fields of agri-
culture, forestry, urban and natural resources management

Figure 1. High-level schematic of the proposed methodology
for pixel-wise HSI classification. GAF: Gramian Angular Field.
GAF-NAU: Gramian Angular Field encoded Neighbor Attention
U-Net.

pertaining to land use classification [19], defense [25], min-
eral mapping [23], vegetation health analysis [14], etc. The
challenging part, however, is to differentiate the variability
in the spectral signatures of materials in a scene.

The conventional HSI classification involves the follow-
ing steps: removing noisy bands (such as water absorp-
tion bands), data normalization, feature extraction, spectral
and/or spatial feature based classification. Spectral-feature
based classification approaches treat each HSI pixel as a
1D spectrum and then perform pixel-wise categorization,
while spatial-feature based methods take into account the
characteristics of pixels of its neighborhood in the spatial
domain. Moreover, the spectral-spatial based classification
frameworks utilize both spectral and spatial features during
HSI classification. The limitation of the conventional clas-
sification approach is that feature engineering and classifi-
cation are two separate tasks, and the hand-crafted features
can hinder a classifier’s performance if it is not carefully
designed. Recent advances in machine learning, particu-
larly, deep learning have shown great promises in achieving
end-to-end HSI classification framework by automating the
feature engineering process and has been able to produce
models with demonstrated good performance [1, 13].

Among various deep learning approaches for HSI classi-
fication, convolutional neural network (CNN) [12] has be-
come the most popular one. CNN and its variants extract
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informative features from the original data via a series of hi-
erarchical layers such as convolution, max pooling and fully
connected layers. CNN has been employed to perform 1-D
spectral, 2-D spectral-spatial, and 3-D spectral-spatial based
HSI classification. [1, 8, 24]. However, most recent works
that involve deep CNN empathize on utilizing both spatial
and spectral features to obtain benefits of 2D or 3D convo-
lutional operations, instead of working on 1D pixel-vector
itself due to the complex spectral property of HSI such as
high-dimensionality and spectral correlation. Although 2D
or 3D based CNN based frameworks have shown promises
compared to 1D CNN methods, it assumes pixels within
a fixed spatial size of neighborhood share similar spectral
characteristics, which ignores that the possibility of pixels
in the same neighborhood may represent a different class.
This problem becomes more prominent if the spatial reso-
lution is coarser. To address this issue, a robust deep learn-
ing framework capable of transforming 1D spectral vectors
of hyperspectral data into 2D spectral feature matrices is
needed to enable utilizing 2D CNN architectures, however,
this type of approach has rarely been studied.

In this research, we propose an effective pixel-wise HSI
classification framework that represents a 1D spectral signa-
ture of a pixel vector as a 2D feature map in Gramian Angu-
lar Fields (GAF) and then embeds it to a deep network con-
sisting of neighborhood attention gate, progressive expan-
sion layer, and U-Net framework. Figure 1 shows a high-
level schematic of our method. The proposed approach not
only alleviates spectral correlation challenges as it considers
CNN-based operations on angular fields, but also allows for
integrating advanced CNN architectures into the HSI clas-
sification framework to account for interclass and intraclass
spectral variations. The key contributions are summarized
as follows:

• To the best of our knowledge, this study is the first
attempt to introduce the notion of 2D attention learning
and 2D U-Net for a pixel-wise HSI classification task.

• The concept of attention gate with progressive expan-
sion layer that connects encoder and decoder in U-Net
framework is introduced, which utilizes attention from
both higher and lower feature maps to highlight rele-
vant features for better classification accuracy.

• We demonstrate the state-of-the-art classification per-
formance on three benchmark HSI datasets by compar-
ing existing CNN-based pixel-wise HSI classification
frameworks.

In the rest of the paper, Section 2 reviews related pixel-
wise HSI classification methods. Section 3 introduces the
proposed approach, while the experimental analysis is pre-
sented in Section 4. Finally, we conclude the work in Sec-
tion 5.

2. Related Work
Spectral-based or pixel-based CNN models consider 1D

spectral signature, denoted as xi ∈ RB , as an input, where
B represents the number of spectral bands in a given HSI
data. In [9], a simple 1D CNN architecture (i.e., one con-
volution, one pooling and one fully connected layer) is in-
troduced for HSI classification by considering the spectral
signature of each pixel as a 1D array, and yielded better
accuracy than two-layer neural network and supper vector
machine classifier. To alleviate the influence of strong cor-
relation among HSI spectral bands, Gao et al. [5] reshaped
the 1D spectral vectors of hyperspectral data into 2D spec-
tral feature matrices and then adopted small convolution
kernels with size of 3 × 3 or 1 × 1 to form convolutional
layers. Recently, a new 1D CNN approach named Plastic-
Net [10] is introduced to identify plastic components from
ATR-FTIR (attenuated total reflection-Fourier transform in-
frared spectroscopy) spectra. The PlasticNet receives 1D
spectral signal collected from ATR-FTIR and represents it
as Gramian angular fields (GAF) to form 2D matrix. This
transformation allows for applying 2D CNN on 2D GAF,
which produced higher accuracy in classifying mixed plas-
tic waste comparing to 1D CNN. Their framework also em-
ployed a Piecewise Aggregate Approximation (PAA) [11]
method to reduce the dimension of the input GAF matri-
ces with the aim of ameliorating computational burden of
2D CNN. In [22], recurrent layers are combined with con-
volutional layers to extract both contextual information and
locally-invariant features from 1D spectral vector, the ar-
chitecture achieved better accuracy than 1D and 2D CNN
methods. Charmisha et al. [4] performed a comparative
analysis on the effect of a dimensionality reduction (DR)
method, namely dynamic mode decomposition (DMD), for
the performance of 1D CNN. The results indicate a com-
parable classification accuracy can be obtained with the re-
duced feature dimension by applying DMD. Zhu et al. [26]
improved the generalization capability of a CNN classifier
by introducing generative adversarial network (GAN) in the
HSI classification framework which tends to reduce overfit-
ting issues associated with 1D-CNN. Sidike et al. [20] pro-
posed a pixel-wise deeper CNN classifier, namely deep Pro-
gressively Expanded Network (dPEN), which can extract
pertinent features from raw data using very limited train-
ing data, and outperformed 1D-CNN and other popular ma-
chine learning classifiers.

Recently, U-Net and its variants, as well as attention
gates, have been employed and have shown promising re-
sults for HSI classification task, where a 2D patch-based
semantic segmentation approach is typically implemented
[6, 7, 15, 16, 18]. To the best of our knowledge, there is
no approach thus far that performs attention U-Net based
pixel-wise HSI classification. In this work, we introduce
a neighborhood attention U-Net scheme where attention
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gates encapsulate neighboring feature maps and progres-
sive expansion layers. The proposed architecture encodes
1D pixel vector using Gramian Angular Summation Fields
(GASF) and Gramian Angular Difference Fields (GADF)
which are then fed to a neighborhood attention U-Net to
perform pixel-wise classification. It is worth mentioning
that U-Net based deep learning architectures are designed
to output a 2D segmentation map in the last stage of the net-
work, however, in the HSI classification task, it is expected
to output a single value that indicates a class label. To ad-
dress this issue, we also employ a majority voting scheme
onto the segmentation map to calculate a class label, More
details will be provided in Section 3.

3. Proposed Methodology

Figure 2. Conversion of 1D spectra to the polar coordinate system
and to GASF and GADF.

3.1. Gramian Angular Fields (GAF)

A HSI can be represented as a 3D cube as X =
{xi}H×W

i=1 ∈ RH×W×B where H and W are the height
and width of the spatial image, respectively. B denotes the
total number of spectral bands. xi ∈ RB is the ith sample
in the HSI cube with the B-dimension, which belongs to
one of the available class yi ∈ {1, 2, . . . , C}. For 1D-CNN
classification, each pixel is given as input as a 1D vector to a
CNN architecture where 1D convolution and 1D pooling are
applied. In contrast, for 2D-CNN classification, either the
1D vector of spectra needs to be transformed into the 2D
matrix, or a neighborhood window/patch of a center (tar-
get) pixel is treated as a sample. In this study, we employ
GAF to transform a 1D pixel vector to the 2D matrix and
then send it to a deeper network for prediction. Originally,
GAF is used to encode time-series as images to capture cor-
relation structures [21] and use that output to process 2D-
CNN. Similarly, GAF can be used to encode spectra as a
2D feature map to use as input to the 2D-CNN. In GAF, a

1D signal is represented in a polar coordinated system and
the angles of each data point are converted into matrices us-
ing various operations as described in the following. In the
proposed framework, pixel vector is first normalized into [0,
1], expressed as

x̃i =

N∑
i=1

xi − Xmin

Xmax − Xmin
(1)

where N (i.e., H × W ) is the total number of pixel in an
HSI. Next, the x̃i is represented in polar coordinate system
by converting the normalized vector to angular cosine and
radius with the equation below:

φj = arccos(x̃j
i ), rj =

j

B
, j = 1, 2, . . . , B (2)

where x̃ji represents the value of jth band in the normalized
pixel vector x̃i. φ ∈ RB is the angle vector and r ∈ RB is
the radius vector.

Figure 3. A typical architecture of 1D-CNN.

Figure 4. The architecture of GAF Encoded 2D-CNN.

There are two types of GAF: Gramian Angular Summa-
tion Fields (GASF) and Gramian Angular Difference Fields
(GADF), which can respectively be calculated as

GASF = cos(φi+φj) = x̃T x̃−
√
I − x̃x2

T√
I − x̃2 (3)

and

GADF = sin(φi−φj) =
√

I − x̃2
T

x̃− x̃T
√

I − x̃2 (4)

where i and j denotes ith and jth spectral band, respec-
tively. I is a unit row vector of size 1 × B (i.e., the total
number of spectral bands).

The resulting GASF and GADF have a size B×B, where
B is the number of the spectral band of HSI. The size of
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Figure 5. Schematic of the proposed GAF-NAU architecture, presented on the Indian Pines dataset. The first step consists of sending a HSI
pixel to the GAF encoder module and then feed the output to the proposed AG-PE (Attention Gate with Progressive Expansion) embedded
U-Net architecture.

the GAF can be varied, and thus the corresponding predic-
tion output is subject to change [10]. The conversion of 1D
spectra to polar coordinates and to GASF and GADF is il-
lustrated in Figure 2. The 1D-CNN architecture is shown
in Figure 3 and the GAF encoded 2D-CNN architecture is
shown in Figure 4.

3.2. Proposed GAF-NAU Method

We herein introduce a new HSI classification approach,
namely Gramian Angular Field encoded Neighborhood At-
tention U-Net (GAF-NAU), which consists of neighbor at-
tention mechanism, progressively expanded attention unit,
and U-Net framework. The objective is to perform pixel-
wise classification by using the encoded GAF feature map
as an input to the proposed deep learning architecture to per-
form pixel-wise categorization. The proposed GAF-NAU
architecture is depicted in Figure 5 and illustrated in Sec-
tion 3.2.2.

3.2.1 Model Overview

The main purpose of this research is to explore an alter-
nate approach that enables deep 2D CNN-based methods
to perform 1D pixel-wise classification in HSI, which has
been rarely studied in the literature. In addition, we hypoth-
esize that adding progressive expansion layer to the self-
attention gating module can facilitate U-Net based deep net-

Figure 6. Illustration of the progressively expanded layer for a
case of the Maclaurin series with three terms. ξ represents an in-
termediate feature map in the network, c1, c2, and c3 represent
first three terms’ coefficients of the Maclaurin series of a nonlin-
ear function, respectively. And p1, p2, and p3 represent the corre-
sponding terms’ powers. Sk(k = 1, 2, 3) are called progressively
expanded feature maps.

work to learn more discriminate features than gating-based
features propagated through the skip connections. The pro-
posed method consists of two major steps: first, each pixel
in HSI is passed through a GAF transformation which com-
bines GASF and GADF to better capture spectral correla-
tion. Second, the encoded GAF feature representation is
fed to neighborhood attention U-Net to highlight salient fea-
tures while suppressing irrelevant regions in GAF to better
describe pixel category. Detailed architecture is described
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Figure 7. Indiana Pines hyperspectral dataset with classification maps. (a) True color composite of HSI, (b) Ground truth. Classification
maps from (c) 1D-CNN, (d) dPEN, (e) Plastic-Net (f) GAF U-Net, (g) GAF-NAU.

in the following section.

3.2.2 Model Architecture

As shown in Figure 5, GAF-NAU contains three major com-
ponents: the initial GAF transformation, Attention Gate
with Progressive Expansion (AG-PE) block, and U-Net
framework. In the AG-PE block, the PE layer is applied to
1× 1 convolution (i.e., ωX ). PE layer was originally devel-
oped for 1D pixel-wise multispectral image classification,
and found to be effective in learning complex data struc-
tures by generating a nonlinear boundary that may better fit
the nonlinear features [20]. In this study, we embed it in the
self-attention gate and further extend it to perform 2D PE
on each feature map. Figure 6 illustrates an example of a
2D PE layer. For a better explanation, let ξ represents an
input 2D feature map, then the kth progressively expanded
feature map, denoted as Sk, can be expressed as

Sk =

K∑
k=1

ckξ
pk (5)

where ck and pk are the coefficient and power of the kth

term in the Maclaurin series of a nonlinear function (e.g.,
arctan). K denotes the total number of terms in the
Maclaurin series is used. We set K = 2 in this study. The
coefficient and power of expanded terms are applied to in-
put feature maps in an element-wise fashion (every node in
the hidden layer). The purpose of introducing the PE layer
in the self-attention gate is to contract robust feature maps
using a nonlinear function with its corresponding Maclau-
rin series to better fit complex data structures. Since the

PE layer does not contain trainable parameters, less model
memory is consumed.

The AG-PE block is used to extract features not only
from the same level of the encoder and decoder path in
U-Net, but also from the neighbor’s levels (upper and
lower) as shown in Figure 5, and thereby we named
our method as neighborhood attention. The output of
the AG-PE block is element-wise multiplication of input
feature-maps and attention coefficients (i.e., α ∈ [0, 1]):
X̃ l = X l−1 ·X l ·X l+1 · αl where X l corresponds to the
feature map in layer l. In Figure 5, the gating signal g
is used to determine focus regions, and it contains contex-
tual information to trim lower-level feature responses [17].
To obtain the gating coefficient, we employ additive atten-
tion [2, 17], computed by

qlatt = ψT (σ1(PE(ωT
Xl−1X

l−1) + PE(ωT
XlX

l)+

PE(ωT
Xl+1X

l+1) + ωT
g g + bg)) + bψ

(6)

αl = PE(σ2(q
l
att(X

l−1, X l, X l+1, g; Θatt))) (7)

where a ReLU and Sigmoid activation functions are repre-
sented as σ1 and σ2, respectively. PE denotes progressive
expansion operation. The set of parameters such as con-
volutions (ωX and ωg) and bias terms (bg and bψ) are rep-
resented by Θatt. A more detailed explanation of similar
terms can be found in [17]. The proposed AG-PE block is
incorporated into the modified U-Net architecture to high-
light important features taken from the skip connections
from the encoder to the decoder path as shown in Figure
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5. The number of filter is set to 128 in the beginning and
double it through the encoder path, and downsampling by 2
in the decoder path.

The final layer of GAF-NAU produces a 2D output map
where the values will be ranging from [1 C] and C denotes
the total number of classes contained in the dataset. To de-
termine the predicted label to the input pixel vector, Major-
ity Voting (MV) strategy is adopted. following the MV rule,
the majority class label from the output is considered as the
final predicted label.

4. Experimental Results

Figure 8. University of Pavia scene hyperspectral dataset with
classification maps. (a) True color composite of HSI, (b) Ground
truth. Classification maps from (c) 1D-CNN, (d) dPEN, (e)
Plastic-Net (f) GAF U-Net, (g) GAF-NAU.

4.1. Datasets

The datasets used in our experiments are Indian Pines
(IP), University of Pavia (UP), and Salinas Valley (SV),

Figure 9. Salinas Valley hyperspectral dataset with classification
maps. (a) True color composite of HSI, (b) Ground truth. Classifi-
cation maps from (c) 1D-CNN, (d) dPEN, (e) Plastic-Net (f) GAF
U-Net, (g) GAF-NAU.

which are publicly available 1 and widely used for eval-
uation of HSI classification methods. The details of the
datasets are described as follows.

Indian Pines (IP): Indian Pines dataset [3] was acquired
by an AVIRIS sensor covering the Indian Pines test area in
the region of Northwestern Indiana. This dataset consists of
145 × 145 pixels and 224 spectral reflectance bands cover-
ing the range of 400–2500 nm. This scene is distributed as
follows: two-thirds of agriculture presence and one-third of
forest and/or natural perennial vegetation. There are a total
of 16 classes, which are not all mutually exclusive, identi-
fied in the ground truth. By removing the water absorption

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes
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Table 1. Accuracy (in %) comparison on the Indian Pines dataset.

Metric 1D-CNN [9] dPEN [20] Plastic-Net [8] GAF U-Net GAF-NAU
OA 74.39 77.62 73.00 75.67 81.07
AA 76.36 81.28 63.29 71.69 74.67
κ 70.57 74.54 69.23 71.89 78.31

Note: The highest accuracy is highlighted in bold font.

Table 2. Accuracy (in %) comparison on the University of Pavia dataset.

Metric 1D-CNN [9] dPEN [20] Plastic-Net [8] GAF U-Net GAF-NAU
OA 90.17 91.21 89.70 89.70 91.12
AA 89.37 90.54 87.76 87.70 90.49
κ 86.85 88.29 86.29 86.25 88.09

Table 3. Accuracy (in %) comparison on the Salinas Valley dataset.

Metric 1D-CNN [9] dPEN [20] Plastic-Net [8] GAF U-Net GAF-NAU
OA 91.43 92.53 90.69 93.82 94.59
AA 95.06 96.48 95.06 96.57 97.00
κ 90.45 91.68 89.63 93.11 93.97

region, 200 spectral bands are remained. Figure 7 (a) and
(b) shows the pseudocolor image and the ground truth map
of the IP dataset, respectively.

University of Pavia (UP): As part of the Pavia scenes, the
University of Pavia HSI dataset was acquired by the Reflec-
tive Optics System Imaging Spectrometer (ROSIS) sensor
over the city of Pavia, located in northern Italy. The size of
the image is 610 × 610 with a total of 103 bands. There
are nine types of land cover with a spatial resolution of 1.3
meters. Figure 8 (a) and (b) shows the pseudocolor image
and the ground truth map of the UP dataset, respectively.

Salinas Valley (SV): The Salinas Valley HSI dataset was
collected by the AVIRIS sensor over the Salinas Valley in
California. The dataset comprises 512 by 217 pixels with
a spatial resolution of 3.7-meter pixels, and contains a to-
tal of 220 spectral reflectance bands. In this dataset, the
water absorption bands (20 in total) were also discarded,
which left for 204 bands. The provided ground truth con-
tains a total of 16 classes that cover regions of vegetables,
bare soils, and vineyard fields. Figure 9 (a) and (b) shows
the pseudocolor image and the corresponding ground truth
map, respectively.

4.2. Training Protocols

Our proposed architecture is compared against other
pixel-based deep learning architectures, including 1D-CNN

[9], dPEN [20] and Plastic-Net [8]. All the analyses have
been placed under the same dataset split proportion for
training (10%), validation (10%) and testing (80%). To
assess the performance of the different methods, Overall
Accuracy (OA), Average Accuracy (AA) and Kappa coef-
ficient (κ) have been used as evaluation metrics. The pro-
posed GAF-NAU and GAF U-Net use a fixed window size
of 32 × 32 from the GAF matrix as an input for all the
datasets. In the encoder path of GAF-NAU architecture, the
number of filters in the convolutional layers is doubled af-
ter each down-sampling operation starting from 128 filters
in the first convolutional layer. During the network train-
ing, the number of epochs is set to 150 epochs with a batch
size of 64. And a learning rate scheduler was set, starting at
10−3 with constantly decreasing by a factor of e−0.01 after
each epoch.

4.3. Results

Our proposed GAF-NAU architecture is verified with the
IP, UP, and SV datasets, the corresponding results shown in
Tables 1, 2 and 3, respectively. It is noticeable that the pro-
posed method outperforms the other state-of-the-art meth-
ods in the majority of experiments. For instance, GAF-
NAU outperforms all competing methods in the IP dataset
in terms of OA and κ. For the UP dataset, our method pro-
duces competitive performance compared to the dPEN al-
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gorithm. In the case of the SV dataset, our method again
yields the best classification accuracy over OA, AA and κ.
It can be also observed that GAF-NAU consistently outper-
forms GAF U-Net for all three datasets, indicating the con-
tribution of AG-PE block to the network performance. In
terms of training speed, our proposed model takes longer
time to train compared to other competing methods due to
computational complexity of our algorithm. For instance,
our method requires approximately 11.9 mins, 50.2 mins
and 26.7 mins training time for IP, UP and SV datasets, re-
spectively. In future work, we will explore strategies to im-
prove its computational efficiency while maintaining good
classification accuracy.

The classification maps for IP, UP and SV datasets are
demonstrated in Figures 7, 8 and 9, respectively. It can
be visually observed that the classification maps produced
from our GAF-NAU method tend to be less noisy and
smoother in the majority of cases, which indicates better
performance in handling interclass and/or intraclass varia-
tions. For instance, in Figure 7, it can be seen that other
competing methods incorrectly classify Soybean-notil as
other classes, while our approach alleviates this problem at
a certain level.

4.4. Ablation Study

In this section, we conduct a set of ablation studies to
understand the contribution of various aspects of our pro-
posed model. In Table 4, we evaluate the performance of
three different models: 1) GAF-NAU, 2) GAF-NAU with-
out the use of PE block in the AG, 3) GAF-NAU without the
use of neighborhood AG-PE. As demonstrated in this table,
the performance of the GAF-NAU model is decreased in the
absence of any of those components, although the number
of trainable parameters are reduced.

Table 5 presents OA on each dataset with different GAF
matrix sizes, and it is observed that the GAF matrix size of
32×32 seems a reasonable choice considering OA obtained
from all three datasets. There is a slight decrement of OA
as the GAF matrix size increases for the IP dataset, while
it is a no certain rule applied for both UP and SV datasets.
However, it can be observed that the training time increases
as the GAF matrix size increases.

Furthermore, we verify the effect of increasing the train-
ing size and then evaluate the performance of our proposed
model as shown in Table 6. As expected, the accuracy grad-
ually increases as the number of training samples increases,
which echos with typical deep learning models on the num-
ber of training samples requirement for achieving better per-
formance.

5. Conclusion
We proposed a new pixel-wise hyperspectral image clas-

sification framework, which we refer to as Gramian An-

Table 4. Model performance (overall accuracy in %) and trainable
parameters by varying components of the proposed GAF-NAU ar-
chitecture.

Model IP UP SV #Params
GAF-NAU 81.07 91.12 94.59 158.1 M

GAF-NAU w/o PE 79.91 90.63 93.98 154.0 M
GAF-NAU w/o AG-PE 75.67 89.70 93.82 23.7 M

Table 5. Model performance (overall accuracy in %) and training
time by varying GAF matrix size for three different datasets.

GAF
matrix size IP UP SV

Training
Time (s)

GAF-NAU (16 x 16) 82.01 89.10 93.44 2130.69
GAF-NAU (32 x 32) 81.07 91.12 94.59 3012.11
GAF-NAU (48 x 48) 79.73 90.99 94.79 4872.69

Table 6. Model performance (overall accuracy in %) by varying
the fraction of training samples.

Dataset 10% data 15% data 20% data
IP 81.07 84.91 85.98
UP 91.12 91.54 91.77
SV 94.59 95.31 95.46

gular Field encoded Neighborhood Attention U-Net (GAF-
NAU). It combines multiple unique components, including
GAF encoding, neighborhood attention gate, and progres-
sive expansion layer, to ensure good feature representation.
The experimental evaluation on three HSI datasets confirms
the efficacy of the proposed network. Moreover, an ablation
study was performed to investigate characteristics of the
proposed GAF-NAU, which we found that 1) GAF matrix
size affects classification output, and 2) Attention Gate with
Progressive Expansion (AG-PE) has a noticeable contribu-
tion to the classification performance. It is anticipated that
further gains in accuracy of GAF-NAU may be obtained by
more detailed tuning of hyperparameters and proper combi-
nation of different network components, we plan to conduct
such experiments in our future work.
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Deep learning for classification of hyperspectral data: A
comparative review. IEEE geoscience and remote sensing
magazine, 7(2):159–173, 2019. 1, 2

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014. 5

[3] Marion F. Baumgardner, Larry L. Biehl, and David A. Land-
grebe. 220 band aviris hyperspectral image data set: June 12,
1992 indian pine test site 3, Sep 2015. 6

[4] KS Charmisha, V Sowmya, and KP Soman. Dimensionally
reduced features for hyperspectral image classification using
deep learning. In International Conference on Communica-
tions and Cyber Physical Engineering 2018, pages 171–179.
Springer, 2018. 2

[5] Hongmin Gao, Yao Yang, Chenming Li, Hui Zhou, and Xi-
aoyu Qu. Joint alternate small convolution and feature reuse
for hyperspectral image classification. ISPRS International
Journal of Geo-Information, 7(9):349, 2018. 2

[6] Renlong Hang, Zhu Li, Qingshan Liu, Pedram Ghamisi, and
Shuvra S Bhattacharyya. Hyperspectral image classification
with attention-aided cnns. IEEE Transactions on Geoscience
and Remote Sensing, 59(3):2281–2293, 2020. 2

[7] Siyuan Hao, Wei Wang, and Mathieu Salzmann. Geometry-
aware deep recurrent neural networks for hyperspectral im-
age classification. IEEE Transactions on Geoscience and
Remote Sensing, 59(3):2448–2460, 2020. 2

[8] Wei Hu, Yangyu Huang, Li Wei, Fan Zhang, and Hengchao
Li. Deep convolutional neural networks for hyperspectral
image classification. Journal of Sensors, 2015, 2015. 2, 7

[9] Wei Hu, Yangyu Huang, Li Wei, Fan Zhang, and Hengchao
Li. Deep convolutional neural networks for hyperspectral
image classification. Journal of Sensors, 2015, 2015. 2, 7

[10] Shengli Jiang, Zhuo Xu, Medhavi Kamran, Stas Zinchik,
Sidike Paheding, Armando G McDonald, Ezra Bar-Ziv,
and Victor M Zavala. Using atr-ftir spectra and convo-
lutional neural networks for characterizing mixed plastic
waste. Computers & Chemical Engineering, 155:107547,
2021. 2, 4

[11] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and
Sharad Mehrotra. Dimensionality reduction for fast simi-
larity search in large time series databases. Knowledge and
information Systems, 3(3):263–286, 2001. 2
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