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Abstract

In this article, we describe an ember detection method
in infrared (IR) video. Embers, also called firebrands, can
act as wildfire super-spreaders. We develop a novel neural
network with a Walsh-Hadamard Transform (WHT) layer
to process the IR video. The WHT layer is used to pro-
cess the temporal dimension of the video data to model the
high-frequency activity due to ember movements. We insert
the WHT layer to ResNet-18 and obtained higher accuracy
compared to the standard single slice ResNet-18 and the
ResNet-18 processing the entire video block. We also repeat
the experiments on ResNet-34, but we found that ResNet-18
is sufficient for this task. Therefore, we choose the ResNet-
18 with the WHT layer as the proposed model.

1. Introduction

Global climate change has led to an increased wildfire
season length, frequency, and burned area, with devastating
consequences, especially in recent years [1]. For example,
the year 2018 marked the deadliest and the most destruc-
tive wildfire season in the State of California in recorded
history. Over several months, thousands of wildfires span-
ning almost 2 million acres claimed the lives of 98 civilians
and 6 firefighters. In particular, the Camp Fire, which oc-
curred over a period of two weeks in mid-November 2018,
destroyed most of the town of Paradise, resulting in the
deaths of 85 people. Close to 20,000 buildings were de-
stroyed, with estimated economic damage of $20B [2]. On
the global scale, the “Black Summer” fires in Australia in
the 2019-2020 season killed at least 35 people [3]. Also,
as many as one billion animals perished, and thousands of
homes were destroyed. The unprecedented amount of CO2
emissions resulting from the fires also created a huge en-
vironmental impact. Once a wildfire begins, it can very

rapidly expand to a large area and may become uncontrol-
lable due to several factors such as high winds or low hu-
midity as in the Camp Fire.

Computer-vision-based detection of wildfires have re-
ceived much attention [4–20]. However, automated UAV-
based IR real-time monitoring of wildfires using deep learn-
ing has not been studied in the literature. The goal of a
complete IR computer vision system is to monitor the fire-
front, embers, and the firemen as well as other people on
the ground. The firefront monitoring system will provide
general-purpose situational awareness for firemen during a
wildfire. A characteristic feature of wildfires is ember at-
tacks where small-sized burning or charred pieces of wood
or vegetation are carried from the firefront to remote loca-
tions via winds. Embers may then start new fires at where
they land. Embers are burning pieces of airborne wood and
vegetation produced by wildfires, and they can travel miles
in the wind [21]. Depending on the type of fuel and the
wind speed, the spotting distance (i.e., the distance between
the origin of the ember and its destination) may reach more
than a mile. Embers can cause wildfires to spread not only
quickly but also unpredictably and they can ignite the fire
behind the firemen [22]. Fig. 1 shows flying embers.

Figure 1. Flying embers during a wildfire. The image is down-
loaded from [21].
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Convolutional neural networks (CNNs) have been suc-
cessfully employed in many detection fields, and one of the
applications is wildfire detection [13–20]. Since embers are
clusters of burning objects we should use video to recog-
nize them. In this article, we propose an ember detection
method in infrared videos which are obtained from a UAV
monitoring the wildfire front. Our algorithm will automat-
ically detect ember attacks near the firefront using a novel
deep learning network. In this paper, we design a novel
convolutional neural network that will accept a sequence of
image frames and process the image frames using a Walsh-
Hadamard Transform (WHT) layer in the temporal domain.
In a regular CNN, the first layer filters should be very deep
to process the sequence of images. Training such filters
is difficult compared to calculating their temporal Walsh-
Hadamard transforms which model the movements of em-
ber clusters based on the ”frequency” components of tem-
poral behavior. In this article, we use the WHT instead
of a standard wavelet or the complex Fourier Transform to
avoid complex arithmetic. If there is an ember cluster in a
block of image data there should be a high amount of high-
frequency activity due to fast ember movements compared
to other segments of the video.

Other transform-based layers include [23–30], but nei-
ther of them are used to process the data in video processing
to model the temporal behavior of objects.

In Section 2, we will introduce the methodology. It de-
scribes the methods we propose the WHT layer and we im-
plement it into ResNet-18 and ResNet-34. In Section 3, we
will introduce our video dataset and how do we make the
video clips for training and testing, then we will present our
experimental results to show that the proposed model, the
ResNet-18 with the WHT layer, is most suitable for this
task.

2. Methodology
In this section, we will first review the Walsh-Hadamard

Transform in Section 2.1. Then, we will describe the WHT
layer with smooth-thresholding activation function in sec-
tion 2.2. Next, we will introduce how to insert the WHT
layer into the ResNet architecture in Sections 2.3 and 2.4.

2.1. Walsh-Hadamard Transform (WHT)

The Walsh-Hadamard Transform (WHT) is an orthog-
onal binary transform and it is equivalent to block-Haar
wavelet transform [31]. The 1-D WHT is equivalent to
applying N band-pass filters to an input vector of size
N . Therefore, it can be used in the time-scale analysis of
data. The low-index (high-index) transform domain coef-
ficients approximately represent the low-frequency (high-
frequency) content of the input vector.

Let {xn} denote the input sequence, where n =
0, 1, ..., N−1, N = 2k, k ∈ N (0 may be padded to guaran-

tee N = 2k), and let {Xn} denote the sequence in the trans-
form domain, then the Walsh-Hadamard Transform and its
inverse can be computed as:

Y =

√
1

N
WkX, (1)

X =

√
1

N
WkY, (2)

where, Y = [Y0, ..., YN−1]
T , X = [x0, ..., xN−1]

T . Wk

is called the Walsh matrix. Y0 is the so-called the DC value
and it is the sum of the input vector elements as in discrete
cosine and Discrete Fourier Transforms (DCT and DFT),
and YN−1 = (−1)nxn, which is the (N2 + 1)-th coefficient
(the highest-frequency component) of the DFT for a real in-
put vector. The WHT essentially applies N different filters
to the input vector. The Walsh Transform and its inverse are
actually identical if the forward transform is normalized by√

1
N as in Eq. (1).
The Walsh matrix Wk can be generated via the follow-

ing steps: [32]:

1. Construct the Hadamard matrix Hk:

Hk =


1, k = 0,[
Hk−1 Hk−1

Hk−1 −Hk−1

]
, k > 0,

(3)

Alternatively, for k > 1, Hk can also be computed
using Kronecker product ⊗:

Hk = H1 ⊗Hk−1. (4)

2. Shuffle the rows of Hk to obtain Wk by applying the
bit-reversal permutation and the Gray-code permuta-
tion on row index.

Therefore, the Walsh matrix and the Hadamard matrix
are both symmetric scaled-unitary matrices:

Wk = WT
k , (5)

Hk = HT
k , (6)

WkWk = HkHk = NIN , (7)

where, IN is an N by N identical matrix.
Similar to the FFT, the WHT can be computed using but-

terfly operations described in Eq. (1) in [33]. In this way,
the complexity of the WHT is also O(N log2 N). More-
over, WHT is more efficient than FFT because the operator
only contains +1 and −1 instead of any complex exponen-
tial terms. Thus, there is no need to use complex arithmetic
to implement the WHT.
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2.2. WHT Layer for Video Clip Analysis

We process the video data in short-time windows. Sup-
pose that we have an N image frames in a short-time win-
dow: X = {Xn} where n = 0, 1, ..., N − 1, with the im-
age frame size H by W . Therefore, Xn ∈ RH×W de-
notes the n-th frame. We first apply one-dimensional (1D)
WHT along the temporal axis (along n) on X. In this way,
we convert the tensor into the transform domain along the
time axis. Then, we feed the tensor into a scaling layer.
The scaling layer is achieved by element-wisely multiply-
ing the tensor with N trainable parameters. The scaling
layer contains no bias term and its activation is the smooth-
thresholding operation. The smooth-thresholding function
is a modified version of the soft-thresholding operator used
in wavelet domain denoising. The threshold parameters are
learned during training. The smooth threshold removes the
slow amplitude transform domain components. Finally, we
apply another WHT along the temporal axis to convert the
tensor back into the time domain.

The smooth-thresholding function is first defined in [26]:

y = ST (x) = tanh(x)(|x| − T )+, (8)

where, T is a trainable threshold, ()+ denotes the ReLU
function [34] which is defined as:

y = (x)+ = max(x, 0). (9)

Compared to soft-thresholding, which is commonly used in
wavelet domain denoising algorithms [35, 36] and defined
as

y = sign(x)(|x| − T )+, (10)

the smooth-thresholding can make the network converge to
a higher accuracy with the same amount of parameters be-
cause the derivative is not just 1, 0, and −1 [26]:

∂ST (x)

∂T
=

{
− tanh(x), |x| > T

0, |x| ≤ T
(11)

We do not use the ReLU function because both positive and
negative values in the transform domain are equally impor-
tant.

In general, the WHT layer is summarized as follows:

Z = W(ST (K · W(X))), (12)

where, W() denotes the WHT along the temporal axis,
and ST () denotes the smooth-thresholding function which
makes the layer non-linear, (K·W(X))) is the scaling layer
that takes the tensordot operation between the transform
domain weights K and W(X). The WH transform does
not have any adjustable weights. The scaling layer applies
weights to transform domain coefficients.

Fig. 2 shows the block diagram of the WHT layer. Al-
gorithm 1 describes the implementation of the WHT layer.

Algorithm 1 The WHT layer for video clip analysis

Input: Input tensor X ∈ RB×H×W×N , where B is the
batch size, H and W are the frame size, and N is the
length of the video clip.

Output: Output tensor Z ∈ RB×H×W×N

1: Find minimum k ∈ N, s.t. 2k ≥ N
2: X̂ = pad(X, 2k −N) ∈ RB×H×W×2k

3: Y = WHT(X̂) ∈ RB×H×W×2k

4: Ŷ = ST(K ·Y) ∈ RB×H×W×2k , K ∈ R2k

5: Ẑ = WHT(Ŷ) ∈ RB×H×W×2k

6: Z = Ẑ[:, :, : N ]
7: return Z.

Comments: Function pad(A, b) pads b zeros on the last
axis of tensor A. WHT(·) is the normalized Walsh-
Hadamard transform on the last axis. We do not pad
any zeros in this paper because N = 32. ST(·) performs
smooth-thresholding. Index follows Python’s rule.

Figure 2. The WHT layer.

2.3. WHT in Inner Layers of ResNet

We use WHT not only in the input layer but also in in-
ner layers of ResNet to process the tensor data. The origi-
nal architecture of ResNet-18 is shown in Table 1. We in-
troduce 1-D Walsh-Hadamard (WH) transforms before the
”Conv1” layer as shown in Table 2. In addition, we intro-
duce WHT layers described in Section 2.2 inside the resid-
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ual blocks of ResNet as shown in Fig. 3. We apply the WH
transform along the channel (last) axis to organize the activ-
ity among the channel axis according to their “frequency”
components.

The original ResNet residual convolutional block is
shown in Fig. 3a. Before the 3 × 3 2D convolutions, the
WHT layer rearranges the channel data as shown in Fig. 3b.
In the transform domain we use soft-thresholding to denoise
the data. Finally, we batch normalize [37] the data after
each WHT layer before feeding them to 3×3 Conv2D fil-
ters.

Table 1. Structure of ResNet-18.

Layer Output Shape Implementation Details

Conv1 64× 64× 32 Conv2D 3× 3, 32

Conv2 x 64× 64× 32

[
Conv2D 3× 3, 32
Conv2D 3× 3, 32

]
× 2

Conv3 x 32× 32× 64

[
Conv2D 3× 3, 64
Conv2D 3× 3, 64

]
× 2

Conv4 x 16× 16× 128

[
Conv2D 3× 3, 128
Conv2D 3× 3, 128

]
× 2

Conv5 x 8× 8× 256

[
Conv2D 3× 3, 256
Conv2D 3× 3, 256

]
× 2

GAP 256 Global Average Pooling
Output 2 Dense(unit = 2, softmax)

2.4. ResNet-18 and ResNet-34 Architectures Used
in Ember Cluster Detection

In this section, we describe the ResNet-18 and ResNet-
34 with WHT layers used in ember cluster detection in IR
video. The baseline regular ResNet-18 model is summa-
rized in Table 1, and the regular ResNet-34 model is de-
scribed in Table 3, respectively. As described in [38], if the
output shape is different from the input shape, a 1× 1 con-
volutional layer matches the sizes and performs the short-
cut connection. The convolutional blocks include Conv3 1,
Conv4 1, and Conv5 1 layers. Other convolutional blocks
use the identity function (a(x) = x) to achieve the shortcut
connection whenever the output shape is the same as the in-
put shape. We apply a global average pooling (GAP) layer
after the last convolutional residual block, and it is followed
by a dense layer which is the output of the model. The
dense layer contains two outputs and computes the softmax
function. Weights in the convolutional layers and the dense
layer are initialized using He normal initializer [39]. Batch
normalization is applied after each 3×3 convolutional layer.

The ResNet-18 and ResNet-34 with the WHT layer are
shown in Tables 2 and 4. As we mention in Section 2.3,
they start with a WHT layer. The ResNet-18 with the WHT

Table 2. Structure of ResNet-18 with the WHT layer. We im-
plement it by inserting one WHT layer before Conv1 and at the
beginning of Conv2 x, Conv3 x, Conv4 x, Conv5 x. WHTL is
the WHT layer.

Layer Output Shape Implementation Details

WHT1 64× 64× 32 WHTL along last axis
Conv1 64× 64× 32 Conv2D 3× 3, 32

Conv2 x 64× 64× 32

 WHTL along last axis
Conv2D 3× 3, 32
Conv2D 3× 3, 32

× 2

Conv3 x 32× 32× 64

 WHTL along last axis
Conv2D 3× 3, 64
Conv2D 3× 3, 64

× 2

Conv4 x 16× 16× 128

 WHTL along last axis
Conv2D 3× 3, 128
Conv2D 3× 3, 128

× 2

Conv5 x 8× 8× 256

 WHTL along last axis
Conv2D 3× 3, 256
Conv2D 3× 3, 256

× 2

GAP 256 Global Average Pooling
Output 2 Dense(unit = 2, softmax)

layer contains 8 convolutional residual blocks after the first
convolutional layer, and the ResNet-34 with the WHT layer
contains 16 convolutional residual blocks after the first con-
volutional layer. Each convolutional block contains two
3 × 3 convolutional layers and 1 WHT layer. Batch nor-
malization is applied after each 3 × 3 convolutional layer
and each WHT layer.

Table 3. Structure of ResNet-34.

Layer Output Shape Implementation Details

Conv1 64× 64× 32 Conv2D 3× 3, 32

Conv2 x 64× 64× 32

[
Conv2D 3× 3, 32
Conv2D 3× 3, 32

]
× 3

Conv3 x 32× 32× 64

[
Conv2D 3× 3, 64
Conv2D 3× 3, 64

]
× 4

Conv4 x 16× 16× 128

[
Conv2D 3× 3, 128
Conv2D 3× 3, 128

]
× 6

Conv5 x 8× 8× 256

[
Conv2D 3× 3, 256
Conv2D 3× 3, 256

]
× 3

GAP 256 Global Average Pooling
Output 2 Dense(unit = 2, softmax)

Since we are feeding the network with gray-scale video
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(a) ResNet residual block [38]. (b) ResNet residual block including a WHT
layer that has a soft-thresholding nonlinearity
as in Figure 2.

Figure 3. ResNet residual block by inserting a WHT layer at the beginning. Batch normalization is applied after each 3× 3 convolutional
layer and the WHT layer.

Table 4. Structure of ResNet-34 with the WHT layer. We im-
plement it by inserting one WHT layer before Conv1 and at the
beginning of Conv2 x, Conv3 x, Conv4 x, Conv5 x. WHTL is
the WHT layer.

Layer Output Shape Implementation Details

WHT1 64× 64× 32 WHTL along last axis
Conv1 64× 64× 32 Conv2D 3× 3, 32

Conv2 x 64× 64× 32

 WHTL along last axis
Conv2D 3× 3, 32
Conv2D 3× 3, 32

× 3

Conv3 x 32× 32× 64

 WHTL along last axis
Conv2D 3× 3, 64
Conv2D 3× 3, 64

× 4

Conv4 x 16× 16× 128

 WHTL along last axis
Conv2D 3× 3, 128
Conv2D 3× 3, 128

× 6

Conv5 x 8× 8× 256

 WHTL along last axis
Conv2D 3× 3, 256
Conv2D 3× 3, 256

× 3

GAP 256 Global Average Pooling
Output 2 Dense(unit = 2, softmax)

clips, the input of the network is 64 × 64 × 32. Tensor-
Flow API “model.summary()” shows that the ResNet-18
with WHT layer totally contains 2,813,922 parameters and
the ResNet-34 with WHT layer totally contains 5,353,954
parameters. Therefore, the 9 WHT layers with the batch
normalization in ResNet-18 and the 17 WHT layers with the
batch normalization in ResNet-34 only bring 0.16% (4,608)
and 0.19% (10,176) additional parameters, respectively.

3. Experimental Results

We have four 720×480 infrared wildfire videos with a 30
frames-per-second capture rate. The imagery that provided
input for this study was extracted from videos recorded us-
ing a FLIR Tau2 thermal imager (Wilsonville, OR USA).
The imager was integrated into a remotely-operated gim-
bal system and flown aboard a DJI Matrice 600P unmanned
aircraft system (SZ DJI Technology Co., Ltd., Shenzen,
Guangdong, China). We conducted several flights over pre-
scribed fires in frequently-burned, pine-dominated forest
plots in Florida, USA, during October 2019 and February
2021. Altitudes ranged from 50m to 120m. A combina-
tion of moderate fire weather and low levels of fuel resulted
in low-intensity fires, with short flame lengths and rela-
tively low ember production compared with fires in areas
with higher fuel loading or in different forest types. Igni-
tion methods for these burns were primarily via hand (drip
torch) and ATV-mounted torch, as is common throughout

261



(a)

(b) (c)

Figure 4. (a) An infrared video frame. Pseudo-color is applied for
display purposes. We feed the neural network with the gray-scale
video clips. Region with a green square bounding box appears to be
an ember cluster. (b) The ember cluster region (with the green square
shaped bounding box in (a)). (c) The video clip of the ember cluster
consisting of 32 frames (about a second long). The size of the video
clip is 64× 64× 32.

(a)

(b) (c)

Figure 5. (a) An infrared video frame. Region with a green square
bounding box contains no ember. (b) Details of the green square re-
gion in (a). (c) Temporal frames show that hot spots are not moving
as in Fig. 4c. The size of the video clip is 64× 64× 32.

the region. Fig. 4a and Fig. 5a show two image frames from
our collection of video frames. Pseudo-color is applied to
the videos for better visualization.

We feed gray-scale data to the neural network, so the in-
put data only has one color channel instead of three. We
manually annotated the video clips containing moving em-
ber clusters. We crop 64× 64 windows around ember clus-
ters as shown in Fig. 4b. We extract 32 temporal frames and
make a small video clip of about a one-second-long video
clip. We use 32 because this duration is long enough for our
eyes to observe the movement of the ember, and we do not
need to pad zeros in the WHT layer because 32 is an integer
power of 2. The data size of the video clip is 64× 64× 32
as shown in Fig. 4c. We feed 64 × 64 × 32 to the neu-
ral network. Similarly, we randomly crop 64 × 64 × 32
short-time windows that do not contain ember clusters. An
example is shown in Fig 5c. We have generated 296 video
clips with ember clusters and 676 video clips without ember
clusters in our training dataset. We have also generated 248
video clips with ember clusters, and 438 video clips without

ember clusters in our test dataset. We make the data unbal-
anced because we want the networks more likely to report
the video clip containing no ember to reduce the false-alarm
rate. After all, the high false-alarm rate may disturb the peo-
ple in the forest fire department in a long surveillance task.

3.1. Training ResNets with the WHT Layer

We implemented ResNet-18 and ResNet-34 on an HP-
Z820 workstation with 2 Intel Xeon E5-2695 v2 CPUs, 2
NVIDIA RTX A4000 GPUs, with 128GB RAM. The code
is written in TensorFlow-Keras in Python 3.

We train ResNet-18 with the WHT layer using the train-
ing dataset. The input size of this model is 64×64×32. To
compare our design, we also train two regular ResNet-18s.
One is trained using only the first frame in each video clip,
so its input size is 64×64×1. The other one is trained using
the video clip dataset, so its input size is 64× 64× 32. The
architectures of these two ResNet-18s are the same except
in the first layer. We also studied the effect of scaling layer
as a part of the WHT layer. Without the scaling layer, it is
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(a) Cross-entropy vs. epoch num-
ber of ResNet-18 that do not use the
temporal information. The input is
the first frame of the video

(b) Cross-entropy vs. epoch number
of the regular ResNet-18. The input
is video clips.

(c) Cross-entropy vs. epoch number
of ResNet-18 with the WHT layer.
Scaling is not applied in the WHT
layer. The input is video clips.

(d) Cross-entropy vs. epoch num-
ber of ResNet-18 that do not use the
temporal information. Scaling is ap-
plied in the WHT layer. The input is
the first frame of the video

(e) Accuracy vs. epoch number of
ResNet-18 that do not use the tem-
poral information. The input is the
first frame of the video

(f) Accuracy vs. epoch number of
the regular ResNet-18. The input is
video clips.

(g) Accuracy vs. epoch number
of ResNet-18 with the WHT layer.
Scaling is not applied in the WHT
layer. The input is video clips.

(h) Accuracy vs. epoch number of
ResNet-18 that do not use the tem-
poral information. Scaling is applied
in the WHT layer. The input is the
first frame of the video

Figure 6. Cross-entropy and accuracy vs. epoch number of ResNet-18 models. The highest accuracy of each model is reported in Table 5.

Table 5. Accuracy, true positive rate (TPR) and false negative rate (FNR) values, and the number of parameters of the networks

Base Model WHT Scaling in WHT Input Parameters TPR FNR Accuracy

ResNet-18 No - First Frame (64× 64× 1) 2,800,386 94.35% 5.02% 94.75%
ResNet-18 No - Video Clip (64× 64× 32) 2,809,314 95.16% 0.00% 98.25%
ResNet-18 Yes No Video Clip (64× 64× 32) 2,813,154 98.79% 0.00% 99.56%
ResNet-18 Yes Yes Video clip (64× 64× 32) 2,813,922 99.19% 0.00% 99.71%

ResNet-34 No - First Frame (64× 64× 1) 5,334,850 94.76% 3.88% 95.63%
ResNet-34 No - Video Clip (64× 64× 32) 5,343,778 95.56% 0.00% 98.40%
ResNet-34 Yes No Video Clip (64× 64× 32) 5,352,258 99.19% 0.00% 99.71%
ResNet-34 Yes Yes Video Clip (64× 64× 32) 5,353,954 99.19% 0.00% 99.71%

the same as the WHT layer proposed in [20]:

Z = W(ST (W(X))), (13)

though the WHT layer in [20] is employed only to replace
the 1×1 convolutions layers to reduce the number of param-
eters in image classification tasks. This approach reduces
the number of parameters but it leads to a slight loss in TPR
rate in ResNet-18 as shown in Table 5. We also repeat the
above experiment using ResNet-34. In ResNet-34 there is
no need to have a scaling layer but the number of parameters
of ResNet-34 is already twice that of ResNet-18.

We train all networks with the same parameter setting:
RMSprop optimizer [40] with learning rate = 0.001 on 50

epochs with the batch size = 32. We use cross-entropy as
the loss function. In Table 5, accuracy on the test dataset
is used for model evaluation. TPR (True positive rate, true
detected rate) and FNR (false negative rate, false alarm rate)
of each model are provided in Table 5:

TPR =
Number of true positive cases
Total number of positive cases

, (14)

and

FNR =
Number of false negative cases
Total number of negative cases

, (15)

263



Table 6. Confusion matrix of ResNet-18 with the WHT layer.
Scaling layer is part of the WHT layer. We totally have 248 video
clips of size of size 64 × 64 × 32 containing ember clusters and
438 regular video clips that do not contain ember clusters in the
test set.

Actual
Predicted Ember No Ember

Ember 246 2
No Ember 0 438

Table 7. Confusion matrix of ResNet-18 with the WHT layer.
Scaling layer is not applied in the WHT layer. The input is video
clips of size 64× 64× 32.

Actual
Predicted Ember No Ember

Ember 245 3
No Ember 0 438

Table 8. Confusion matrix of ResNet-18 without using the tempo-
ral information. The input is the first frame of size 64× 64 of the
video clips of the test dataset.

Actual
Predicted Ember No Ember

Ember 234 14
No Ember 22 416

Table 9. Confusion matrix of ResNet-18. The input is video clips
of size 64× 64× 32.

Actual
Predicted Ember No Ember

Ember 236 12
No Ember 0 438

Plots of cross-entropy and accuracy versus epoch num-
ber are shown in Figure 6. Confusion matrices of all
ResNet-18 models are shown in Tables 6, 7, 8 and 9. Video-
based models report no false-alarm case, but the single-
frame-based model reports 22 false-alarm cases in our test
set. The proposed ResNet-18 with WHT layer achieves the
best TPR and accuracy as shown in Table 5. The ResNet-18
models whose inputs are video clips reach a higher accuracy
than the model whose input is a single image frame. This is

because ember flickering and motion can be observed only
in the video clips. It cannot be observed in a single frame.
That is why the FNR of the single-frame model is 5.02 %.
The model with the WHT layer has a 4.03% higher TPR
than the model without the WHT layer in ResNet-18 model.
This is because our WHT layer enhances the neural net-
work’s ability to extract the information from the temporal
domain. The smooth thresholding in the transform domain
also eliminates small variations and noise in the video. Scal-
ing layer as a part of the WHT layer brings more parame-
ters and this improves the accuracy 0.15% with a slight in-
crease in the number of parameters. The WHT transform
does not have any adjustable weights the scaling layer ap-
plies weights to the transform coefficients.

When we make the network deeper to ResNet-34, we no-
tice that the accuracy of the model with WHT does not in-
crease. We think the accuracy is bounded by the amount and
quality of the dataset. However, ResNet-34 contains twice
that of the parameters of ResNet-18. Since the additional
layers will increase the computational cost, we choose the
ResNet-18 with the WHT layer as the proposed model fro
ember cluster recognition in infrared video. Moreover, in
this case, scaling in the WHT layer does not contribute the
accuracy because the accuracy is already very high.

4. Conclusion
In this paper, we proposed an ember cluster detection pa-

per using a deep neural network with a novel layer based on
the Walsh-Hadamard Transform (WHT). We incorporated
the WHT layer into ResNet-18 for the ember cluster detec-
tion task in IR video. In this task, the WHT layer models the
high-frequency activity caused by ember movements. Com-
pared to the regular ResNet-18 models, the proposed model
has 4% higher TPR rate and a 1.46% higher accuracy with
a slight increase in the number of parameters. Making the
model deeper did not improve the accuracy in our dataset.
It is necessary to use video data to recognize ember move-
ments. The WHT layer successfully models the temporal
dimension of the video data.
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Wavelet based real-time smoke detection in video. In 2005
13th European signal processing conference, pages 1–4.
IEEE, 2005. 1
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[15] Behçet Uğur Töreyin. Smoke detection in compressed video.
In Applications of Digital Image Processing XLI, volume
10752, page 1075232. International Society for Optics and
Photonics, 2018. 1, 2
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